Регенерировать миелиновую оболочку. Медицинские препараты для восстановления нервных тканей.

Нейрон, или структурно-функциональная единица нервной системы человека, «молчащая» сама по себе ничего не значит. И даже совокупность нейронов тоже лишена смысла, пока они не заняты своим важнейшим делом – генерацией и проведением нервного импульса. Нервный импульс – это тот феномен, благодаря которому мы существуем. Любой физиологический акт, начиная от выделения желудочного сока до произвольного движения, регулируется нервной системой, посредством проведения импульсов. Высшая нервная деятельность головного мозга также представляет собой совокупность импульсов коры больших полушарий.

Импульс проводится по нервным волокнам, которые есть не что иное, как аналоги электрических проводов, ведь нервный импульс – это быстрое изменение потенциала мембраны нервного отростка, которое должно быть передано зачастую на большое расстояние. Например, аксоны нейронов передних рогов спинного мозга, лежащих в нижних поясничных сегментах, образуют поясничное сплетение, из которого и формируется самая длинная его ветвь – седалищный нерв. В составе этого нервааксоны идут на периферию, и заканчиваются ветвями малоберцового нерва, от которого зависит, например, разгибание большого пальца на ноге.

И нигде эти аксоны не прерываются, от передних рогов спинного мозга до синапсов в мышцах на стопе идет плотный пучок отростков нейронов, которые образуют самый длинный нерв нашего тела. Скорость импульса в нем достигает 120 м/с. Таким образом, длина нервной клетки с учетом ее аксона в организме человека может достигать длины более чем в метр. Как можно сохранить и провести электрический импульс во «влажной среде» организма без потерь, и доставить его, куда нужно? Для этого и существует особое вещество – миелин, myelin. Миелиновая оболочка нервных волокон это не что иное, как изоляция электрического провода, без которой нервный импульс будет «искрить», извращаться, либо не проводиться вовсе . Как устроены миелиновые оболочки нервов в организме человека, и к чему ведет их разрушение?

Функции миелина в нервной системе

Известно, что кроме нейронов в центральной нервной системе существуют глиальные клетки , которые помогают нейронам и обслуживают их, выполняя опорную и трофическую функцию. В центральной нервной системе роль «изоляции» нервных волокон играют олигодендроциты, а в периферической нервной системе – шванновские клетки, которые и образуют миелиновое вещество.

Если разрезать толстый нерв, то его можно сравнить с кабелем, который состоит из отдельных нервных пучков. Нервные пучки можно расщепить, пока мы не доберемся до очень тонкого отростка всего одного нейрона. И каждый аксон каждой клетки защищен миелиновой оболочкой. Миелиновые волокна плотно обернуты вокруг нервного волокна, практически без просветов. Это немного напоминает цилиндрический рулон туалетной бумаги, в центр которого воткнули карандаш. Бумага и будет довольно грубо, но верно имитировать миелиновые слои.


О скачках и перехватах

Электрический ток, как известно, распространяется со скоростью света, если речь идет о токе электронов в идеальном проводнике, например, в металлах или при условиях сверхпроводимости. Но процесс проведения импульса в нейронах называется электрохимическим. Поэтому нужно очень малое, но конечное время, чтобы «перезарядить» мембрану. Это происходит на определенных участках, на которых расположен миелиновый белок.

После этого на нерве существует «узкое место», в котором миелиновая оболочка прерывается. Эта область называется перехватом Ранвье. Они расположены на расстоянии 1-2 мм, а между ними содержится миелиновая оболочка, «навернутая» на нерв. Поэтому ток движется «скачками», от перехвата к перехвату. Перехват «прерывает» потенциал, а затем он накапливается на другой стороне проводника. Чем толще оболочка, тем более совершенна функция проведения импульса .

Существуют бедные миелином волокна, и вообще аксоны, лишенные миелина, в которых скорость проведения импульса всего 1-2 м/с, то есть в 100 раз медленнее. Они содержатся в вегетативной нервной системе , где повышенная скорость импульса не очень важна, а требуется медленная и обстоятельная работа, например, в иннервации вазомоторно-трофических реакций. Как раз на таких участках и существует непрерывное проведение импульса, без «скачков» между изолятором – миелином.

Из чего состоит?

Такая удивительная биологическая изолирующая функция у миелина оказалось возможна благодаря его строению. Не стоит думать, что миелин – это просто навернутый вокруг нейрона слой изолятора. Вспомним, что в природе все состоит из клеток, и миелин периферического нерва – это просто разросшаяся шванновская клетка, которая обернула своей цитоплазмой осевой цилиндр нейрона несколько раз. Именно миелин придает белый цвет нервным волокнам, отсюда понятие «белого вещества головного мозга». Это не что иное, как пучки нервных волокон, в которых содержится много миелина. Их функция – быть проводниками тока. Мост, ствол мозга, средний мозг – все это области, состоящие из невообразимо большого числа проводящих пучков.

Поэтому миелин состоит большей частью, из липидов, которые отталкивают воду, и из белков. Липидов в миелине около 75%, это гораздо выше, чем в большинстве мембран . Понятно, почему это происходит. Ведь мембрана, состоящая из билипидного слоя, должна не только отграничивать внутреннюю среду клетки. Это сложная система транспорта, которая происходит с помощью белков-переносчиков. Что касается миелиновых «обёрток» нерва, то их задача очень простая – максимально изолировать нервное волокно. Поэтому миелин такой «жирный». В области перехватов Ранвье ионы могут заходить в цитоплазму нейрона, вызывая деполяризацию мембраны, а в миелиновых областях – нет. Благодаря этому и обеспечивается бесперебойное прохождение импульсов.


Но бывают ситуации, при которых миелин начинает разрушаться. Этот процесс называется демиелинизацией, и проявляется он целой группой одноименных заболеваний. Почему это происходит и чем это проявляется?

Демиелинизация и ее проявления

Дефекты миелинизации нервных волокон называются демиелинизацией. Это может произойти вследствие генетических дефектов (это называется миелинопатией). Иногда миелин синтезируется нормально, но физиологическое восстановление миелина происходит замедленно, либо с повреждением. Демиелинизация – это процесс, которым

Чаще всего в первичном разрушении миелина виновато иммунное воспаление. Изоляцию нерва разрушают цитокины, ферменты и другие активные вещества, которые синтезируют плазматические клетки и макрофаги. Выраженное повреждение оказывают антимиелиновые антитела.

Наиболее частыми причинами демиелинизации являются следующие процессы :

  • цереброваскулярные заболевания, инсульты, атеросклероз;
  • васкулиты и системные коллагенозы;
  • аутоиммунные поствакцинальные и постинфекционные реакции.

Наиболее известным заболеванием из этой группы является рассеянный склероз, который может протекать с очень разнообразной клинической симптоматикой (параличи, парезы, нарушение функции тазовых органов, тремор, офтальмоплегия, угасание рефлексов, нарушение координации движений). При рассеянном склерозе симптомы зависят от того, где расположен очаг и выраженности демиелинизации.


Демиелинизация происходит также от действия физических факторов. Очень серьезные обострения при рассеянном склерозе можно получить нечаянно, если не соблюдать правила поведения. Давно установлено, что миелин разрушается от воздействия термических процедур. Так, больным категорически запрещается:

  • париться в бане;
  • принимать горячие ванны и душ;
  • загорать и находиться на солнце с открытыми частями тела.

Также серьезные обострения возникают после ОРВИ, гриппа, и прочих заболеваний, протекающих с синдромом лихорадки. Повышение температуры при рассеянном склерозе и подобных болезнях стимулирует распад миелина.

О ремиелинизации и принципах лечения

Наряду с распадом постоянно происходит восстановление миелиновой оболочки нейронов. Как правило, этот процесс миелинизации характерен для дебюта рассеянного склероза, когда старые очаги исчезают, но появляются новые. Затем функция восстановления миелиновой оболочки снижается, и это характерно для хронических очагов рассеянного склероза.

Восстановление миелиновой оболочки нервов и проводящих путей зависит от двух факторов:

  • наличия олигодендроцитов, которые могут превратиться в источник миелина;
  • выраженность нейродегенерации, то есть повреждения оголенных аксонов и степень нарушения их функции.

Но перспективы на самом деле при ремиелинизации на фоне аутоиммунного поражения не такие радужные. Считается, что восстанавливающий потенциал глиальных клеток является извращенным, и вновь образованный миелин получается не такой, как разрушенный. А это ведет к хронизации процесса и появлению вялотекущей симптоматики. Но если миелин даже теоретически может восстанавливаться, то нельзя ли повысить его качество, подавив иммунное воспаление?

В принципе, на этом и строится современная терапия рассеянного склероза. Наличие пусть даже несовершенного, но миелина предупреждает дальнейшее прогрессирование инвалидности и появление новых симптомов. Поэтому в лечении применяются препараты из группы ПИТРС (препараты, изменяющие течение рассеянного склероза). К ним относятся интерфероны, а также «Копаксон», или глатирамера ацетат, который является синтетическим аналогом основного образующего миелин белка.

Как восстановить проведение нервного импульса и замедлить прогрессирование заболевания? Для этого используют пульс-терапию метилпреднизолоном, который подавляет иммунные реакции. Иногда показаны инфузии цитостатиков, например, циклофосфана. В настоящее время в клиническую практику введен новый класс дорогих, но действенных препаратов – рекомбинантных моноклональных антител, которые производятся с помощью методов молекулярной и генной инженерии.

Одним из таких препаратов является «Тизабри», или натализумаб. Он связывается определенным белком, расположенным на мембране лейкоцитов, что предотвращает их миграцию из капилляров в очаг аутоиммунного воспаления. Это снижает степень выраженности воспалительной реакции, и повышает резистентность миелина к воспалению.

Таким образом, моноклональные антитела способны предотвращать появление новых очагов демиелинизации и останавливать прогрессирование уже существующих. Единственный серьезный недостаток – это стоимость препарата. Так, стоимость одной внутривенной инфузии приближается к 100 тысячам рублей, на конец 2016 года, а повторять их нужно ежемесячно, как минимум трижды. Учитывая, что максимальное пособие по инвалидности больному рассеянным склерозом составляет 11 тысяч рублей (для инвалида первой группы), то для большинства пациентов вопрос о применении современных средства лечения остается очень болезненным.

В заключение нужно сказать, что восстановительные способности нервной системы далеко не изучены. В частности, многое можно будет сделать с применением клеточных технологий, и работы в этом направлении постоянно ведутся. Учитывая, что стволовые клетки могут успешно превращаться в полноценную нервную ткань, и восстанавливать утраченные после инсульта функции, есть надежда, что такой процесс, как полное восстановление миелина тоже возможен.

Демиелинизация Demyelination заболевание, вызванное избирательным повреждением миелиновой оболочки, проходящей вокруг нервных волокон

Демиелинизация - патологический процесс, при котором миелинизированные нервные волокна теряют свой изолирующий миелиновый слой. Миелин, фагоцитированный микроглией и макрофагами, а впоследствии - астроцитами, замещается фиброзной тканью (бляшками). Демиелинизация нарушает проведение импульса по проводящим путям белого вещества головного и спинного мозга; периферические нервы не поражаются.

ДЕМИЕЛИНИЗАЦИЯ - разрушение миелиновой оболочки нервных волокон в результате воспаления, ишемии, травмы, токсико-метаболических или иных расстройств.

Демиелинизация (Demyelination) - заболевание, вызванное избирательным повреждением миелиновой оболочки, проходящей вокруг нервных волокон центральной или периферической нервной системы. Это в свою очередь приводит к нарушению функций миелиновых нервных волокон. Демиелинизация может быть первичной (например, при рассеянном склерозе), или развивается после травмы черепа.

ДЕМИЕЛИНИЗИРУЮЩИЕ ЗАБОЛЕВАНИЯ

Заболевания, одним из основных проявлений которых является разрушение миелина, - одна из наиболее актуальных проблем клинической медицины, преимущественно неврологии. В последние годы наблюдается отчетливое увеличение числа случаев заболеваний, сопровождающихся повреждением миелина.

Миелин - особый вид клеточной мембраны, окружающей отростки нервных клеток, в основном аксоны, в центральной (ЦНС) и периферической нервной системе (ПНС).

Основные функции миелина:
питание аксона
изоляция и ускорение проведения нервного импульса
опорная
барьерная функции.

По химическому составу миелин - это липопротеидная мембрана, состоящая из биомолекулярного липидного слоя, расположенного между мономолекулярными слоями белков, спирально закрученная вокруг интернодального сегмента нервного волокна.

Липиды миелина представлены фосфолипидами, гликолипидами и стероидами. Все эти липиды построены по единому плану и обязательно имеют гидрофобный компонент ("хвост") и гидрофильную группу ("головку").

Белки составляют до 20% сухой массы миелина. Они бывают двух видов: белки, расположенные на поверхности, и белки, погруженные в липидные слои или пронизывающие мембрану насквозь. Всего описано более 29 белков миелина. Основной белок миелина (ОБМ), протеолипидный белок (ПЛП), миелин-ассоциированный гликопротин (МАГ) составляют до 80% массы белка. Они выполняют структурную, стабилизирующую, транспортную функции, обладают выраженными иммуногенными и энцефалитогенными свойствами. Среди мелких белков миелина особое внимание заслуживает миелин-олигодендроцитарный гликопротеин (МОГ) и ферменты миелина, имеющие большое значение в поддержании структурно-функциональных взаимоотношений в миелине.

Миелины ЦНС и ПНС отличаются по своему химическому составу
в ПНС миелин синтезируется шванновскими клетками, причем несколько клеток синтезируют миелин для одного аксона. Одна шванновская клетка образует миелин только для одного сегмента между участками без миелина (перехватами Ранвье). Миелин ПНС заметно толще, чем в ЦНС. Такой миелин имеют все периферические и черепные нервы, только короткие проксимальные сегменты черепных нервов и спинно-мозговых корешков содержат миелин ЦНС. Зрительный и обонятельный нервы содержат преимущественно центральный миелин
в ЦНС миелин синтезируется олигодендроцитами, причем одна клетка принимает участие в миелинизации нескольких волокон.

Разрушение миелина является универсальным механизмом реакции нервной ткани на повреждение.

Болезни миелина подразделяются на две основные группы
миелинопатии - связаны с биохимическим дефектом строения миелина, как правило, генетически обусловленным

Миелинокластии - в основе миелинокластических (или демиелинизирующих) заболеваний лежит разрушение нормально синтезированного миелина под влиянием различных воздействий, как внешних, так и внутренних.

Подразделение на эти две группы весьма условно, так как первые клинические проявления миелинопатий могут быть связаны с воздействием различных внешних факторов, а миелинокластии вероятнее всего развиваются у предрасположенных лиц.

Наиболее распространенное заболевание из всей группы болезней миелина - рассеянный склероз. Именно с этим заболеванием приходится наиболее часто проводить дифференциальную диагностику.

Наследственные миелинопатии

Клинические проявления большинства этих заболеваний чаще отмечаются уже в детском возрасте. В то же время имеется ряд заболеваний, которые могут начинаться в более позднем возрасте.

Адренолейкодистрофии (АЛД) связаны с недостаточностью функции коры надпочечников и характеризуются активной диффузной демиелинизацией различных отделов как ЦНС, так и ПНС. Основной генетический дефект при АЛД связан с локусом на Х-хромосоме - Xq28, генетический продукт которого (белок ALD-P) является пероксисомальным мембранным белком. Тип наследования в типичных случаях - рецессивный, зависимый от пола. В настоящее время описано более 20 мутаций в разных локусах, связанных с разными клиническими вариантами АЛД.

Основной метаболический дефект при этом заболевании - увеличение содержания в тканях насыщенных жирных кислот с длинной цепью (особенно С-26) , что приводит к грубым нарушениям структуры и функций миелина. Наряду с дегенеративным процессом в патогенезе болезни существенное значение имеет хроническое воспаление в ткани мозга, связанное с повышенной продукцией фактора некроза опухолей альфа (ФНО-a). Фенотип АЛД определяется активностью этого воспалительного процесса и вероятнее всего обусловлен как различным набором мутаций на Х-хромосоме, так и аутосомной модификацией влияния дефектного генетического продукта, т.е. сочетанием основного генетического дефекта в половой Х-хромосоме со своеобразным набором генов на других хромосомах.

Олигодендроциты и шванновские клетки формируют вокруг аксонов (отростков нервной клетки) миелиновые оболочки. Миелиновая оболочка помогает нервам передавать сигналы. Миелиновая оболочка нервов на 70-75% состоит из липидов и на 25-30 % — из белков. Итак, здесь перечислены средства, которые помогут поддержать восстановление и регенерацию миелиновой оболочки, а также предотвратить склероз.


1. Обеспечьте себе добавки к пище в виде фолиевой кислоты и витамина B12. Телу требуются два этих вещества, чтобы защищать нервную систему и грамотно «чинить» миелиновые оболочки. 5. Кушайте пищу с высоким содержанием холина (витамин D) и инозита (инозитола; B8). Данные аминокислоты критичны в отношении восстановления миелиновых оболочек.

6. Кушайте продукты, богатые витаминами группы В. Витамин В-1, так же называемый тиамин, и В-12 – физические компоненты миелиновой оболочки

Если она повреждена, возникают проблемы с памятью, нередко у человека появляются специфические движения и функциональные нарушения. И фолиевая кислота, и В12 способны и помочь предотвратить разрушение, и регенерировать повреждение миелина. Холин вы найдете в яйцах, говядине, бобах и некоторых орехах.

Анатомически среди них различают клетки нейроглии в мозге (олигодендроциты и астроциты) и шванновские клетки в периферической нервной системе

Орехи, овощи и бананы содержат инозитол. 7. Вам необходима и пища, содержащая медь. Липиды могут быть созданы только с использованием зависящих от меди энзимов. Медь найдена в чечевице, миндале, семенах тыквы, кунжуте и полусладком шоколаде. Основными функциональными элементами нервной системы являются нервные клетки или нейроны, составляющие 10-15% общего числа клеточных элементов в нервной системе.

Составляющие основную массу нервной ткани глиальные элементы выполняют вспомогательные функции и заполняют почти все пространство между нейронами. Основные функции миелина: метаболическая изоляция и ускорение проведения нервного импульса, а также опорная и барьерная функции.

Нервные болезни, связанные с деструкцией миелина, можно разделить на две основные группы — миелинопатии и миелинокластии. В основе миелинокластических заболеваний лежит разрушение нормально синтезированного миелина под влиянием различных воздействий, как внешних, так и внутренних.

Группа лейкодистрофии характеризуется демиелинизацией с диффузной волокнистой дегенерацией белого вещества головного мозга и образованием в ткани мозга глобоидных клеток. Среди миелинокластических заболеваний особого внимания заслуживают вирусные инфекции, в патогенезе которых важную роль играет разрушение миелина.

Лечение всех вирусных инфекций основано на использовании противовирусных препаратов, останавливающих размножение вируса в инфицированных клетках. После химио- и лучевой терапии может развиваться токсическая лейкоэнцефалопатия с очаговой демиелинизацией в сочетании с мультифокальным некрозом. В патогенезе этих заболеваний существенное значение имеют аутоиммунные реакции на антигены миелина, повреждение олигодендроцитов и, следовательно, нарушение процессов ремиелинизации.

Употребление продуктов, содержащих лецитин, является хорошей профилактикой и одним из способов лечения заболеваний, связанных с нарушением деятельности нервной системы

При этом заболевании образуются большие очаги демиелинизации преимущественно в белом веществе лобных долей, иногда с вовлечением серого вещества. Очаги состоят из чередующихся областей полной и частичной демиелинизации с выраженным ранним поражением олигодендроцитов. Разрушение миелина и развитие аутоиммунных реакций на его компоненты наблюдается при многих сосудистых и паранеопластических процессах в ЦНС (Е.И.Гусев, А.Н.Бойко.

Аутоиммунный процесс сопровождается появлением миелинотоксических антител и Т-лимфоцитов-киллеров, разрушающих шванновские клетки и миелин. Для коррекции иммунной системы применяют иммуносупрессоры, снижающие активность иммунной системы, и иммуномодуляторы, изменяющие соотношение компонентов иммунной системы.

При наличии в организме источников хронического воспаления или аутоиммунных заболеваний нарушается целостность миелиновых оболочек нервов. Определенные аутоиммунные болезни и внешние химические факторы, вроде пестицидов в еде, способны повредить миелиновую оболочку. Ни в одном из известных авторам источников нет упоминания о свойстве стефаглабрина сульфата восстанавливать поврежденную миелиновую оболочку нервного волокна.

Миелиновая оболочка

Миелин (в некоторых изданиях употребляется некорректная теперь форма миэлин ) - вещество, образующее миелиновую оболочку нервных волокон.

Миелиновая оболочка - электроизолирующая оболочка, покрывающая аксоны многих нейронов. Миелиновую оболочку образуют глиальные клетки: в периферической нервной системе - Шванновские клетки, в центральной нервной системе - олигодендроциты . Миелиновая оболочка формируется из плоского выроста тела глиальной клетки, многократно оборачивающего аксон подобно изоляционной ленте. Цитоплазма в выросте практически отсутствует, в результате чего миелиновая оболочка представляет собой, по сути, множество слоев клеточной мембраны. Промежутки между изолированными участками называются перехваты Ранвье.

Из вышесказанного становится ясным, что миелин и миелиновая оболочка являются синонимами. Обычно термин миелин употребляется в биохимии, вообще при упоминании его молекулярной организации, а миелиновая оболочка - в морфологии и физиологии.

Химический состав и структура миелина, произведенного разными типами глиальных клеток, различны. Цвет миелинизированных нейронов - белый, отсюда название «белого вещества» мозга.

Приблизительно на 70-75 % миелин состоит из липидов , на 25-30 % - из белков . Такое высокое содержание липидов отличает миелин от других биологических мембран.

Молекулярная организация миелина

Уникальной особенностью миелина является его формирование в результате спирального обвития отростков глиальных клеток вокруг аксонов, настолько плотного, что между двумя слоями мембраны практически не остается цитоплазмы. Миелин представляет собой эту двойную мембрану, то есть состоит из липидного бислоя и белков, связанных с ним.

Среди белков миелина выделяют так называемые внутренние и внешние белки. Внутренние интегрированы в мембрану, внешние расположены поверхностно, и поэтому связаны с ней слабее. Миелин также содержит гликопротеиды и гликолипиды.

Белки составляют 25 - 30 % массы сухого вещества миелиновой оболочки нейронов ЦНС млекопитающих. На долю липидов приходится приблизительно 70-75 % от сухой массы. В миелине спинного мозга процент содержания липидов выше, чем в миелине головного. Большую часть липидов составляют фосфолипиды (43 %), остальное - холестерол и галактолипиды в примерно равном соотношении.

Миелинизация аксонов

В образовании миелиновой оболочки и структуре миелина ЦНС и периферической нервной системы имеются отличия.

Миелинизация в ЦНС

Миелинизация в периферической НС

Обеспечивается Шванновскими клетками. Каждая Шванновская клетка формирует спиральные пластинки миелина и отвечает лишь за отдельный участок миелиновой оболочки отдельного аксона. Цитоплазма шванновской клетки остается только на внутренней и наружной поверхностях миелиновой оболочки. Между изолирующими клетками также остаются перехваты Ранвье, которые здесь уже, чем в ЦНС.

Так называемые «немиелинизированные» волокна все равно изолированы, но по несколько иной схеме. Несколько аксонов частично погружены в изолирующую клетку, которая не смыкается вокруг них до конца.

См. также

  • Шванновские клетки

Ссылки

  • "Основной белок миелина" - статья в периодике «Вопросы медицинской химии» № 6 2000

Wikimedia Foundation . 2010 .

Учёные из Университета Калифорнии в Сан-Франциско успешно провели ряд экспериментов по восстановлению утраченного миелина у мышей с рассеянным склерозом. Показано, что регенерация миелина не только защищает здоровые нейроны, но и позволяет вернуть к работе повреждённые нервные клетки. об этом можно найти в научном журнале eLife .

В основе такого заболевания как рассеянный склероз лежит «атака» оболочек нейронов собственными иммунными клетками. Из-за этого утрачивается способность нейронов передавать нервные импульсы. Миелиновый слой, который покрывает длинные отростки нейронов, в данном случае выступает в роли «проводов», по которым «бежит» нервный импульс. Его разрушение замедляет прохождение импульса в 5-10 раз и приводит к слепоте, нарушениям чувствительности, параличам, когнитивным расстройствам и прочим неврологическим проблемам.

Учёные использовали модель рассеянного склероза у мышей, при которой здоровым мышам делают инъекцию белка, содержащегося в миелиновой оболочке, инициируя таким образом аутоиммунный ответ организма, то есть заставляя иммунитет «ополчиться» на собственные же ткани. Новый эксперимент опирался на предыдущее исследование, в котором эта же группа учёных обнаружила кластеры мускариновых рецепторов, которые помогают миелину восстанавливаться из олигодендроцитов (глиальных клеток-«помощников» в головном мозге). Также взяли во внимание и положительный эффект у пациентов с отёком зрительного нерва на приём блокатора гистамина под названием «клемастин».

В нынешней работе исследователи применили клемастин совместно с белком, вызывающим рассеянный склероз у мышей, и показали, что у таких животных проявлялось значительно меньше симптомов заболевания, потому что происходило восстановление миелиновой оболочки аксонов нейронов спинного и головного мозга.

Демиелинизированные участки спинного мозга мышей, которым вводили клемастин, и группы сравнения. Зелёным цветом показаны олигодендроциты, красным — Т-клетки, макрофаги и микроглия. Источник: Chan et al./eLife

«Камнем преткновения» в исследовании оказалось то, что клемастин действует одновременно на разные виды рецепторов и клеток, поэтому учёным еще предстояло доказать связь между влиянием клемастина на олигодендроциты и ослаблением симптомов рассеянного склероза. Для этого они поочерёдно «выключали» по одному рецептору у мышей и наблюдали за эффектом лекарства. В итоге обнаружен мускариновый рецептор 1 типа, который и выступает в качестве мишени для клемастина и замедляет развитие олигодендроцитов из клеток-предшественников.

Дальше произошло самое интересное. Попытка выключить ген этого рецептора привела к тому, что поражённые рассеянным склерозом нейроны стали восстанавливать свою функцию. Таким образом, учёные доказали, что М1 рецептор олигодендроцитов замедляет эффект ремиелинизации нейронов. К сожалению, на данный момент не существует вещества, которое избирательно бы блокировало М1 рецептор, но калифорнийские исследователи заявили о том, что собираются его создать и протестировать на животных, а также, возможно, на людях.

«Сейчас мы показали, что можно запустить процессы восстановления и стабильность нового миелина во время периода воспаления. Сейчас мы уже можем сказать пациентам с рассеянным склерозом, что фокусировка на ремиелинизацию в будущем не только поможет восстановить потерянные функции, но и улучшить их качество жизни», - говорит один из авторов Йонах Чан (Jonah Chan) из Калифорнийского университета.

Текст: Виктория Зюлина

Accelerated remyelination during inflammatory demyelination prevents axonal loss and improves functional recovery by Feng Mei, Klaus Lehmann-Horn, Yun-An A Shen, Kelsey A Rankin, Karin J Stebbins, Jonah R Chan et al. in eLife. Published online September 2016