Тонкая кора головного мозга. Классификация зон коры головного мозга по их расположению

Кора головного мозга присутствует в строении организма многих существ, но у человека она достигла своего совершенства. Ученые утверждают, что это стало возможным благодаря вековой трудовой деятельности, которая сопровождает нас постоянно. В отличие от зверей, птиц или рыб, человек постоянно развивает свои возможности и это улучшает его мозговую деятельность, в том числе и функции коры мозга.

Но, давайте подойдем к этому постепенно, вначале рассмотрев строение коры, что, несомненно, очень увлекательно.

Внутреннее устройство коры головного мозга

Кора головного мозга насчитывает более 15 миллиардов нервных клеток и волокон. Каждая из них имеет разную форму, и образуют несколько уникальных слоев, отвечающих за определенные функции. К примеру, функциональность клеток второго и третьего слоя заключается в трансформации возбуждения и правильное перенаправление в определенные отделы головного мозга. А, например, центробежные импульсы представляют собой работоспособность пятого слоя. Рассмотрим каждый слой более тщательно.

Нумерация слоев головного мозга начинается от поверхности и идет глубже:

  1. Молекулярный слой имеет принципиальное отличие своим низких уровнем клеток. Их очень ограниченное количество, состоящее из нервных волокон тесно взаимосвязаны с друг другом.
  2. Зернистый слой иначе называется наружный. Это обусловлено наличием внутреннего слоя.
  3. Пирамидный уровень назван в честь своего строения, потому что имеет пирамидную структуру нейронов, различных по величине.
  4. Зернистый слой №2 получил название внутренний.
  5. Пирамидальный уровень №2 аналогичен третьему уровню. Его состав – это нейроны пирамидного образа имеющий средний и большой размер. Они проникают до молекулярного уровня, поскольку в нем содержаться апикальные дендриты.
  6. Шестой слой, это фузиформные клетки, имеющие второе название «веретеновидные», которые планомерно переходят в белое вещество головного мозга.

Если рассматривать эти уровни более углубленно, то получается, что кора головного мозга принимает на себя проекции каждых уровней возбуждения, которые протекают в разных отделах ЦНС и называются «нижележащие». Они, в свою очередь, транспортируются до мозга по нервным путям человеческого организма.

Презентация: "Локализация высших психических функций в коре головного мозга"

Таким образом, кора головного мозга - орган высшей нервной деятельности человека, и регулирует абсолютно все нервные процессы, происходящие в организме.

И это происходит благодаря особенностям ее строения, а она разделена на три зоны: ассоциативную, моторную и сенсорную.

Современное представление о строении коры головного мозга

Стоит отметить, что существует и несколько отличное представление о ее строении. Согласно нему, существует три зоны, которые отличает друг от друга не только строение, но и ее функциональным предназначением.

  • Первичная зона (моторная), в которой находятся ее специализированные и высокодифференцированные нервные клетки, получают импульсы от слуховые, зрительных и других рецепторов. Это очень важная зона, поражение которой может привести к серьезным расстройствам двигательной и чувствительной функции.
  • Вторичная (сенсорная) зона отвечает за функции обработки информации. К тому же, ее строение состоит из периферических отделов ядер анализаторов, которые устанавливают корректные связи между раздражителями. Ее поражение грозит человеку серьезным расстройством восприятия.
  • Ассоциативная, или третичная зона, ее строение позволяет, возбуждаться от импульсов, идущих от рецепторов кожи, слуха и др. Она формирует условные рефлексы человека, помогая познавать окружающую действительность.

Презентация: "Кора головного мозга"

Основные функции

Чем же отличается кора головного мозга человека и животного? Тем, что ее предназначение обобщать все отделы и контролировать работы. Данные функции обеспечивают миллиарды нейронов, имеющих разнообразное строение. К ним относятся такие виды, как вставочные, афферентные и эфферентные. Поэтому актуально будет рассмотреть каждые из этих видов более подробно.

Вставочный вид нейронов имеют на первый взгляд взаимоисключающие функции, а именно – тормоз и возбуждение.

Афферентный вид нейронов несет ответственность за импульсы, а точнее за их передачу. Эфферентные, в свою очередь, обеспечивают конкретную область деятельности человека и относят к периферии.

Безусловно, это медицинская терминология и стоит отвлечься от нее, конкретизировав функциональность коры головного мозга человека на простом народном языке. Итак, кора головного мозга отвечает за следующие функции:

  • Способность корректно устанавливать связь между внутренними органами и тканями. И даже более того, делает ее идеальной. Такая возможность базируется на условных и безусловных рефлексах человеческого тела.
  • Организация взаимоотношений человеческого организма и окружающей среды. Помимо этого, она контролирует функциональность органов, корректирует их работу и несет ответственность за обмен веществ в человеческом организме.
  • На 100% отвечает за то, чтобы процессы мышления были корректны.
  • И заключительная, но не менее важная функция – высочайший уровень нервной деятельности.

Ознакомившись с данными функциями, мы приходим к понимаю, что , позволило каждому человеку и всему роду в целом, научится осуществлять контроль за теми процессами, которые происходят в организме.

Презентация: "Структурно-функциональная характеристика сенсорной коры"

Академик Павлов в своих множественных исследованиях не единожды указывал, что именно кора является и распорядителем, и распределителем деятельности человека и животных.

Но, стоит также отметить, что кора головного мозга обладает неоднозначными функциями. Главным образом, это проявляется в работе центральной извилины и лобных долей, которые отвечают за сокращение мышц на совершенно противоположной этому раздражению стороне.

К тому же, разные ее части отвечают за разные функции. Например, затылочные доли за зрительные, а височные – за слуховые функции:

  • Если быть более конкретным, то затылочная доля коры фактически является проекцией сетчатой оболочки глаза, которая отвечает за ее зрительные функции. Если в ней происходит какое-либо нарушений, человек может лишиться , ориентации в незнакомой обстановки и даже к полной, необратимой слепоте.
  • Височная доля – это область слуховой рецепции, которая получает импульсы от улитки внутреннего уха, то есть, отвечает за ее слуховые функции. Повреждения этой части коры грозят человеку полной или частичной глухотой, которая сопровождается полным непониманием слов.
  • Нижняя доля центральной извилины отвечает за мозговые анализаторы или, другими словами, вкусовую рецепцию. Она получает импульсы от слизистой полости рта и ее поражение угрожает потерей всех вкусовых ощущений.
  • И наконец, передняя часть коры головного мозга, в которой расположена грушевидная доля отвечает за обонятельную рецепцию, то есть – функции носа. Импульсы в нее поступают от слизистой оболочки носа, если она будет поражена, то человек потеряет обоняние.

Не стоит лишний раз напоминать, что человек находится на высшей ступени развития.

Это подтверждает строение особенно развитой лобной области, которая в ответе за трудовую деятельность и речь. Также она важна в процессе формирования поведенческих реакций человека и его приспособительных функций.

Существует множество исследований, в том числе работы известного академика Павлова, который работал с собаками, изучая строение и работу коры головного мозга. Все они доказывают преимущества человека над животными, именно благодаря особенному ее строению.

Правда, не стоит забывать, что все части находятся в тесном контакте друг с другом и зависят от работы каждой из его составляющих, так что, совершенство человека, залог работы головного мозга в целом.

Из данной статьи читатель уже понял, что головной мозг человека является сложным и до сих пор малоизучен. Тем не менее, он идеальное устройство. Кстати, мало кто знает, что мощность обработки процессов в мозге настолько высока, что рядом с ней бессилен самый мощный в мире компьютер.

Вот еще несколько интересных фактов, которые опубликовали ученные после ряда испытаний и исследований:

  • 2017 года ознаменовался проведением эксперимента, в ходе которого гипер-мощный ПК попытался имитировать лишь 1 секунду активности головного мозга. Тест занял порядка 40 минут. Результат эксперимента – компьютер не справился с заданием.
  • Объем памяти человеческого мозга вмещает n-число bt, которое выражается 8432 нулями. Приблизительно это 1 000 Тb. Если на примере, то в национальном Британском архиве хранится историческая информация за последние 9 веков и объем ее всего лишь 70 Тb. Ощутите насколько весомая разница между этими цифрами.
  • Человеческий мозг заключает в себе 100 тысяч километров сосудов, 100 миллиардов нейронов (цифра равная числу звезд во всей нашей галактике). Помимо этого в мозгу находятся сто триллионов нейронных связей, которые отвечают за формирование воспоминаний. Таким образом, когда вы познаете что-то новое, структура головного мозга изменяется.
  • Во время пробуждения головной мозг аккумулирует электрополе мощность в 23 Вт – этого достаточно зажечь лампу Ильича.
  • По весу мозг состоит из 2% от общей массы, однако задействует он примерно 16% энергии в теле и более 17% кислорода, содержащегося в крови.
  • Ещё один интересный факт, что головной мозг состоит из воды на 75%, а по структуре чем-то сход с сыром «Тофу». А 60% мозга – жир. Ввиду этого для корректной деятельности мозга необходимо здоровое и правильное питание. Употребляйте каждый день в пищу рыбу, оливковое масло, семечки или орехи – и Ваш мозг будет работать долго и ясно.
  • Некоторые ученые, проведя ряд исследований, заметили, что при диете мозг начинает «кушать» сам себя. А низкий уровень кислорода в течение пяти минут способен привести к необратимым последствиям.
  • Удивительно, но человеческое существо не способно щекотать самого себя, т.к. мозг настраивается на внешние раздражители и чтобы не пропустить эти сигналы, немного игнорируется действия самого человека.
  • Забывчивость является естественным процессом. То есть, ликвидация ненужных данных позволяет ЦНС быть гибкой. А влияние алкогольных напитков на память объясняется тем, что спирт затормаживает процессы.
  • Реакция мозга на спиртосодержащие напитки составляет шесть минут.

Активизация интеллекта позволяет производить дополнительную мозговую ткань, которая компенсирует те, что заболели. Ввиду этого рекомендуется заниматься развитием, что в дальнейшем избавит Вас от слабого ума и различных расстройств психики.

Занимайтесь новыми занятиями – это лучше всего способствует развитию мозга. К примеру, общение с людьми, превосходящими Вас в той или иной интеллектуальной области является сильным средством по развитию Вашего интеллекта.


Мозговая кора входит в состав большинства существ на земле, однако именно у человека данная область достигла наибольшего развития. Специалисты утверждают, что это способствовало вековая трудовая деятельность, которая сопровождает нас на протяжении всей жизни.

В этой статье мы рассмотрим строение, а также за что отвечает кора мозга.

Корковая часть головного мозга играет главную функционирующую роль для человеческого организма в целом и состоит из нейронов, их отростков и глиальных клеток. В состав коры входят звездчатые, пирамидные и веретенообразные нервные клетки. Вследствие наличия складов, корковая область занимает достаточно большую поверхность.

В строение коры головного мозга включается послойная классификация, которая подразделяется на следующие слои:

  • Молекулярный. Имеет отличительные отличия, которое отражается в низком клеточном уровне. Низкий показатель количества этих клеток, состоящих из волокон, тесно взаимосвязаны между собой
  • Наружный зернистый. Клеточные субстанции этого слоя направляются в молекулярный слой
  • Слой пирамидальных нейронов. Является наиболее широким слоем. Достиг наибольшей развитости в прецентральной извилине. Количество пирамидных клеток увеличивается в пределах 20-30 мкм от наружной зоны данного слоя к внутреннему
  • Внутренний зернистый. Непосредственно зрительная кора головного мозга является тем участком, где внутренний зернистый слой достиг максимального своего развития
  • Внутренний пирамидный. В его состав входят пирамидные клетки, имеющие крупный размер. Эти клетки переносятся до молекулярного слоя
  • Слой мультиморфных клеток. Данный слой сформирован нервными клетками различного характера, но в большей степени веретенообразного типа. Внешняя зона характеризуется наличием более крупных клеток. Клетки внутреннего отдела характеризуются незначительным размером

Если рассматривать послойный уровень более тщательно, то можно увидеть, что кора большого мозга больших полушарий принимает на себя проекции каждого из уровней, протекающих в различных отделах ЦНС.

Зоны коры больших полушарий

Особенности клеточного строения корковой части мозга подразделяется на структурные единицы, а именно: зоны, поля, области и подобласти.

Кора мозга классифицируется на следующие проекционные зоны:

  • Первичные
  • Вторичные
  • Третичные

В первичной зоне располагаются определенные нейронные клетки, к которым постоянно поступает рецепторный импульс (слуховой, зрительный). Вторичный отдел характеризуется наличием периферических отделов-анализаторов. Третичная принимает обработанные данные от первичной и вторичной зоны, а сама отвечает за условные рефлексы.

Также кора полушарий головного мозга подразделяется на ряд отделов или зон, которые позволяют регулировать множество человеческих функций.

Выделяет следующие зоны:

  • Сенсорные - участки, в которых располагаются зоны коры головного мозга:
    • Зрительные
    • Слуховые
    • Вкусовые
    • Обонятельные
  • Моторные. Это корковые области, раздражение которых может привести к определенным двигательным реакциям. Находятся в передней центральной извилине. Ее повреждение может привести к существенным двигательным нарушениям
  • Ассоциативные. Данные корковые отделы находятся рядом с сенсорными зонами. Импульсы нервных клеток, которые направляются в сенсорную зону, формируют возбуждающий процесс ассоциативных отделов. Их поражение влекут за собой тяжелые нарушения процесса обучения и функций памяти

Функции долей коры головного мозга

Кора большого мозга и подкорка выполняют ряд человеческих функций. Непосредственно сами доли коры головного мозга содержат в себе такие необходимые центры, как:

  • Двигательный, речевой центр (центр Брока). Располагается в нижней области лобной доли. Его повреждение может полностью нарушить речевую артикуляцию, то есть больной может понимать, что ему говорят, однако ответить не может
  • Слуховой, речевой центр (центр Вернике). Находится в левой височной доле. Повреждение этой области может привести к тому, что человек будет не способен понять, что говорит другой человека, при этом способность излагать свои мысли остается. Также в этом случае серьёзно нарушается письменная речь

Функции речи выполняются сенсорными и двигательными зонами. Ее функции связаны с письменной речью, а именно чтением и письмом. Зрительная кора и головной мозг регулируют эту функцию.

Повреждение зрительного центра полушарий головного мозга ведет к полной потере навыков чтения и письма, а также к возможной потере зрения.

В височной доле расположен центр, который отвечает за процесс запоминание. Пациент с поражением данного участка не может запомнить названия определенных вещей. Однако само значение и функции предмета он понимает и может их описать.

Например, вместо слова «кружка» человек говорит: «это то, куда наливают жидкость, чтобы затем выпить».

Патологии коры мозга

Существует огромное количество заболеваний, поражающих мозг человека и в том числе его корковую структуру. Поражение коры приводит к нарушению работы ее ключевых процессов, а также снижает ее работоспособность.

К наиболее распространенным заболеваниям корковой части относятся:

  • Болезнь Пика. Развивается у людей в пожилом возрасте и характеризуется отмиранием нервных клеток. При этом внешние проявления при данном заболевании практически идентичны болезни Альцгеймера, что можно заметить на этапе диагностирования, когда мозг похож на иссушенный грецкий орех. Стоит также отметить, что заболевание неизлечимо, единственное, на что направлена терапия так это на подавление или устранение симптоматики
  • Менингит. Данное инфекционное заболевание косвенно затрагивает отделы коры головного мозга. Возникает вследствие поражения коры инфекцией пневмококка и ряда других. Характеризуется головными болями, повышенной температурой, резью в глазах, сонливостью, тошнотой
  • Гипертоническая болезнь. При данном заболевании в коре мозга начинают формироваться очаги возбуждения, а исходящие импульсы от данного очага начинают сужать сосуды, что приводит к резким скачкам артериального давления
  • Кислородное голодание коры головного мозга (гипоксия). Данное патологическое состояние чаще всего развивается в детском возрасте. Возникает вследствие недостатка кислорода или нарушения кровотока в головном мозга. Может привести к невозвратным изменениям нейронной ткани или летальному исходу

Большинство патологий мозга и коры невозможно определить исходя из проявляющейся симптоматики и внешних признаков. Для их выявления требуется прохождение специальных диагностических методов, которые позволяют исследовать практически любые, даже самые труднодоступные места и впоследствии определить состояние того или иного участка, а также проанализировать его работу.

Область коры диагностируется с помощью различных методик, о которых мы более подробно расскажем в следующей главе.

Проведение обследования

Для высокоточного обследования коры головного мозга используются такие методы, как:

  • Магнитно-резонансная и компьютерная томография
  • Энцефалография
  • Позитронно-эмиссионная томография
  • Рентгенография

Также используется ультразвуковое исследование мозга, однако этот метод является наименее эффективных в сравнении с вышеперечисленными методами. Из преимуществ ультразвукового исследования выделяют цену и быстроту обследования.

В большинстве случаев пациентам проводится диагностирование мозгового кровообращения. Для этого могут использоваться дополнительный ряд диагностик, а именно;

  • Ультразвуковая допплерография. Позволяет выявить пораженные сосуды и изменения скорости кровотока в них. Метод обладает высокой информативностью и абсолютной безопасностью для здоровья
  • Реоэнцефалография. Работа этого метода заключается в регистрации электрического сопротивления тканей, что позволяет сформировать линию пульсового кровотока. Позволяет определить состояние сосудов, их тонус и ряд других данных. Обладает меньшей информативностью, чем ультразвуковой способ
  • Рентгеновская ангиография. Это стандартное рентгенологическое исследование, которое дополнительно проводится при помощи внутривенного введения контрастного вещества. Затем проводится сам рентген. В результате распространения вещества по всем организму, на экране подсвечиваются все потоки крови в головном мозге

Данные методы позволяют предоставить точную информацию о состоянии мозга, коры и показателей кровотока. Также существуют и другие способы, которые применяются в зависимости от характера заболевания, состояния пациента и других факторов.

Мозг человека является самым сложным органом, а на его изучение затрачиваются многочисленные ресурсы. Однако даже в эпоху инновационных методик его исследования, изучить определенные его участки не представляется возможным.

Мощность обработки процессов в головном мозге настолько значительна, что даже суперкомпьютер не в состоянии даже близко приблизиться по соответствующим показателям.

Кора большого мозга и сам головной мозг постоянно исследуются, вследствие чего открытие различных новых фактов о нем становиться все больше. Наиболее распространенные открытия:

  • В 2017 году был проведен эксперимент, в котором были задействованы человек и суперкомпьютер. Выяснилось, что даже самая технически оснащенная техника способна сымитировать только 1 секунду мозговой активности. На задачу ушло целых 40 минут
  • Объем человеческой памяти в электронной единице измерения количества данных, составляет около 1000 терабайт
  • Мозг человека состоит более чем из 100 тысяч сосудистых сплетений, 85 млрд. нервных клеток. Также в мозгу имеется около 100 трлн. нейронных связей, которые обрабатывают человеческие воспоминания. Таким образом при познании чего-то нового структурная часть мозга также изменяется
  • Когда человек пробуждается, головной мозг накапливает электрическое поле мощностью 25 ВТ. Этой мощности достаточно, что зажечь лампу накаливания
  • Масса мозга составляет всего 2% от общей массы человека, тем не менее, мозг расходует около 16 % энергии в теле и более 17 % кислорода
  • Головной мозг состоит на 80% из воды и на 60% из жира. Поэтому для поддержания нормальных функций мозгу необходимо здоровое питание. Употребляйте в пищу те продукты, которые содержат омега-3 жирные кислоты (рыба, оливковое масло, орехи) и ежедневно выпивайте необходимое количество жидкости
  • Ученые выяснили, что если человек «сидит» на какой-либо диете, то мозг начинает есть сам себя. А низкие показатели кислорода в крови на протяжении нескольких минут, могут привести к нежелательным последствиям
  • Забывчивость человека является естественным процессом, а уничтожение ненужной информации в мозге позволяет ему оставаться гибким. Также забывчивость может возникать искусственно, например, при употреблении алкоголя, который затормаживает естественные процессы в мозге

Активизация умственных процессов дает возможность генерировать дополнительную мозговую ткань, которая заменяет поврежденную. Поэтому необходимо постоянно умственно развиваться, что значительно снизит риск возникновения слабоумия в уже пожилом возрасте.

Кора головного мозга - высший отдел центральной нервной системы, обеспечивающий функционирование организма как единого целого при его взаимодействии с окружающей средой.

головного мозга (кора большого мозга, новая кора) представляет собой слой серого вещества, состоящего из 10-20 млрд и покрывающего большие полушария (рис. 1). Серое вещество коры составляет более половины всего серого вещества ЦНС. Суммарная площадь серого вещества коры — около 0,2 м 2 , что достигается извилистой складчатостью ее поверхности и наличием борозд разной глубины. Толщина коры в ее разных участках колеблется от 1,3 до 4,5 мм (в передней центральной извилине). Нейроны коры располагаются в шести слоях, ориентированных параллельно ее поверхности.

В участках коры, относящихся к , имеются зоны с трехслойным и пятислойным расположением нейронов в структуре серого вещества. Эти участки филогенетически древней коры занимают около 10% поверхности полушарий мозга, остальные 90% составляют новую кору.

Рис. 1. Моля латеральной поверхности коры большого мозга (по Бродману)

Строение коры головного мозга

Кора большого мозга имеет шестислойное строение

Нейроны разных слоев различаются по цитологическим признакам и функциональным свойствам.

Молекулярный слой — самый поверхностный. Представлен небольшим числом нейронов и многочисленными ветвящимися дендритами пирамидных нейронов, лежащих в более глубоких слоях.

Наружный зернистый слой сформирован плотно расположенными многочисленными мелкими нейронами разной формы. Отростки клеток этого слоя образуют кортикокортикальные связи.

Наружный пирамидальный слой состоит из пирамидных нейронов средней величины, отростки которых также участвуют в образовании кортикокортикальных связей между соседними областями коры.

Внутренний зернистый слой подобен второму слою по виду клеток и расположению волокон. В слое проходят пучки волокон, связывающие различные участки коры.

К нейронам этого слоя проводятся сигналы от специфических ядер таламуса. Слой очень хорошо представлен в сенсорных областях коры.

Внутренний пирамидный слои образован средними и крупными пирамидными нейронами. В двигательной области коры эти нейроны особенно крупные (50-100 мкм) и получили название гигантских, пирамидных клеток Беца. Аксоны этих клеток формируют быстропроводящие (до 120 м/с) волокна пирамидного тракта.

Слой полиморфных клеток представлен преимущественно клетками, аксоны которых образуют кортикоталамические пути.

Нейроны 2-го и 4-го слоев коры участвуют в восприятии, переработке поступающих к ним сигналов от нейронов ассоциативных областей коры. Сенсорные сигналы из переключающих ядер таламуса поступают преимущественно к нейронам 4-го слоя, выраженность которого наибольшая в первичных сенсорных областях коры. К нейронам 1-го и других слоев коры поступают сигналы из других ядер таламуса, базальных ганглиев, ствола мозга. Нейроны 3-го, 5-го и 6-го слоев формируют эфферентные сигналы, посылаемые в другие области коры и по нисходящим путям в нижележащие отделы ЦНС. В частности, нейроны 6-го слоя формируют волокна, следующие в таламус.

В нейронном составе и цитологических особенностях разных участков коры имеются значительные отличия. По этим отличиям Бродман разделил кору на 53 цитоархитектонических поля (см. рис. 1).

Расположение многих из этих нолей, выделенных на основе гистологических данных, совпадает по топографии с расположением корковых центров, выделенных на основе выполняемых ими функций. Используются и другие подходы деления коры на области, например, на основе содержания в нейронах определенных маркеров, по характеру нейронной активности и другим критериям.

Белое вещество полушарий головного мозга образовано нервными волокнами. Выделяют ассоциативные волокна, подразделяемые на дугообразные волокна, но которым сигналы передаются между нейронами рядом лежащих извилин и длинные продольные пучки волокон, доставляющие сигналы к нейронам более удаленных участков одноименного полушария.

Комиссуральные волокна - поперечные волокна, передающие сигналы между нейронами левого и правого полушарий.

Проекционные волокна - проводят сигналы между нейронами коры и других отделов мозга.

Перечисленные виды волокон участвуют в создании нейронных цепей и сетей, нейроны которых расположены на значительных расстояниях друг от друга. В коре имеется также особый вид локальных нейронных цепей, образованных рядом расположенными нейронами. Эти нейронные структуры получили название функциональных кортикальных колонок. Нейронные колонки образованы группами нейронов, расположенных друг над другом перпендикулярно поверхности коры. Принадлежность нейронов к одной и той же колонке можно определить по повышению их электрической активности на раздражение одного и того же рецептивного поля. Такая активность регистрируется при медленном перемещении регистрирующего электрода в коре в перпендикулярном направлении. Если регистрировать электрическую активность нейронов, расположенных в горизонтальной плоскости коры, то отмечается повышение их активности при раздражении различных рецептивных полей.

Диаметр функциональной колонки составляет до 1 мм. К нейронам одной функциональной колонки поступают сигналы от одного и того же афферентного таламокортикального волокна. Нейроны соседних колонок связаны друг с другом отростками, с помощью которых обмениваются информацией. Наличие в коре таких взаимосвязанных функциональных колонок увеличивает надежность восприятия и анализа информации, поступающей к коре.

Эффективность восприятия, обработки и использования информации корой для регуляции физиологических процессов обеспечивается также соматотопическим принципом организации сенсорных и моторных полей коры. Суть такой организации заключается в том, что в определенной (проекционной) области коры представлены не любые, а топографически очерченные участки рецептивного поля поверхности тела, мышц, суставов или внутренних органов. Так, например, в соматосенсорной коре поверхность тела человека спроецирована в виде схемы, когда в определенной точке коры представлены рецептивные поля конкретной области поверхности тела. Строгим топографическим образом в первичной моторной коре представлены эфферентные нейроны, активация которых вызывает сокращение определенных мышц тела.

Полям коры присущ также экранный принцип функционирования. При этом рецепторный нейрон посылает сигнал не на одиночный нейрон или в одиночную точку коркового центра, а на сеть или ноле нейронов, связанных отростками. Функциональными ячейками этого поля (экрана) являются колонки нейронов.

Кора мозга, формируясь на поздних этапах эволюционного развития высших организмов, в определенной мере подчинила себе все нижележащие отделы ЦНС и способна корригировать их функции. В то же время функциональная активность коры больших полушарий определяется притоком к ней сигналов от нейронов ретикулярной формации ствола мозга и сигналов от рецептивных полей сенсорных систем организма.

Функциональные области коры мозга

По функциональному признаку в коре выделяют сенсорные, ассоциативные и двигательные области.

Сенсорные (чувствительные, проекционные) области коры

Они состоят из зон, содержащих нейроны, активация которых афферентными импульсами от сенсорных рецепторов или прямым воздействием раздражителей вызывает появление специфических ощущений. Эти зоны имеются в затылочной (поля 17-19), теменной (ноля 1-3) и височной (поля 21-22, 41-42) областях коры.

В сенсорных зонах коры выделяют центральные проекционные поля, обеспечивающие топкое, четкое восприятие ощущений определенных модальностей (свет, звук, прикосновение, тепло, холод) и вторичные проекционные ноля. Функцией последних является обеспечение понимания связи первичного ощущения с другими предметами и явлениями окружающего мира.

Зоны представительства рецептивных полей в сенсорных зонах коры в значительной мере перекрываются. Особенность нервных центров в области вторичных проекционных полей коры — их пластичность, которая проявляется возможностью перестройки специализации и восстановления функций после повреждения какого-либо из центров. Эти компенсаторные возможности нервных центров особенно выражены в детском возрасте. В то же время повреждение центральных проекционных полей после перенесенных заболевании, сопровождается грубым нарушением функций чувствительности и часто невозможностью ее восстановления.

Зрительная кора

Первичная зрительная кора (VI, поле 17) располагается по обеим сторонам шпорной борозды на медиальной поверхности затылочной доли головного мозга. В соответствии с выявлением па неокрашенных срезах зрительной коры чередующихся белых и темных полос ее называют также стриарной (полосатой) корой. К нейронам первичной зрительной коры посылают зрительные сигналы нейроны латерального коленчатого тела, которые получают сигналы от ганглиозных клеток сетчатки. Зрительная кора каждого полушария получает визуальные сигналы от ипсилатеральной и контралатеральной половин сетчатки обоих глаз и их поступление к нейронам коры организовано по соматотопическому принципу. Нейроны, к которым поступают зрительные сигналы от фоторецепторов, топографически расположены в зрительной коре подобно рецепторам в сетчатке глаза. При этом область желтого пятна сетчатки имеет относительно большую зону представительства в коре, чем другие области сетчатки.

Нейроны первичной зрительной коры ответственны за зрительное восприятие, которое на основе анализа входных сигналов проявляется их способностью обнаруживать зрительный стимул, определять его специфическую форму и ориентацию в пространстве. Упрощенно можно представить сенсорную функцию зрительной коры в решении задачи и ответе на вопрос, что представляет собой зрительный объект.

В анализе других качеств зрительных сигналов (например, расположения в пространстве, движения, связи с другими событиями и т.д.) принимают участие нейроны полей 18 и 19 экстрастриарной коры, расположенных но соседству с нолем 17. Информация о сигналах, поступивших в сенсорные зрительные зоны коры, передастся для дальнейшего анализа и использования зрения для выполнения других функций мозга в ассоциативные области коры и другие отделы мозга.

Слуховая кора

Расположена в латеральной борозде височной доли в области извилины Гешля (AI, поля 41-42). К нейронам первичной слуховой коры поступают сигналы от нейронов медиальных коленчатых тел. Волокна слуховых путей, проводящие звуковые сигналы в слуховую кору, организованы тонотопически, и это позволяет нейронам коры получать сигналы от определенных слуховых рецепторных клеток кортиева органа. Слуховая кора регулирует чувствительность слуховых клеток.

В первичной слуховой коре формируются звуковые ощущения и проводится анализ отдельных качеств звуков, позволяющий ответить на вопрос, что представляет собой воспринятый звук. Первичная слуховая кора играет важную роль в анализе коротких звуков, интервалов между звуковыми сигналами, ритма, звуковой последовательности. Более сложный анализ звуков осуществляется в ассоциативных областях коры, смежных с первичной слуховой. На основе взаимодействия нейронов этих областей коры осуществляется бинауральный слух, определяются характеристики высоты, тембра, громкости звука, принадлежность звука, формируется представление о трехмерном звуковом пространстве.

Вестибулярная кора

Располагается в верхней и средней височных извилинах (поля 21-22). К ее нейронам поступают сигналы от нейронов вестибулярных ядер ствола мозга, связанных афферентными связями с рецепторами полукружных каналов вестибулярного аппарата. В вестибулярной коре формируется ощущение о положении тела в пространстве и ускорении движений. Вестибулярная кора взаимодействует с мозжечком (через височно-мостомозжечковый путь), участвует в регуляции равновесия тела, приспособлении позы к осуществлению целенаправленных движений. На основе взаимодействия этой области с соматосенсорной и ассоциативными областями коры происходит осознание схемы тела.

Обонятельная кора

Расположена в области верхней части височной доли (крючок, ноля 34, 28). Кора включает ряд ядер и относится к структурам лимбической системы. Ее нейроны расположены в трех слоях и получают афферентные сигналы от митральных клеток обонятельной луковицы, связанных афферентными связям с обонятельными рецепторными нейронами. В обонятельной коре проводится первичный качественный анализ запахов и формируется субъективное ощущение запаха, его интенсивности, принадлежности. Повреждение коры ведет к снижению обоняния или к развитию аносмии — потере обоняния. При искусственном раздражении этой области возникают ощущения различных запахов по типу галлюцинаций.

Вкусовая кора

Расположена в нижней части соматосенсорной извилины, непосредственно кпереди от области проекции лица (поле 43). Ее нейроны получают афферентные сигналы от релейных нейронов таламуса, которые связаны с нейронами ядра одиночного тракта продолговатого мозга. К нейронам этого ядра поступают сигналы непосредственно от чувствительных нейронов, образующих синапсы на клетках вкусовых луковиц. Во вкусовой коре проводится первичный анализ вкусовых качеств горького, соленого, кислого, сладкого и на основе их суммации формируется субъективное ощущение вкуса, его интенсивности, принадлежности.

Сигналы запахов и вкуса достигают нейронов передней части островковой коры, где на основе их интеграции формируется новое, более сложное качество ощущений, определяющее наше отношение к источникам запаха или вкуса (например, к пище).

Соматосенсорная кора

Занимает область постцентральной извилины (SI, поля 1-3), включая парацентральную дольку на медиальной стороне полушарий (рис. 9.14). В соматосенсорную область поступают сенсорные сигналы от нейронов таламуса, связанных спиноталамическими путями с рецепторами кожи (тактильная, температурная, болевая чувствительность), проприорецепторами (мышечных веретен, суставных сумок, сухожилий) и интерорецепторами (внутренних органов).

Рис. 9.14. Важнейшие центры и области коры большого мозга

Из-за перекреста афферентных путей в соматосенсорную зону левого полушария приходит сигнализация от правой стороны тела, соответственно в правое полушарие — от левой стороны тела. В этой сенсорной области коры соматотопически представлены все части тела, но при этом наиболее важные рецептивные зоны пальцев рук, губ, кожи лица, языка, гортани занимают относительно большие площади, чем проекции таких поверхностей тела, как спина, передняя часть туловища, ноги.

Расположение представительства чувствительности частей тела вдоль постцентральной извилины часто называют «перевернутый гомункулюс», так как проекция головы и шеи находится в нижней части постцентральной извилины, а проекция каудальной части туловища и ног — в верхней части. При этом чувствительность голеней и стоп проецируется на кору пара- центральной дольки медиальной поверхности полушарий. Внутри первичной соматосенсорной коры имеется определенная специализация нейронов. Например, нейроны поля 3 получают преимущественно сигналы от мышечных веретен и механорецепторов кожи, поля 2 — от рецепторов суставов.

Кору постцентральной извилины относят к первичной соматосенсорной области (SI). Ее нейроны посылают обработанные сигналы к нейронам вторичной соматосенсорной коры (SII). Она располагается кзади от постцентральной извилины в теменной коре (поля 5 и 7) и принадлежит к ассоциативной коре. Нейроны SII не получают прямых афферентных сигналов от нейронов таламуса. Они связаны с нейронами SI и нейронами других областей коры мозга. Это позволяет проводить здесь интегральную оценку сигналов, попадающих в кору по спиноталамическому пути с сигналами, поступающими из других (зрительной, слуховой, вестибулярной и т.д.) сенсорных систем. Важнейшей функцией этих полей теменной коры является восприятие пространства и трансформация сенсорных сигналов в координаты моторных. В теменной коре формируется стремление (намерение, побуждение) осуществить моторное действие, что является основой для начала планирования в ней предстоящей моторной активности.

Интеграция различных сенсорных сигналов связана с формированием различных ощущений, адресуемых к разным частям тела. Эти ощущения используются как для формирования психических, так и других ответных реакций, примерами которых могут быть движения при одновременном участии мышц обеих сторон тела (например, перемещение, ощупывание обеими руками, хватание, однонаправленное движение обеими руками). Функционирование этой области необходимо для узнавания предметов на ощупь и определения пространственного расположения этих предметов.

Нормальная функция соматосенсорных областей коры является важным условием формирования таких ощущений как тепло, холод, боль и их адресации к определенной части тела.

Повреждение нейронов области первичной соматосенсорной коры ведет к снижению различных видов чувствительности на противоположной стороне тела, а локальное повреждение — к потере чувствительности в определенной части тела. Особенно ранимой при повреждении нейронов первичной соматосенсорной коры является дискриминационная чувствительность кожи, а наименее — болевая. Повреждение нейронов вторичной соматосенсорной области коры может сопровождаться нарушением способности распознания предметов на ощупь (тактильная агнозия) и навыков использования предметов (апраксия).

Двигательные области коры

Около 130 лет тому назад исследователи, нанося точечные раздражения на кору мозга электрическим током, обнаружили, что воздействие на поверхность передней центральной извилины вызывает сокращение мышц противоположной стороны тела. Так было обнаружено наличие одной из моторных зон коры мозга. В последующем оказалось, что к организации движений имеют отношение несколько областей коры мозга и его другие структуры, а в областях моторной коры имеются не только двигательные нейроны, но и нейроны, осуществляющие другие функции.

Первичная моторная кора

Первичная моторная кора располагается в передней центральной извилине (MI, поле 4). Ее нейроны получают основные афферентные сигналы от нейронов соматосенсорной коры — полей 1, 2, 5, премоторной коры и таламуса. Кроме того, через вентролатеральный таламус в MI посылают сигналы нейроны мозжечка.

От пирамидных нейронов Ml начинаются эфферентные волокна пирамидного пути. Часть волокон этого пути следует к моторным нейронам ядер черепных нервов ствола мозга (кортикобульбарный тракт), часть — к нейронам стволовых моторных ядер (красное ядро, ядра ретикулярной формации, стволовые ядра, связанные с мозжечком) и часть — к интер- и моторным нейронам спинного мозга (кортикоспинальный тракт).

Имеется соматотопическая организация расположения нейронов в MI, контролирующих сокращение разных мышечных групп тела. Нейроны, контролирующие мышцы ног и туловища, расположены в верхних участках извилины и занимают относительно малую площадь, а контролирующие мышцы рук, особенно пальцев, лица, языка и глотки расположены в нижних участках и занимают большую площадь. Таким образом, в первичной двигательной коре относительно большую площадь занимают те нейронные группы, которые управляют мышцами, осуществляющими разнообразные, точные, мелкие, тонко регулируемые движения.

Поскольку многие нейроны Ml увеличивают электрическую активность непосредственно перед началом произвольных сокращений, то первичной моторной коре отводят ведущую роль в контроле активности моторных ядер ствола и мотонейронов спинного мозга и инициации произвольных, целенаправленных движений. Повреждение поля Ml ведет к парезу мышц и невозможности осуществления тонких произвольных движений.

Вторичная моторная кора

Включает области премоторной и дополнительной моторной коры (МII, поле 6). Премоторная кора расположена в поле 6, на боковой поверхности мозга, кпереди от первичной моторной коры. Ее нейроны получают через таламус афферентные сигналы из затылочной, соматосенсорной, теменной ассоциативной, префронтальной областей коры и мозжечка. Обработанные в ней сигналы нейроны коры посылают по эфферентным волокнам в моторную кору MI, небольшое число — в спинной мозг и большее — в красные ядра, ядра ретикулярной формации, базальные ганглии и мозжечок. Премоторная кора играет основную роль в программировании и организации движений, находящихся под контролем зрения. Кора участвует в организации позы и вспомогательных движений для действий, осуществляемых дистальными мышцами конечностей. Повреждение прсмотор- ной коры часто вызывает тенденцию повторного выполнения начатого движения (персеверация), даже если осуществленное движение достигло цели.

В нижней части премоторной коры левой лобной доли, непосредственно кпереди от участка первичной моторной коры, в которой представлены нейроны, контролирующие мышцы лица, располагается речевая область , или моторный центр речи Брока. Нарушение ее функции сопровождается нарушением артикуляции речи, или моторной афазией.

Дополнительная моторная кора располагается в верхней части поля 6. Ее нейроны получают афферентные сигналы из соматосснсорной, теменной и префронтальной областей коры головного мозга. Обработанные в ней сигналы нейроны коры посылают по эфферентным волокнам в первичную моторную кору MI, спинной мозг, стволовые моторные ядра. Активность нейронов дополнительной моторной коры повышается раньше, чем нейронов коры MIи главным образом в связи с осуществлением сложных движений. При этом возрастание нейронной активности в дополнительной моторной коре не связано с движениями как таковыми, для этого достаточно мысленно представить модель предстоящих сложных движений. Дополнительная моторная кора принимает участие в формировании программы предстоящих сложных движений и в организации моторных реакций на специфичность сенсорных стимулов.

Поскольку нейроны вторичной моторной коры посылают множество аксонов в поле MI, ее считают в иерархии моторных центров организации движений более высокой структурой, стоящей над моторными центрами моторной коры MI. Нервные центры вторичной моторной коры могут оказывать влияние на активность моторных нейронов спинного мозга двумя путями: непосредственно через кортикоспинальный путь и через поле MI. Поэтому их иногда называют супрамоторными полями, в функцию которых входит инструктирование центров поля MI.

Из клинических наблюдений известно, что сохранение нормальной функции вторичной моторной коры важно для осуществления точных движений руки, и особенно для выполнения ритмических движений. Так, например, при их повреждении пианист перестает чувствовать ритм и выдерживать интервал. Нарушается способность к осуществлению противоположных движений руками (манипулирование обоими руками).

При одновременном повреждении моторных зон MI и MII коры утрачивается способность к тонким координированным движениям. Точечные раздражения в этих областях моторной зоны сопровождаются активацией не отдельных мышц, а целой группы мышц, вызывающих направленное движение в суставах. Эти наблюдения послужили поводом для формирования вывода о том, что в моторной коре представлены не столько мышцы, сколько движения.

Префронтальная кора

Располагается в области поля 8. Ее нейроны получают основные афферентные сигналы из затылочной зрительной, теменной ассоциативной коры, верхних холмиков четверохолмия. Обработанные сигналы передаются по эфферентным волокнам в премоторную кору, верхние холмики четверохолмия, стволовые моторные центры. Кора играет определяющую роль в организации движений, находящихся под контролем зрения и принимает непосредственное участие в инициации и контроле движений глаз и головы.

Механизмы, реализующие превращение замысла движения в конкретную моторную программу, в залпы импульсов, посылаемых к определенным мышечным группам, остаются недостаточно понятными. Считается, что замысел движения формируется благодаря функциям ассоциативной и других областей коры, взаимодействующих со многими структурами головного мозга.

Информация о замысле движения передается в двигательные области лобной коры. Двигательная кора через нисходящие пути активирует системы, обеспечивающие выработку и использование новых двигательных программ или использование старых, уже отработанных на практике и хранящихся в памяти. Составной частью этих систем являются базальные ганглии и мозжечок (см. их функции выше). Программы движения, выработанные при участии мозжечка и базальных ганглиев, передаются через таламус в моторные зоны и прежде всего в первичную моторную область коры. Эта область непосредственно инициирует исполнение движений, подключая к нему определенные мышцы и обеспечивая последовательность смены их сокращения и расслабления. Команды коры передаются на моторные центры ствола мозга, спинальные мотонейроны и мотонейроны ядер черепных нервов. Мотонейроны в осуществлении движений выполняют роль конечного пути, через который двигательные команды передаются непосредственно к мышцам. Особенности передачи сигналов от коры к моторным центрам ствола и спинного мозга описаны в главе, посвященной ЦНС (ствол мозга, спинной мозг).

Ассоциативные области коры

У человека ассоциативные области коры занимают около 50% площади всей коры большого мозга. Они располагаются в участках между сенсорными и двигательными областями коры. Ассоциативные области не имеют четких границ со вторичными сенсорными областями как по морфологическим, так и по функциональным признакам. Выделяют теменную, височную и лобную ассоциативные области коры больших полушарий.

Теменная ассоциативная область коры. Располагается в полях 5 и 7 верхней и нижней теменных долек мозга. Область граничит впереди с соматосенсорной корой, сзади — со зрительной и слуховой корой. К нейронам теменной ассоциативной области могут поступать и активировать их зрительные, звуковые, тактильные, проприоцептивные, болевые, сигналы из аппарата памяти и другие сигналы. Часть нейронов является полисенсорной и может повышать свою активность при поступлении к ней соматосенсорных и визуальных сигналов. Однако степень повышения активности нейронов ассоциативной коры на поступление афферентных сигналов зависит от текущей мотивации, внимания субъекта и информации, извлекаемой из памяти. Она остается незначительной, если поступающий из сенсорных областей мозга сигнал для субъекта безразличен, и существенно возрастает, если он совпал с имеющейся мотивацией и привлек его внимание. Например, при предъявлении обезьяне банана активность нейронов ассоциативной теменной коры остается невысокой, если животное сыто, и наоборот, активность резко возрастает у голодных животных, которым нравятся бананы.

Нейроны теменной ассоциативной коры связаны эфферентными связями с нейронами префронтальной, премоторной, моторной областей лобной доли и поясной извилины. Исходя из экспериментальных и клинических наблюдений, принято считать, что одной из функций коры поля 5 является использование соматосенсорной информации для осуществления целенаправленных произвольных движений и манипулирования объектами. Функцией коры поля 7 является интеграция визуальных и соматосенсорных сигналов для координации движений глаз и визуально-ведомых движений руки.

Нарушением этих функций теменной ассоциативной коры при повреждении ее связей с корой лобной доли или заболеванием самой лобной доли, объясняются симптомы последствий заболеваний, локализованных в области теменной ассоциативной коры. Они могут проявляться затруднением в понимании смыслового содержания сигналов (агнозия), примером которого может быть потеря способности распознавания формы и пространственного расположения объекта. Могут нарушаться процессы трансформации сенсорных сигналов в адекватные моторные действия. В последнем случае больной теряет навыки практического использования хорошо знакомых инструментов и предметов (апраксия), и у него может развиться невозможность осуществления визуально-ведомых движений (например, движение руки в направлении предмета).

Лобная ассоциативная область коры. Располагается в префронтальной коре, которая является частью коры лобной доли, локализующейся кпереди от полей 6 и 8. Нейроны лобной ассоциативной коры получают обработанные сенсорные сигналы по афферентным связям от нейронов коры затылочной, теменной, височной долей мозга и от нейронов поясной извилины. Лобная ассоциативная кора получает сигналы о текущем мотивационном и эмоциональном состояниях от ядер таламуса, лимбической и других структур мозга. Кроме того, лобная кора может оперировать абстрактными, виртуальными сигналами. Эфферентные сигналы ассоциативная лобная кора посылает обратно, в структуры мозга, от которых они были получены, в моторные области лобной коры, хвостатое ядро базальных ганглиев и гипоталамус.

Эта область коры играет первостепенную роль в формировании высших психических функций человека. Она обеспечивает формирование целевых установок и программ осознанных поведенческих реакций, узнавание и смысловую оценку предметов и явлений, понимание речи, логическое мышление. После обширных повреждений лобной коры у больных могут развиться апатия, снижение эмоционального фона, критичного отношения к своим собственным поступкам и поступкам окружающих, самодовольство, нарушение возможности использования прошлого опыта для изменения поведения. Поведение больных может стать непредсказуемым и неадекватным.

Височная ассоциативная область коры. Располагается в полях 20, 21, 22. Нейроны коры получают сенсорные сигналы от нейронов слуховой, экстрастриарной зрительной и префронтальной коры, гиппокампа и миндалины.

После двухстороннего заболевания височных ассоциативных областей с вовлечением в патологический процесс гиппокампа или связей с ним у больных могут развиться выраженные нарушения памяти, эмоционального поведения, неспособность сосредоточения внимания (рассеянность). У части людей при повреждении нижневисочной области, где предположительно располагается центр узнавания лица, может развиться зрительная агнозия — неспособность узнавания лиц знакомых людей, предметов, при сохранности зрения.

На границе височной, зрительной и теменной областей коры в нижней теменной и задней части височной доли располагается ассоциативный участок коры, получивший название сенсорного центра речи, или центра Вернике. После его повреждения развивается нарушение функции понимания речи при сохранности речедвигательной функции.

Кора мозга – пласт серого вещества на поверхности больших полушарий, толщиной 2-5 мм, образующий много­численные борозды, извилины значительно увеличивающие ее площадь. Кора образована телами нейронов и глиальных клеток, расположенных послойно («экранный» тип организа­ции). Под ней лежит белое вещество, представленное нерв­ными волокнами.

Кора представляет собой наиболее молодой филогене­тически и наиболее сложный по морфофункциональной ор­ганизации отдел мозга. Это место высшего анализа и синтеза всей информации поступающей в мозг. Здесь происходит ин­теграция всех сложных форм поведения. Кора мозга отвечает за сознание, мышление, память, «эвристическую деятель­ность» (способность к обобщениям, открытиям). В коре со­держится более 10 млрд. нейронов и 100 млрд. глиальных клеток.

Нейроны коры по количеству отростков только муль­типолярные, а по их месту в рефлекторных дугах и выпол­няемым функциям все они вставочные, ассоциативные. По функции и строению в коре выделяют более 60 типов нейро­нов. По форме различают две их основных группы: пирамид­ные и непирамидные. Пирамидные нейроны являются ос­новным типом нейронов коры. Размеры их перикарионов от 10 до 140 мкм, на срезе они имеют пирамидную форму. От их верхнего угла вверх отходит длинный (апикальный) денд­рит, который Т-образно делится в молекулярном слое. От боковых поверхностей тела нейрона отходят боковые денд­риты. На дендритах и теле нейрона имеются многочисленные синапсы других нейронов. От основания клетки отходит ак­сон, который либо идёт в другие участки коры, либо к дру­гим отделам головного и спинного мозга. Среди нейронов коры мозга различают ассоциативные – связывающие уча­стки коры внутри одного полушария, комиссуральные – их аксоны идут в другое полушарие, и проекционные – их ак­соны идут в нижележащие отделы мозга.

Среди непирамидных нейронов наиболее часто встреча­ются звёздчатые и веретеновидные клетки. Звёздчатые ней­роны - это мелкие клетки с короткими сильно ветвящимися дендритами и аксонами, образующими внутрикорковые связи. Одни из них оказывают тормозное, а другие - возбуж­дающее влияние на пирамидные нейроны. Веретеновидные нейроны имеют длинный аксон, который может идти в вер­тикальном, или горизонтальном направлении. Кора по­строена по экранному типу, то есть нейроны, сходные по структуре и функции расположены слоями (рис. 9-7). Таких слоёв в коре шесть:

1. Молекулярный слой – самый наружный. В нём на­ходится сплетение нервных волокон, расположенных парал­лельно поверхности коры. Основную массу этих волокон со­ставляют ветвления апикальных дендритов пирамидных ней­ронов нижележащих слоёв коры. Сюда же приходят аффе­рентные волокна от зрительных бугров, регулирующих воз­будимость корковых нейронов. Нейроны в молекулярном слое в основном мелкие, веретеновидные.

2. Наружный зернистый слой. Состоит из большого числа звёздчатых клеток. Их дендриты идут в молекулярный слой и образуют синапсы с таламо-кортикальными аффе­рентными нервными волокнами. Боковые дендриты связыва­ются с соседними нейронами этого же слоя. Аксоны обра­зуют ассоциативные волокна, которые идут через белое ве­щество в соседние участки коры и там образуют синапсы.

3. Наружный слой пирамидных нейронов (пирамид­ный слой). Он образован пирамидными нейронами средней вели­чины. Так же, как у ней­ронов второго слоя, их денд­риты идут в молекулярный слой, а аксоны – в белое ве­щество.

4. Внутренний зернистый слой. Он содержит много звёздчатых нейронов. Это ассоциативные, афферентные ней­роны. Они образуют многочисленные связи с другими ней­ронами коры. Здесь расположен ещё один слой горизонталь­ных волокон.

5. Внутренний слой пирамидных нейронов (ганглио­нарный слой). Он образован крупными пирамидными нейро­нами. Последние особенно велики в моторной коре (прецен­тральной извилине), где имеют размеры до 140 мкм и назы­ваются клетками Беца. Их апикальные дендриты поднима­ются в молекулярный слой, боковые дендриты образуют связи с соседними клетками Беца, а аксоны – проекционные эфферентные волокна, идущие в продолговатый и спинной мозг.

6. Слой веретеновидных нейронов (слой полиморфных клеток) состоит в основном из веретеновидных нейронов. Их дендриты идут в молекулярный слой, а аксоны – к зритель­ным буграм.

Шестислойный тип строения коры характерен для всей коры, однако в разных её участках выраженность слоёв, а также форма и расположение нейронов, нервных волокон значительно различаются. По этим признакам К. Бродман выделил в коре 50 цитоархитектонических полей . Эти поля также различаются по функции и обмену веществ.

Специфическую организацию нейронов называют цито­архитектоникой. Так, в сенсорных зонах коры пирамидный и ганглиозный слои выражены слабо, а зернистые слои - хо­рошо. Такой тип коры называется гранулярным. В мотор­ных зонах, напротив, зернистые слои развиты плохо, а пира­мидные хорошо. Это агранулярный тип коры.

Кроме того, существует понятие миелоархитектоника . Это определённая организация нервных волокон. Так, в коре мозга различают вертикальные и три горизонтальных пучка миелиновых нервных волокон. Среди нервных волокон коры мозга различают ассоциативные – связывающие участки коры одного полушария, комиссуральные – соединяющие кору разных полушарий и проекционные волокна – связы­вающие кору с ядрами ствола мозга.

Рис. 9-7. Кора больших полуша-рий головного моз-га чело­века.

А, Б. Расположение кле­ток (цитоархитектоника).

В. Расположе­ние миелино­вых волокон (миелоархитектоника).

глиальные клетки ; оно расположено в некоторых отделах глубинных мозговых структур, из этого вещества сформирована кора больших полушарий (а также мозжечка).

Каждое полушарие разделяется на пять долей, четыре из которых (лобная, теменная, затылочная и височная) примыкают к соответствующим костям черепного свода, а одна (островковая) находится в глубине, в ямке, которая разделяет лобную и височную доли.

Кора большого мозга имеет толщину в 1,5–4,5 мм, ее площадь увеличивается за счет присутствия борозд; она связана с другими отделами ЦНС, благодаря импульсам, которые проводят нейроны.

Полушария достигают примерно 80% от общей массы головного мозга. Они осуществляют регуляцию высших психических функций, тогда как мозговой ствол – низшие, которые связаны с деятельностью внутренних органов.

Три основные области выделяют на полушарной поверхности :

  • выпуклая верхнелатеральная, которая примыкает к внутренней поверхности черепного свода;
  • нижняя, с располагающимися передними и средними отделами на внутренней поверхности черепного основания и задними в области намета мозжечка;
  • медиальная расположена у продольной щели мозга.

Особенности устройства и деятельности

Кора большого мозга подразделяется на 4 вида:

  • древняя – занимает чуть более 0,5% всей поверхности полушарий;
  • старая – 2,2%;
  • новая – более 95%;
  • средняя – примерно 1,5%.

Филогенетически древняя кора большого мозга, представленная группами крупных нейронов, оттесняется новой к основанию полушарий, становясь узкой полоской. А старая, состоящая из трех клеточных слоев, смещается ближе к середине. Главная область старой коры – гиппокамп, являющийся центральным отделом лимбической системы . Средняя (промежуточная) кора представляет собой образование переходного типа, так как трансформация старых структур в новые осуществляется постепенно.

Кора головного мозга у человека, в отличие от таковой у млекопитающих, также ответственна за согласованную работу внутренних органов. Такое явление, при котором, возрастает роль коры в осуществлении всей функциональной деятельности организма, носит название кортикализация функций.

Одна из особенностей коры – ее электрическая активность, происходящая спонтанно. Нервные клетки, расположенные в этом отделе, обладают определенной ритмической активностью, отражающей биохимические, биофизические процессы. Активность обладает различной амплитудой и частотой (альфа-, бета-, дельта-, тета-ритмы), что зависит от влияния многочисленных факторов (медитации, фазы сна, переживания стресса, наличия судорог, новообразования).

Структура

Кора головного мозга представляет собой многослойное образование: каждый из слоев имеет свой определенный состав нейроцитов, конкретную ориентацию, расположение отростков.

Систематическое положение нейронов в коре носит название «цитоархитектоника», расположенные в определенном порядке волокна – «миелоархитектоника».

Кора больших полушарий головного мозга состоит из цитоархитектонических шесть слоев.

  1. Поверхностный молекулярный, в котором нервных клеток не очень много. Их отростки расположены в нем самом, и они не выходят за пределы.
  2. Наружный зернистый сформирован из пирамидальных и звездчатых нейроцитов. Отростки выходят из этого слоя и идут в последующие.
  3. Пирамидальный состоит из пирамидных клеток. Их аксоны направляются вниз, где оканчиваются или формируют ассоциативные волокна, а дендриты идут вверх, во второй слой.
  4. Внутренний зернистый образован звездчатыми клетками и малыми пирамидными. Дендриты идут в первый слой, боковые отростки разветвляются в пределах своего слоя. Аксоны протягиваются в верхние слои или в белое вещество.
  5. Ганглионарный образован большими пирамидными клетками. Здесь находятся самые крупные нейроциты коры. Дендриты направлены в первый слой или распределены в своем. Аксоны выходят из коры и начинают являться волокнами, связывающими различные отделы и структуры ЦНС между собой.
  6. Мультиформный – состоит из различных клеток. Дендриты идут к молекулярному слою (некоторые только до четвертого или пятого слоев). Аксоны направляются в вышележащие слои или выходят из коры в качестве ассоциативных волокон.

Кора головного мозга разделяется на области – так называемая горизонтальная организация . Всего их насчитывается 11, и они включают в себя 52 поля, каждое из которых имеет свой порядковый номер.

Вертикальная организация

Существует и вертикальное разделение – на колонки нейронов. При этом маленькие колонки объединяются в макроколонки, которые называют функциональным модулем. В основе таких систем находятся звездчатые клетки – их аксоны, а также горизонтальные связи их с боковыми аксонами пирамидальных нейроцитов. Все нервные клетки вертикальных колонок реагируют на афферентный импульс одинаково и вместе посылают эфферентный сигнал. Возбуждение в горизонтальном направлении обусловлено деятельностью поперечных волокон, которые следуют от одной колонки к другой.

Впервые обнаружил единицы, которые объединяют нейроны различных слоев по вертикали, в 1943г. Лоренте де Но – с помощью гистологии. Впоследствии это было подтверждено с помощью методов электрофизиологии на животных В. Маунткаслом.

Развитие коры во внутриутробном развитии начинается рано: уже в 8 недель у эмбриона появляется корковая пластина. Вначале дифференцируются нижние слои, а в 6 месяцев у будущего ребенка появляются все поля, которые присутствуют и у взрослого человека. Цитоархитектонические особенности коры к 7 годам полностью формируются, но тела нейроцитов увеличиваются еще до 18. Для образования коры необходимо согласованное перемещение и деление клеток-предшественниц, из которых появляются нейроны. Установлено, что на этот процесс влияет специальный ген.

Горизонтальная организация

Принято разделять зоны коры головного мозга на:

  • ассоциативные;
  • сенсорные (чувствительные);
  • моторные.

Учеными при изучении локализованных участков и их функциональных особенностей применялись разнообразные способы: раздражение химическое или физическое, частичное удаление мозговых участков, выработка условных рефлексов, регистрация биотоков мозга.

Чувствительные

Эти области занимают примерно 20% коры. Поражение таких зон ведет к нарушению чувствительности (снижение зрения, слуха, обоняния и т. п.). Площадь зоны напрямую зависит от количества нервных клеток, которые воспринимают импульс от определенных рецепторов: чем их больше, тем выше сензитивность. Выделяют зоны:

  • соматосенсорную (отвечает за кожную, проприоцептивную, вегетативную чувствительность) – она расположена в теменной доле (постцентральная извилина);
  • зрительную, двухстороннее повреждение которое приводит к полной слепоте, – находится в затылочной доле;
  • слуховую (расположена в височной доле);
  • вкусовую, находящуюся в теменной доле (локализация – постцентральная извилина);
  • обонятельную, двухстороннее нарушение которой приводит к потере обоняния (расположена в гиппокамповой извилине).

Нарушение слуховой зоны не приводит к глухоте, но появляются другие симптомы. Например, невозможность различения коротких звуков, смысла бытовых шумов (шагов, льющейся воды и т. п.) при сохранности различия звуков по высоте, длительности, тембру. Также может происходить амузия, заключающаяся в неспособности узнавать, воспроизводить мелодии, а также различать их между собой. Музыка также может сопровождаться неприятными ощущениями.

Импульсы, идущие по афферентным волокнам с левой стороны тела, воспринимаются правым полушарием, а с правой стороны – левым (повреждение левого полушария вызовет нарушение чувствительности с правой стороны и наоборот). Это связано с тем, что каждая постцентральная извилина связана с противоположной частью тела.

Двигательные

Моторные участки, раздражение которых вызывает движение мускулатуры, располагаются в передней центральной извилине лобной доли. Двигательные зоны сообщаются с сенсорными.

Двигательные пути в продолговатом мозге (и частично в спинном) образуют перекрест с переходом на противоположную сторону . Это приводит к тому, что раздражение, которое возникает в левом полушарии, поступает в правую половину туловища, и наоборот. Поэтому поражение участка коры одного из полушарий ведет к нарушению двигательной функции мышц с противоположной стороны туловища.

Моторная и сенсорная области, которые расположены в районе центральной борозды, объединяются в одно образование – сенсомоторную зону.

Неврология и нейропсихология накопили множество сведений о том, как поражение этих областей приводит не только к элементарным двигательным расстройствам (параличам, парезам, треморам), но и к нарушениям произвольных движений и действий с предметами – апраксиям. При их появлении могут нарушаться движения во время письма, происходить расстройства пространственных представлений, появляться бесконтрольные шаблонные движения.

Ассоциативные

Эти зоны ответственны за связывание поступающей сенсорной информации с той, которая была получена ранее и хранится в памяти. Кроме того, они позволяют сравнивать между собой информацию, которая идет от различных рецепторов. Ответная реакция на сигнал формируется в ассоциативной зоне и передается в зону двигательную. Таким образом, каждая ассоциативная область отвечает за процессы памяти, научения и мышления . Крупные ассоциативные зоны находятся рядом с соответствующими функционально сенсорными зонами. К примеру, какая-либо ассоциативная зрительная функция контролируется зрительной ассоциативной зоной, которая расположена рядом с сенсорным зрительным участком.

Установление закономерностей работы мозга, анализ его локальных нарушений и проверку его активности осуществляет наука нейропсихология, которая находится на стыке нейробиологии, психологии, психиатрии и информатики.

Особенности локализации по полям

Кора большого мозга пластична, что сказывается на переходе функций одного отдела, если произошло его нарушение, в другой. Это обусловлено тем, что анализаторы в коре имеют ядро, где происходит высшая деятельность, и периферию, которая отвечает за процессы анализа и синтеза в примитивном виде. Между ядрами анализаторов находятся элементы, которые принадлежат разным анализаторам. Если повреждение касается ядра, за его деятельность начинают отвечать периферические составляющие.

Таким образом, локализация функций, которыми обладает кора головного мозга, – понятие относительное, так как определенных границ не существует. Тем не менее, цитоархитектоника предполагает наличие 52 полей, которые сообщаются друг с другом проводящими путями:

  • ассоциативными (этот тип нервных волокон отвечает за деятельность коры в области одного полушария);
  • комиссуральными (связывают симметричные области обоих полушарий);
  • проекционными (способствуют сообщению коры, подкорковых структур с другими органами).

Таблица 1

Соответствующие поля

Двигательная

Чувствительная

Зрительная

Обонятельная

Вкусовая

Речедвигательная, которая включает центры:

Вернике, позволяющий воспринимать устную речь

Брока – отвечает за движение языковых мышц; поражение грозит полной потерей речи

Восприятия речи на письме

Итак, строение коры головного мозга предполагает рассмотрение ее в горизонтальной и вертикальной ориентации. В зависимости от этого, выделяют вертикальные колонки нейронов и зоны, расположенные в горизонтальной плоскости. Основные функции, которые выполняет кора, сводятся к осуществлению поведения, регуляции мышления, сознания. Кроме того, она обеспечивает взаимодействие организма с внешней средой и принимает участие в контроле работы внутренних органов.