Пептид цис сер гли лиз арг. Белки, их строение и функции

Таким образом, рибосома создаёт нужные организму белки строго по рецепту, записанному в ДНК в виде последовательности нуклеотидов. А сами белки, в свою очередь, отвечают за разные признаки и свойства конкретного живого организма.

Получается серьезная аналогия с компьютерной программой. Допустим, целью и результатом работы какой-нибудь компьютерной программы является построение определенного изображения на компьютерном мониторе. Пусть это будет «прорисовка» какого-нибудь виртуального игрового персонажа. Например, какой-нибудь виртуальной девушки. Помимо прорисовки соответствующего виртуального объекта, будет неплохо, если компьютерная программа обеспечит еще и правильное «функционирование » этого изображения на компьютерном мониторе – запрограммирует соответствующие движения игрового персонажа, обеспечит целесообразное взаимодействие этой виртуальной девушки с окружающим её игровым миром. И тому подобное.

Точно так же, целью и результатом работы генетической программы, записанной в ДНК, является построение конкретного живого существа. И поддержание его существования. То есть, результатом работы генетической программы является не только построение тела живого существа (инфузории, дождевого червя или колибри), но еще и то, как это тело будет взаимодействовать с миром: избегать опасностей, искать источники пищи и т.п.

Таким образом, определенные аналогии между компьютерной и генетической программой очевидны.

Ну а отличием между этими программами (генетической и компьютерной), является, во-первых, природа носителей информации (там намагниченные жесткие диски, а здесь длинные органические молекулы). Во-вторых, генетическая программа отличается от нашей (даже самой современной) компьютерной программы - запредельной сложностью. Наши компьютерные программы пока еще примитивны в сравнении с генетическими программами, по которым строятся живые организмы. Генетические программы живых существ (отдельные их части нередко называют генными сетями ) насыщены генами-«включателями», «выключателями» и «переключателями», которые контролируют подотчетные им отдельные гены или целые генные каскады, а так же друг друга. В результате получается примерно вот что (Рис. 15):

Рисунок 15. Генная сеть, то есть комплекс генов, так или иначе взаимодействующих с геном FOXP2, одним из ключевых генов, ответственных за формирование речи (Konopka et al., 2009). Здесь показаны только те гены, которые активно реагируют на разные модификации гена FOXP2 (человеческий или шимпанзиный). Есть еще и другие гены, тоже связанные с геном FOXP2, но работающие с ним независимо от того, какой конкретный вариант гена FOXP2 перед ними.



Понятно, что разобраться в таких генетических программах очень непросто. Легче всего установить, что с чем взаимодействует. А вот для чего взаимодействует - здесь еще пока, как говорится, «черт ногу сломит» (С).

Так же запредельно сложны и сами живые существа (на организменном, тканевом, клеточном и молекулярном уровнях организации). Организация жизни на молекулярном уровне вообще представляет собой, по сути, чрезвычайно продвинутые нано-технологии. Даже в простейшей живой клетке успешно работают конвейерные линии из нано-машин и нано-механизмов, о которых мы пока можем лишь мечтать в смелых проектах. Например, знаменитый фермент АТФ-синтаза является самым маленьким роторным мотором в природе. Понятно, что сделаны все эти нано-машины из органики.

И самым замечательным свойством живых систем является их способность непрерывно и самостоятельно чинить самих себя (непрерывно самовоспроизводиться). Например, чтобы заменить мотор у вашей машины, Вы должны, во-первых, поставить вашу машину в гараж и выключить. И потом Вы будете заменять ей мотор (а не она сама). А вот воробей летит себе по своим делам, но прямо в это время в его сердце «отработанные» белки сердечной мышцы постепенно заменяются на новые. То есть, сердечная мышца сама себя всё время отстраивает и обновляет прямо в ходе работы. И таким образом непрерывно самовоспроизводится не только сердечная мышца, но и вообще всё тело воробья.

Однако вернемся к ДНК. Другими аналогиями ДНК могут являться: чертеж, рецепт или книга. Но аналогия с компьютерной программой, всё-таки, ближе всего к сути дела. Итак (еще раз) имеется определенная генетическая программа, согласно которой строится (и существует) тот или иной организм. Эта программа записана на специальном носителе - длинных органических молекулах ДНК с помощью специального языка (генетического кода).



Эту программу можно разбить на некоторые отрезки, участки молекулы ДНК, которые ответственны за тот или иной конкретный признак организма. И эти отрезки, отвечающие за конкретные признаки, называются генами. А вся совокупность имеющихся генов (то есть вся генетическая программа отдельного организма в целом) называется генотипом . В качестве аналогии с компьютерными технологиями, отдельные гены можно уподобить отдельным программным функциям в общей компьютерной программе.

И вот теперь представьте. Допустим, я изучаю несколько генов уже упомянутой выше Николь Кидман, и несколько аналогичных генов кролика. И вижу, что в целом, эти гены похожи друг на друга. То есть, общая последовательность нуклеотидов сходна и у Николь Кидман, и у кролика на целом ряде отрезков ДНК. Но я вижу и серьезные отличия. Многие нуклеотиды заменены на другие. В результате, на выходе должен получаться несколько другой белок (с другой последовательностью аминокислот).

Изобразим это наглядно. Допустим, первая строчка – нуклеотидная последовательность одного из генов Николь Кидман, а вторая строчка – нуклеотидная последовательность такого же гена кролика (я выделил жирным шрифтом отличающиеся участки):

АГТЦЦЦЦЦГГТААТГАЦАТЦАТАТГТГГГГГТАГАЦАТГТЦЦЦЦГТАААГТЦЦГТАГ

АГАААА ЦЦТТ ТААТГТТТТТ АТАГ ГТГЦЦ ГГТАГАТ АТГГАА ЦЦА ТАААГТЦЦГТТТ

При этом мы еще не конца понимаем, есть ли в этих (зафиксированных) различиях какой-то биологический смысл, и если есть, то какой именно? Ведь мы пока научились только читать генетические «тексты». А вот до понимания этих текстов нам пока еще далеко. То есть, важны ли эти различия для того, чтобы в первом случае получилась (и успешно функционировала) именно Николь Кидман, а во втором – именно кролик? Или эти различия не важны?

Хотя приблизительные методики для определения таких вещей уже есть. Например, для того, чтобы сделать вывод, важны ли установленные различия, или нет, сравнивается доля так называемых синонимичных замен по отношению к не синонимичным.

Синонимичные замены – это такие замены нуклеотидов, которые вообще не приводят к замене аминокислоты в белке. Это получается за счет вырожденности генетического кода. Посмотрите на таблицу генетического кода выше (Рис. 14). Вы увидите, что, например, аминокислоту пролин может кодировать сразу четыре разных кодона: ЦЦУ, ЦЦЦ, ЦЦА, ЦЦГ. По сути, аминокислота пролин кодируется только двумя первыми нуклеотидами «ЦЦ». А вот какой там будет третий нуклеотид – уже не важно. Каким бы этот третий нуклеотид ни был, всё равно рибосома на выходе выдаст именно аминокислоту пролин, если прочитает в двух первых «буквах» этого кодона «ЦЦ».

Поэтому если мы увидим, например, в гене Николь Кидман в определенном месте ЦЦЦ, а у кролика в этом же месте мы увидим ЦЦУ, то это значит, что конечные продукты (белки) Николь Кидман и кролика – не будут различаться по этой аминокислоте. Такая замена нуклеотидов называется – синонимичной.

В результате может получиться даже вот что. Допустим, и у Николь Кидман, и у кролика имеется похожий белок, состоящий из 100 аминокислот (соединенных между собой в строго определенной последовательности). Поскольку каждая из этих аминокислот кодируется с помощью кодона из 3 нуклеотидов, то получается, что для записи «рецепта» этого белка в ДНК необходимо задействовать 300 нуклеотидов. И допустим, примерно треть из этих нуклеотидов у Николь Кидман и у кролика – различаются. То есть, различия, казалось бы, большие (100 из 300 нуклеотидов). Но если это будут только синонимичные замены, то получится, что у Николь Кидман и кролика обсуждаемые белки будут вообще идентичны по своим аминокислотным последовательностям. То есть, будут совпадать на 100% .

Какие выводы можно отсюда сделать? Во-первых, отсюда можно предположить, что данный белок – чрезвычайно важен для обоих организмов. Причем важна даже каждая аминокислота. То есть, каждая аминокислота должна в этом белке находиться именно там, где она и находится. Иначе белок сразу же потеряет свою работоспособность.

Поэтому такие случайные мутации , которые приводили к замене той или иной аминокислоты – гарантированно приводили к гибели мутантной особи. И поэтому ни одна из таких мутаций не смогла закрепиться в данном белке.

А смогли закрепиться только такие мутации, которые вообще не изменяли аминокислотный состав данного белка. В результате, смогли закрепиться только те самые синонимичные замены, о которых мы только что говорили. Таким образом, когда мы наблюдаем именно описанную картину – идентичность аминокислотного состава белка, при наличии только синонимичных замен, мы можем сделать следующие выводы:

1). Первичное строение данного белка вообще нельзя изменить (чтобы не нарушить его функцию). На «языке» теории эволюции в таком случае говорится, что данный ген находится под очень мощным давлением стабилизирующего отбора .

2). Число синонимичных замен может указывать на время существования (линии предков) данных существ. Если синонимичных замен – много, то значит, данная линия организмов существует на Земле уже долгое время. Ведь точечные мутации – это достаточно редкое событие. И если значительная часть синонимичных замен уже успела случиться, то значит, прошло уже достаточно большое время (с некоего момента X). Если же число даже синонимичных замен – невысоко, то, следовательно, линия предков этих существ тоже имеет скромную историю (по длительности).

Но чаще всего наблюдаются другие варианты различий в генах и белках.

Допустим, мы видим, что обсуждаемый белок, состоящий из 100 аминокислот (соответственно, записанный в ДНК на 300 нуклеотидах), различается у Николь и кролика в 30 местах (по 30 нуклеотидам). Причем имеют место 50% синонимичных замен, и еще 50% не синонимичных замен (так называемые значимые замены). То есть, 15 нуклеотидов не приводят к замене аминокислоты в белке, но другие 15 нуклеотидов заставляют рибосому встроить в белок уже другую аминокислоту.

Что можно предположить в этом случае?

Во-первых, мы можем предположить (в рамках теории эволюции), что прошло еще не слишком много времени после расхождения линии предков, которые в конечном итоге привели к Николь Кидман, от линии предков, которая привела к кроликам. Потому что за это время успела накопиться только небольшая часть синонимичных замен (из всех возможных).

Во-вторых, мы можем сделать вывод, что и сам этот белок – достаточно «демократичен» (терпим) к собственному аминокислотному составу. То есть, аминокислотный состав данного белка вполне может измениться (например, на озвученные 15 аминокислот), но, тем не менее, этот белок всё равно останется способным выполнять свою работу. А раз так, тогда и эти (значимые) мутации тоже являются биологически нейтральными . И тоже могли накопиться за это время чисто случайным образом.

Или мы можем высказать, наоборот, противоположную гипотезу. Мы можем предположить, что эти белки у Николь Кидман и кролика различаются отнюдь не случайно , а как раз потому, что они и должны различаться. То есть, эти белки должны работать по-разному, чтобы Николь Кидман была именно Николью, а кролик – оставался кроликом.

Чтобы определить, какое из двух последних предположений более верно, нужны дополнительные исследования. Например, изучение специфики работы конкретно этого белка у кролика и у Николь.

И наконец, третий случай. Допустим, у нас всё тот же белок, состоящий из 100 аминокислот. Но мы видим, что только 10 нуклеотидных различий в соответствующем гене (кодирующем этот белок) – имеют синонимичный характер (не приводят к замене аминокислоты), а вот другие 40 отличий в нуклеотидном составе – являются не синонимичными. То есть, мы видим резкое преобладание значимых замен над синонимичными. Какой вывод можно сделать из такого расклада?

В данном случае становится ясно, что исследуемые белки у Николь и у кролика работают, действительно, по-разному. Может быть даже, вообще выполняют разные функции. И эти белки и должны работать по-разному. То есть, становится понятно, что этот конкретный белок как раз и относится к тем признакам и свойствам, которые (в том числе) делают из Николь Кидман именно Николь, а из кролика – именно кролика.

На случайность мы здесь можем списать сравнительно небольшое число всех отличий, пропорциональное числу синонимичных замен. А вот оставшуюся часть различий, найденных между этими генами, на случайность уже списать нельзя . Ведь не синонимичных замен в данном случае намного больше, чем синонимичных. Отсюда следует вывод, что ген подвергся не случайным изменениям, а направленной модификации под действием определенной силы .

И вот на роль этой силы, модифицирующей гены в тех или иных направлениях, в современной биологии по умолчанию (без каких-либо особенных доказательств) назначается именно естественный отбор .

То есть, если обнаруживаются серьезные различия между генами разных организмов, и если эти различия подпадают под только что описанный нами случай (преобладание значимых замен над синонимичными), то делается вывод, что это исключительно результат естественного отбора . И ничего другого.

Вот наш очередной биолог-популяризатор и пишет соответствующую фразу (Наймарк, 2014):

…Выяснилось, что гены, которые экспрессируются больше у рабочей касты, прошли сильный положительный отбор

Чувствуется, что данный автор настолько привык к мысли, будто изменять гены может только естественный отбор и ничего больше, что даже не замечает, как озвучивает совершенно недоказанные вещи. На самом деле, установленным фактом здесь является только то, что обсуждаемые гены – различаются (определенным образом). А рассуждения про «положительный естественный отбор» - это просто домыслы, сделанные чуть ли не автоматически в рамках принятой (сегодня) теории эволюции.

Давайте попробуем посмотреть, как бы всё это выглядело в компьютерной области. Допустим, какой-нибудь «сумасшедший биолог» сел за пустующее рабочее кресло рядом с чужим включенным компьютером, и решил исследовать на предмет сходства и различия не генетические программы разных живых существ, а загадочный набор символов, которые он увидел записанными на мониторе этого компьютера. Загадочные символы, которые привлекли внимание биолога, были записаны в текстовом редакторе в виде двух похожих строчек:

753.11F.FF7.F1W.FF1.1HQ.1HU.811.WAC.2G8.2G6.555

Напоминаем, что наш «сумасшедший биолог» до этого привык работать вот с такими генетическими текстами, например, у двух разных видов синиц (Рис. 16):

Рисунок 16: Изображены представители двух видов синиц (слева большая синица, справа лазоревка). Показан (воображаемый) участок ДНК этих двух видов - последовательность нуклеотидов, которая с одной стороны, весьма схожа у этих видов, но в то же время несколько различается (отличающиеся нуклеотиды выделены красным цветом).

Биолог привык выискивать в таких строчках черты сходства и различия. И обнаруженное сходство списывать или на «общего предка» (этих двух синиц), или на «стабилизирующий отбор» . А обнаруженные различия – либо на результат «положительного отбора» , либо на «нейтральные мутации» , которые успели накопиться у этих двух видов синиц со времени их расхождения от общего эволюционного предка.

А на экране компьютерного монитора наш биолог видит несколько другие строчки:

753.11F.FF7.F13.FF1.1BQ.1H1.811.WA8.2G9.2G6.555

753.11F.FF7.F1W .FF1.1H Q.1HU .811.WAC .2G8 .2G6.555

Биолог замечает, что значительная часть этих двух строчек идентична друг другу. Естественно, наш биолог cделает вывод, что это получилось благодаря общему происхождению этих двух кусков текста (от некоего общего предка ). Ну а найденные различия (выделены жирным шрифтом) между этими двумя строчками наш биолог, наверное, спишет на то, что один из этих участков «прошёл сильный положительный отбор» (в ходе борьбы за существование). Биолог подсчитает, что число точечных замен во второй строчке по сравнению с первой составляет 5 из 36. То есть, имеет место примерно 14% замен. Следовательно, данные строчки гомологичны друг другу на 86% .

И всё будет очень здорово, пока на своё рабочее место не вернется хозяин этого компьютера, и не выгонит из-за стола нашего сумасшедшего биолога.

При этом хозяин компьютера объяснит биологу, что в этих строчках, на самом деле, закодированы черты лиц двух виртуальных девушек, которые были созданы (хозяином компьютера) в качестве двух разных героинь известной компьютерной игры Mass Effect 3 .

Хозяин компьютера объяснит, что в этой игре при создании лица компьютерного персонажа используется специальный набор символов, с помощью которого кодируются разные черты (признаки) лица. Поэтому любое созданное лицо в этой игре можно просто записать в виде закодированной строки символов. И если это лицо понравится, то можно потом использовать этот код в любое время, при создании новых персонажей. Конкретно, те лица, которые соответствуют двум написанным выше кодовым строчкам, в этой игре выглядят вот так (Рис. 17):

Парадоксы животного мира

При изучении биологически активных веществ различной природы и различного происхождения становится очевидной условность их разделения на медиаторы, обеспечивающие межклеточные связи, гормоны, передающие сигналы на более далекие расстояния, феромоны, являющиеся средствами общения между организмами, и токсины, служащие животным для защиты.
Анализ строения биологических регуляторов показывает, что одно и то же соединение у различных видов животного царства может выполнять разную роль. Люлиберин в системе гипоталамус – гипофиз выступает в роли гормона, в то время как тот же пептид в симпатическом ганглии лягушки является нейромедиатором. Феромон спаривания у дрожжей α-фактор связывается с рецепторами гипофиза млекопитающих и при действии на гонадотропы в тканевой культуре вызывает секрецию лютеинизирующего гормона. Изучение его химического состава показало, что он имеет с люлиберином обширную гомологию последовательностей аминокислот.
Структурная гомология играет важную роль во взаимодействии биостимулятора с рецептором, в то время как физиологический ответ определяется функциональной системой, на которую он действует.
В 1931 г. фон Эйлер и Гэддум обнаружили в экстрактах мозга и кишечника животных вещество, которое при введении наркотизированному кролику вызывало снижение кровяного давления и усиливало сокращение изолированного кишечника. Его назвали «вещество Р». В дальнейшем было установлено, что оно является нейромедиатором чувствительных нейронов и содержание его в задних (чувствительных) корешках спинного мозга превышает в два раза концентрацию в передних корешках. Структура вещества была определена через 40 лет, и оказалось, что она сходна со строением таких пептидов, как физалемин, выделенный из кожи южноафриканской лягушки, и эледозин, обнаруженный в слюнных железах осьминогов.

Эти три вещества имеют сходную структуру, включающую гомологичные участки пептидов, в то время как получены они из разных источников и выполняют разные функции.
В качестве другого примера можно привести пептид бомбезин, который был выделен из кожи европейской лягушки Bombina bombina, а затем обнаружен в Р-клетках слизистой желудка и двенадцатиперстной кишки млекопитающих. Бомбезин выполняет функцию освобождающего фактора при выделении гастрина и холецистокинина. В связи с этим он вызывает стимуляцию желудка и поджелудочной железы, сокращает желчный пузырь и усиливает движение кишечника. С помощью иммунологических методов исследования было установлено, что в нервных клетках коры головного мозга, гипоталамуса, гипофиза, шишковидной железы и мозжечка, кроме обычных гормонов органов пищеварения, содержится и бомбезин. Он не имеет себе равных среди известных веществ по способности воздействовать на терморегуляцию. При введении его в гипоталамическую структуру мозга крысы при 4° происходит снижение температуры тела – она оказывается на несколько градусов ниже, чем обычно у крысы. При 36° температура тела повышалась. Этот пептид был эффективен только при введении в гипоталамус, там, где расположен центр терморегуляции. С этим свойством, вероятно, связано его участие в зимней спячке некоторых животных. Введение бомбезина в желудочки мозга крысы вызывало изменение поведения и снижение болевой чувствительности. Кроме того, он увеличивает содержание глюкозы в крови, повышает концентрацию глюкагона, снижает уровень инсулина и угнетает потребление пищи голодными крысами. Это единственный пептид, который регулирует чувство насыщения, так как он влияет не на частоту приема пищи, а лишь на съеденное количество. Поступление бомбезина в желудочки мозга препятствовало возникновению язв желудка при стрессе. При этом снижалась секреция соляной кислоты и возрастало выведение слизи. Бомбезин стимулирует также секрецию соматотропного и лактотропного гормонов. Его свойства позволяют предполагать, что он является нейромедиатором в нервных структурах.
В зарубежном журнале «Biochem. J.» (1981. Т. 197, № 3) опубликовано сообщение, что из голов падальной мухи Calliphora vomitoria выделено вещество, подобное полипептиду поджелудочной железы млекопитающих, а в другом иностранном журнале (Insect. Biochem. 1977. Т. 7. № 5 – 6) описаны белковые фракции, выделенные из жуков Adalia bipunctata, бабочек Galleria mellonella и пчел, которые по своим свойствам близки к соматотропному гормону сыворотки крови быка.
В 1978 г. К. Грос, М. Лафон-Казал и Ф. Дрей при помощи радиоиммунологических методов обнаружили только в центральной нервной системе перелетной саранчи пептид, близкий к лей-энкефалину, а в нижнечелюстных мышцах, яйцеводах и также в центральной нервной системе той же саранчи – пептид, родственный мет-энкефалину. Другие ученые – Г. Дуве и А. Тоуп (Cell. Tissue Res. 1983. Т. 233, № 2) установили в нервных образованиях некоторых видов мух и гусениц наличие веществ, иммунологически сходных с бычьими нейропептидами и нейрофизином, α- и β-эндорфином, вазопрессином и вазотоцином.
В журнале «Cell. Tissue Res.» (1983. Т. 232, № 2) приведены сведения о том, что нейросекреторные клетки мозга определенных видов насекомых дают иммунологическую реакцию с антисыворотками к В-цепи инсулина, соматостатину, концевым пептидам глюкогона, секретину, энкефалину, эндорфинам и кальцитонину.
Одно и то же вещество может выполнять различную функцию в зависимости от вида животного.
Интересны, например, свойства пептидного гормона пролактина, вырабатываемого в гипофизе. В процессе эволюции он приобретает новые функции. У рыб и земноводных он принимает участие в осморегуляции, у птиц он вызывает «материнское поведение», а у млекопитающих стимулирует рост молочной железы и секрецию молока. Существует мнение, что роль и значение пролактина меняются и в течение внутриутробного развития.
Была обнаружена и существенная особенность гормона кальцитонина у лососей (у млекопитающих этот гормон вырабатывается в щитовидной железе). Оказалось, что он обладает значительно более высокой активностью, чем гормон сухопутных животных. Ученым из Канады, США и Швейцарии удалось установить последовательность аминокислот в молекуле кальцитонина лосося и осуществить его синтез. В настоящее время швейцарская фирма «Сандоз» производит его выпуск под названием «кальцимар». Имеется сообщение, что еще более высокой активностью обладает кальцитонин угрей.
В настоящее время установлено, что одно и то же биологически активное вещество могут вырабатывать различные виды животных. Например, некоторые яды амфибий и рептилий химически очень близки. Буфоталин, офиотоксин, кроталотоксин содержат одинаковое число углеводных атомов кислорода и водорода.
Тетродотоксин, выделенный из половых продуктов и печени рыбы фугу, обнаружен также в яйцах калифорнийского тритона. Очень близкие по химической структуре и механизму действия соединения найдены в слюнных железах одного из видов осьминога, в кожных железах некоторых лягушек, в моллюсках, а также у 40 видов рыб, даже у неядовитых. У всех этих животных тетродотоксин содержится практически во всех тканях и органах, по больше всего его обнаружено в половых клетках и печени.
Стероидный токсин жабы – буфогенин очень близок по структуре к самандарину, входящему в состав защитного секрета саламандр. Однако действует он не на сердце, а на нервную ткань. Аналогичным действием обладает нейротоксин стероидной природы, выделенный из голотурий, – голотурин. Стероиды, родственные буфогенинам жаб, были выделены в 1978 г. Эйснером из некоторых видов светляков. Среди метаболитов морских звезд обнаружены инсулиноподобные вещества, снижающие концентрацию глюкозы в сыворотке крови экспериментальных животных.
Высокая концентрация естественного нейрогормона млекопитающих – серотонина была обнаружена в ядовитых выделениях различных животных. Серотонин входит в состав секрета кожных желез жаб и токсина медуз. Богатым источником стероидных соединений являются жуки-плавунцы, которых часто можно встретить в стоячей воде прудов и озер. Белая жидкость, выделяющаяся из отверстий проторакальных желез этих жуков, содержит высокую концентрацию 11-дезоксикортикостерона. Это вещество является промежуточным продуктом биосинтеза альдостерона – гормона, регулирующего у высших позвоночных животных водно-солевой обмен. У плавунцов выделяемое вещество не принимает участия в гормональной регуляции, а играет защитную роль. У некоторых видов жуков содержание гормона может достигать 1 мг. Подсчитано: чтобы добыть то количество гормона, которое вырабатывает один жук, пришлось бы собрать на бойне надпочечники от 1200 особей крупного рогатого скота. Попадая в больших дозах в организм естественных врагов плавунцов – крупных рыб, 11-дезоксикортикостерон приводит к быстрому нарушению водно-солевого и осмотического баланса, вызывает состояние шока, во время которого жук спасается. Точкой приложения гормона являются почечные канальцы (восходящее колено петли Генле), где он вызывает усиленное выведение ионов калия и фосфора и замедляет выход натрия, хлоридов и воды. Плавунец может справиться с рыбой, которая раза в три-четыре больше его. Рыбка длиной в три-четыре сантиметра погибает через час, если в сосуд, где она плавает, капнуть только одну каплю беловатой жидкости, которую выделяет жук. Есть плавунцы, которые, кроме соединений, подобных кортикостероидам, синтезируют также половые гормоны млекопитающих: тестостерон, дигидротестостерон, эстрадпол и эстрон.
Повышенное содержание гормонов надпочечников млекопитающих: адреналина, норадреналина и дофамина – удалось установить в кожном секрете жаб.
Как видно из приведенных фактов, гормоны могут не только выполнять роль регуляторов жизненных процессов, но и служить средством защиты. Определенное значение здесь может иметь повышенная их концентрация в организме одного вида по сравнению с другими, как у жука-плавунца. Однако чаще в организме происходит выработка таких биологически активных веществ (или гормонов), которые отсутствуют в другом организме и в силу этого оказывают в зависимости от дозы токсическое или фармакологическое действие. Например, доказано, что токсичностью обладает кровь (или гемолимфа) многих представителей животного мира. Некоторые насекомые, например, выделяют гемолимфу при опасности как средство защиты. Причем биологический эффект обусловливают различные вещества, специфичные для каждого вида. У божьих коровок это кокцинеллин и пропилеин, у колорадских жуков – летинотарзин, у жуков-нарывников – кантаридин, у многих других животных – стероидные соединения. Чаще всего природа этих веществ, содержащихся в «крови», еще не изучена. Однако сам факт возможности биосинтеза в организме некоторых животных биологически активных веществ, поступающих в кровь и являющихся естественными продуктами обмена, уже не позволит воспринимать резко отрицательно некоторые суждения, дошедшие до нас из прошлых веков. Может быть, приведенные ниже, казалось бы дикие, цитаты имеют научное обоснование. Квинт Серен Самоник рекомендовал «кровь черепахи при выпадении волос и пятнах, возникающих на голове, кровь зайца для выведения веснушек, кровь ласточки в сочетании с мукой фимиама для лечения эпилепсии, для удаления бородавок – кровь лацерты» (название «лацерта» имеет два значения - род ящериц и разновидность скумбрии). «Кровь лягушки, небольшой по размерам и с голосом хриплым и тихим», рекомендовал для прекращения роста волос. Такие же наставления давал Павел Эгинский (625 – 690 гг.) от парши: «...из черепахи медлительной взятая кровь помогает». Для уничтожения волос Квинт Серен Самоник советовал:

«Вырвал ты волос, – намажь это место кровью от птицы,
Что перепончатой кожей трепещет, как будто крылами.
Или же кровью клеща, что оторван от черной собаки».

«Если кровью кошки оросить хлеб и съесть – это помогает при лихорадке», «...заячья кровь чистит кожу и сгоняет веснушки», - читаем мы в книге «Источник здравия» (Пан Сум). И далее: «В марте поймать зайца и гонять его, пока не утомится, заколоть, собрать кровь, высушить, истолочь в порошок. Давать 1 – 2 чайных ложки в молоке детям от родимца один раз в день. Взрослым от падучей болезни – только доза больше», «... кровь куропатки, если впускать в глаз свежей, сгоняет бельмо». На Бойковщине рекомендовали кровь крота добавлять в купель детям, которые имели кожные высыпания, кровью голубя натирать бородавки. В книге П. Сидира «Магические растения» имеются следующие строки: «Среди всех растений, которыми пользуется дьявол для извращения чувств своих рабов, нижеследующие занимают первое место: корень белладонны, кровь летучей мыши или удода, аконит или борец желтый, сельдерей, могучник пятилистный, касатик водяной, петрушка, опиум, белена, вех ядовитый и различные сорта мака». Как видим, помимо ссылок на изученные в настоящее время растения, которые могут оказывать влияние на психику человека, указывается также на кровь летучей мыши и удода. Действительно ли в крови этих животных содержатся какие-то нейротропные вещества, ответить трудно.
Читать в наш просвещенный век приведенные выше изречения без снисходительной улыбки невозможно. Конечно, всем ясно, что никто никогда не будет следовать приведенным выше рекомендациям. Однако, вероятно, неосмотрительно и пренебречь опытом, прошедшим через века, не попытаться его использовать применительно к нашему уровню жизни. Многие «дикие» рецепты существуют тысячелетия и прошли испытания жизнью. Правда, не всегда они настолько эффективны, чтобы занять достойное место в арсенале современных лекарственных средств. В том и состоит задача фармакологов: пренебрегая мистическим налетом, исследовать рациональное зерно старых рекомендаций, установить химическую природу действующих начал и, синтезировав их, передать практическому здравоохранению.
Продолжая дальше наш рассказ, необходимо отметить, что идентичные биологически активные вещества животных обнаруживаются и в растительном мире. Такое явление объяснить пока трудно. Наиболее подробно оно, вероятно, изучено для половых гормонов.
Первое сообщение о присутствии женских половых гормонов в семенах финиковой пальмы и гранатового дерева было сделано в 30-х годах Бутенантом и Джакоби. С. И. Ланов в книге «Лизаты и гравидан» (1936) приводит сведения, согласно которым из прорастающих семян пшеницы, сахарного бурака, их дрожжей, цветов вербы были выделены вещества, вызывающие течку у кастрированных мышей. Он также отмечает, что Ашгейм и Хольхвед выделили из торфа, бурого угля, каменного угля и нефти вещество, аналогичное фолликулину, а другие исследователи такое же вещество выделили из злаков растений, муки и риса. Из лука получено вещество, названное лютеоэстрогеном, которое по биохимическим свойствам близко к хориальному гонадотропину и витамину Е. В то же время из мочи человека выделено от 1 до 3 мг ауксина – гормона растений.
Подобные сообщения, к сожалению, были встречены со скептицизмом. Методы анализа в то время были малочувствительными и неточными. И только с применением современных чувствительных методов эти данные удалось подтвердить, и теперь они уже не подвергаются сомнению.
Ниже приведена таблица по содержанию (в различной концентрации) половых гормонов человека в некоторых растениях (по: Хефтман, 1975; Янг и др., 1978).

Наличие эстрогенов в растениях объясняет нарушение менструального цикла у коров или овец после приема этих растений внутрь. Обладающих подобными свойствами растений было обнаружено довольно много: луковицы тюльпанов, чеснок, подсолнечник, кофе, петрушка, картофель, овес, ячмень. Удалось установить, что эстрогенный эффект растений обусловлен не только наличием половых стероидов, но и другими соединениями. Было предложено назвать их «фитоэстрогены».
В 1960 г. внимание исследователей привлекло растение семейства бобовых, корни которого женщины Бирмы и Таиланда использовали в качестве абортивного средства. Было выделено его активное начало, которое по строению напоминало структуру природного женского гормона эстрона. Выделенное вещество также было активно, как 17β-эстрадиол, при введении подкожно и не теряло своих свойств при приеме внутрь. Его активность в три раза выше синтетического соединения диэтилстильбестрола, широко используемого в медицине. Это соединение получило название «мирэстрол».
Открытие других фитоэстрогенов связано с событиями, происходившими в Австралии в 60-х годах. В эти годы овец выпасали дольше, чем обычно, на пастбищах где произрастал один из видов клевера. Вскоре было обнаружено, что плодовитость овец снизилась более чем на 70%. Удалось установить, что стерильность вызывали два изофлавона, содержащихся в клевере, – генистеин и формононетин, которые также имели структурное сходство со стероидным ядром женского полового гормона.
В дальнейшем выделили еще одно соединение – кумэстрол – из люцерны, обладающее в 30 раз более высокой активностью, чем предыдущие фитоэстрогены.
Обнаружение веществ эстрогенной природы в растениях позволило, естественно, предположить, что они не просто там накапливаются, а принимают участие в жизнедеятельности растений. Проведенные эксперименты показали, что обработка эстрогенами и андрогенами (мужскими половыми гормонами) стимулирует прорастание семян и их рост, способствует развитию цветков.
Явление, которое пока трудно объяснить, было обнаружено при обработке растений гормонами щитовидной железы. Ученые Лимского университета в Перу изменяли под влиянием экстрактов щитовидной железы окраску цветков. А сотрудники кафедры биологии и генетики 2-го Московского медицинского института установили, что под влиянием тироксина на 22% увеличивается длина корня посевного гороха и на 150 – 267% – длина побегов. Развитие растений при этом происходит быстрее.
Предполагают, что фитоэстрогены играют важную экологическую роль для птиц, которые кормятся бобовыми растениями. В годы с большим количеством осадков и высокой урожайностью растения содержат относительно мало изофлавонов, обладающих эстрогенной активностью, и кладка яиц происходит нормально. В неурожайные, засушливые годы растения становятся богаче фитоэстрогенами и количество яиц в кладках уменьшается. Происходит саморегуляция рождаемости в зависимости от пищевых ресурсов,
Другие стероидные соединения млекопитающих - некоторые гормоны коры надпочечников также были обнаружены в растениях. Так, минералкортикоидное вещество удалось выявить в растении солодке голой. Голландский врач Д. Ререрс в 1948 г. обнаружил, что назначение препаратов этого растения в больших дозах (так же как гормоны коры надпочечников) способствует выведению из организма человека ионов калия и задержке ионов натрия, хлора и воды. В дальнейшем было установлено, что эффект обусловлен глицирризиновой кислотой, которая состоит из двух молекул глюкуроновой кислоты, соединенных гликозидной связью со стероидной структурой, сходной со строением гормонов коры надпочечников. Назначение глицирризиновой кислоты больным Аддисоновой болезнью, когда наблюдается недостаточная функциональная активность надпочечников, оказывало нормализующее действие на водно-солевой обмен.
Еще один пример такого единства животного и растительного мира был обнаружен в 60-х годах, когда проводились поиски путей синтеза нового класса биологически активных веществ, выделенных из семенной жидкости, – простагландинов. В 1969 г. Винейром и Спраггинсом из Университета штата Оклахома было открыто большое количество простагландинов в горгонариевых кораллах. Открытие простагландинов в живых организмах само по себе не ново. Удивительным было то, что их содержание в кораллах оказалось исключительно высоким (1,5% сухого веса). Это позволило использовать горгонарии в качестве источника получения этих соединений. Простагландин А2 , выделенный из кораллов, физиологически неактивен, но химическим путем легко превращается в активную форму. Это открытие произвело сенсацию и в начале 70-х годов привело к созданию нескольких крупномасштабных научно-исследовательских проектов.
Интереснейшим событием в истории биологии является открытие в растениях веществ, обладающих активностью ювенильного гормона насекомых. Однажды известный исследователь Ч. Вильяме пригласил работать в Гарвардский университет биолога К. Слэму из Чехословакии для культивирования клопа-солдатика. Однако все попытки добиться нормального развития клопов, которое успешно проводилось на родине ученого, закончились неудачно. Метаморфоз останавливался на пятой личиночной стадии. При неоднократных поисках причин неудачи выяснилось, что, переехав в Гарвард, К. Слэма заменил ватманскую фильтровальную бумагу для выстилания чашек Петри при культивировании насекомых на бумагу производства США. После применения «неамериканской» бумаги рост и развитие начали протекать нормально. В дальнейшем удалось установить, что все виды бумаг производства США обладают высокой ювенильной активностью, в то время как бумага европейского и японского производства не проявляла подобных свойств. Было высказано предположение о существовании специфического «бумажного фактора». Выяснилось, что в Америке бумагу производят в основном из бальзамической пихты, которую в Европе не используют. Обнаружилось, например, что печатные страницы журнала «Science» обладают ювенильной активностью, а у журнала «Nature» такие свойства отсутствуют. Последний журнал печатался на бумаге из другой древесины. В последующем удалось выделить из бумаги вещество ювабион –структурный аналог гормона насекомых.
Не менее интересное открытие связано с другими гормонами насекомых, с гормонами линьки: α-экдизоном и экдистероном. В 1966 г. японский ученый К. Наканиси со своими сотрудниками изучал популярное в восточной медицине растение подокарпус. Они выделили из него четыре родственных соединения. Каково же было их удивление, когда после установления структуры одно из них оказалось похожим на α-экдизон. Биологические испытания подтвердили, что это вещество обладает свойствами гормона линьки. После описанного открытия началось интенсивное исследование других растений. В настоящее время число видов растений, в которых обнаружены гормоны насекомых, приближается к сотне (например, в папоротниках, черемухе, ясене). Оказалось, что содержание этих гормонов в представителях флоры в сотни тысяч раз больше, чем у животных.
И еще одно важное для медицины событие связано с гормонами насекомых. В настоящее время в аптеках продается экстракт маральего корня под названием «экстракт левзеи». Он является тонизирующим средством, помогающим при функциональных расстройствах нервной системы, умственном и физическом переутомлении. Свое название «маралий корень» растение получило после того, как люди заметили, что уставшие и ослабленные маралы выкапывают корни левзеи из-под опавших листьев и съедают их. Это возвращало им силы. Так вот, доктор химических наук Н. К. Абубакиров со своими сотрудниками установил, что в состав этого растения входит гормон линьки насекомых – экдистерон и, вероятно, он оказывает лечебное действие.
Иногда ядовитость насекомого обусловлена теми биологически активными веществами, которые поступают с пищей (с растениями). Так, гусеница бабочек данаид с острова Тринидад содержит сильные сердечные токсины – узарегинин и калотропагенин. Считают, что они попадают в организм насекомых из растений, служащих кормом. Токсины растений также часто накапливаются в организме кузнечика.
В то же время в растениях обнаружены вещества, которые у животных выполняют роль феромонов. Пахучее соединение, оказывающее половое возбуждение у кабана – 5α-андростан-16-ен-3α-он, близкое по структуре мужским половым гормонам – андростерону и тестостерону – и обладающее сильным мускусным запахом, было обнаружено в следовых количествах порядка 8 нг на 1 г сырой массы в корнях пастернака и стеблях сельдерея. Эти результаты получены путем радиохимического анализа с применением газовой хроматографии и масс-спектроскопии. Не это ли вещество обосновывает рекомендации старых врачей применять указанные растения в качестве средств, повышающих половое влечение.
Одно из пахучих веществ (играющих важную роль во взаимоотношениях млекопитающих) – триметиламин, обладающее сильным рыбным запахом, было выделено из менструальной крови женщин и секрета анальных желез рыжей лисицы. Это же соединение удалось обнаружить в 1956 г. Кромвелю и Рихардсону в растении марь вонючая. Название этому растению было дано еще Линнеем за отвратительный запах, который оказывал сильный возбуждающий эффект на собак.
Половое возбуждение таракана американского вызывают не только природные женские феромоны, но и соединение, выделенное из голосеменных растений, – Д-борнилацетат, которое активно в концентрации 0,07 мг/см². Может быть, наличием феромонов можно объяснить привлекающие и отпугивающие свойства определенных растений для некоторых животных. Известно, например, что некоторые растения своими запахами привлекают насекомых. Рыжих тараканов, прусаков, привлекают метаболиты зубровки, кориандра, моркови, а сильно отпугивают зверобой, хмель, пастернак. Клопов в домах издавна отпугивают папоротником. Растение чернокорень называют в народе «крысогон», так как крысы немедленно покидают те места, где положено это растение. Бузина отпугивает мышей. Ею пересыпают скирды, кладут в амбары, обвязывают деревья.
В древнерусских книжных складах везде развешивали пучки горькой полыни, которая, как считали, отпугивает тлей и червей. У Даля описан совет, как истребить клопов: «В комнате кладут траву печного ореха Lapidium ruderale, к которой все клопы с жадностью бегут и тут же издыхают».
Можно привести еще примеры, когда биологически активные вещества синтезируются как некоторыми видами животных, так и растениями. Стероидный токсин жабы – буфогенин очень близок по структуре к растительным сердечным гликозидам и так же, как они, оказывает выраженное влияние на сердце. Вайленд с сотрудниками обнаружили в некоторых видах ядовитых грибов, которые средневековые скандинавские воины – берсерки – ели перед боем, другой токсин жаб – буфотенин (5-оксидиметилтриптамин), являющийся продуктом метилирования серотонина. Он вызывал психические нарушения, приводил в неудержимую ярость. Буфотенин был также обнаружен в семенах одного из южноамериканских растений Mimosacee piptadenja, нюхательный порошок из которого (или напиток) местные воины применяли в качестве психостимулятора перед боем.
В 1986 г. в одном из журналов Академии наук США появилось сообщение, что в головном мозге млекопитающих обнаружена абсцизовая кислота, которая в растениях выполняет роль гормона, управляющего синтезом нуклеиновых кислот.
Сотрудники Тихоокеанского института биоорганической химии ДВО АН СССР сделали сообщение в журнале «Биоорганическая химия» (1980. № 6) о том, что из трепанга были выделены тритерпеновые гликозиды – стихопозиды, сходные с панаксозидами, полученными из женьшеня. Имеются также сведения, что из кораллов Palythoa tuberculosa выделили вещество микоспорин, которое ранее находили только в грибах. По химическому строению пурпур очень близок к синему индиго, который получают не из моллюсков, а из сока листьев растения индигофера.
В личинках мух удалось установить наличие алантоина, который ранее находили в растении окопник.
У растений и животных имеются также общие защитные
токсические вещества. Некоторые из них представлены в приведенной ниже таблице (по: Дж. Харборн, 1985).

Токсины

Животные

Растения

Алкалоид анабазеин Яд муравьев Aphaenogaster
Листья табака Nicotiana
Цианогенные гликозиды линамарин и
лотаустралин
Защитные цианиды моли Zygaena и бабочки Heliconius Токсины клевера, ледвенца и других растений
Гидрохинон Защитные вещества плавунца Dytiscus
Токсины колючек Xanthium canadense
Терпеноид
Р-селинен
Вещество из личинки чешуекрылогоBattus polydamus Вещество из листьев сельдерея
5-гидрокситриптамин Андроконии медведицы Actia caja
Жалящие волоски крапивы

Приведенные факты общности биологически активных веществ у животных и растений пока единичны, однако со временем наверняка их будет больше. Уже возникла наука экологическая биохимия, которая занимается систематизированием этих данных.
Царь Берендей из оперы Римского-Корсакова «Снегурочка» начинает свою каватину словами: «Полна чудес могучая природа...» Чудеса как незнание наука превращает в знание и затем указывает пути их использования.
Уже сейчас в медицине применяется большое количество биологически активных веществ животного происхождения, а накопленные в процессе исследований данные позволят еще больше расширить арсенал лекарственных средств. Огромное количество исследований еще предстоит провести. Необходимо проверить те наблюдения, которые оставили для нас ученые древности и средневековья. Их стремились донести до нас лучшие специалисты в области медицины того времени, и пренебрегать ими, вероятно, не следует. И. П. Павлов писал: «...наша академическая медицина, что касается до терапевтических средств, широко черпала из народной медицины». Мы не можем в настоящее время дать положительное или отрицательное заключение об эффективности многих таких средств. Часто просто высказывается умозрительное отрицательное суждение, основанное не на экспериментальных данных, а лишь на эстетической несовместимости
старых рекомендаций с современными методами лечения. Французский историк Ж. Жорес призывал: «Возьмем из прошлого огонь, а не пепел». И это предстоит сделать ученым нашего времени. Отбросив все ненужное, необходимо научиться использовать на современном уровне рациональное зерно старинных рецептов.
Как видно из изложенных в книге материалов, фармакологическая активность препаратов животного происхождения и выделенных из них соединений может определяться уже известными веществами, которые и раньше использовал человек, получая их из других источников. Но большинство таких веществ специфичны лишь для определенных видов животных, выполняют в их организме роль гормона, феромона или защитного токсина.
В некоторых случаях лечебный эффект может оказывать специфический продукт обмена животного организма, отсутствующий в организме человека. Это имеет место, например, при использовании свиной желчи.
Кроме того, животные служат источником получения некоторых биологически активных веществ, которые у людей выполняют важные физиологические функции. Эти природные регуляторы жизнедеятельности организма возникли в ходе эволюции живой природы в течение миллиардов лет. Они обеспечивают функционирование различных регуляторных систем: генетической, эндокринной, иммунной, нервной и других. Это особые молекулы химических соединений, являющиеся продуктами метаболизма определенных клеток. Их ценным свойством является высокая специфичность и способность оказывать эффект в очень низких концентрациях. Кроме того, они обладают низкой токсичностью и не накапливаются в организме. Продукты их распада являются естественными продуктами обмена. Одним из существенных недостатков таких веществ является кратковременность действия. Например, период полураспада пептидных гормонов измеряется десятками секунд. Поэтому ученые химики-биоорганики поставили перед собой цель синтезировать аналоги природных биорегуляторов, селективная способность которых выше, а продолжительность пребывания в живых организмах па несколько порядков больше, чем у природных веществ. Важный вклад в разработку этой проблемы внесли сотрудники Института органического синтеза Академии наук Латвийской ССР. В этом институте впервые в СССР осуществлен полный химический синтез многих пептидных соединений. Необходимо отметить, что пептидный синтез относится к сложнейшим процессам получения органических соединений, состоит из многих стадий в зависимости от величины пептидной цепи. Например, процесс синтеза инсулина состоит из около двухсот стадий. Результаты, полученные химиками-биоорганиками, являются наглядным примером того, как должна решаться проблема использования природных соединений.
***
Заключить книгу мы хотим словами французского физика Пьера Оже, которые, вероятно, наиболее точно характеризуют проблему использования биологически активных веществ природного происхождения в медицине: «Когда наука переживает период стремительного наступления, ученые смело бросаются вперед, проникая отдельными отрядами далеко в глубь неисследованных территорий. В это время вся энергия используется на дальнейшую разведку и не хватает времени для более подробного исследования и закрепления завоеванных областей. При этом кое-где остаются очаги сопротивления, наличие которых, однако, нисколько не умаляет силы победителей... Случается, однако, что эти крепости противостоят многочисленным штурмам и долго сохраняют свою независимость в покоренной стране. Они всем известны, но их оставляют в покое, так как игра не стоит свеч. Старые солдаты, проходя мимо, указывают на них новобранцам скорее для забавы, чем с целью побудить их вновь заняться исследованием. Однако эти заброшенные области науки часто таят секреты, ведущие к новым важным завоеваниям».

Литература

1. Ажгихин И. С., Шпаков Ю. Н., Кипиани Р. Е., Гандель В. Г. Морская формация. Кишинев: Штиинца, 1982. 260 с.
2. Алескер Э. М. Пчелиный яд в клинике внутренних болезней. М.: Медицина, 1964. 130 с.
3. Брехман И. И. Человек и биологически активные вещества. Л.: Наука, 1976. 109 с.
4. Виноградов Г. В. Лечебные продукты пчеловодства в медицине. Л.: Знание, 1972. 14 с.
5. Ганиткевич Я. В. Роль желчи и желчных кислот в физиологии и патологии организма. Киев.: Наук, думка, 1980. 179 с.
6. Гепарин, физиология, биохимия, фармакология и клиническое применение. Л.: Наука, 1969. 215 с.
7. Гиллур Д. Метаболизм насекомых. М.: Мир, 1968. 216 с.
8. Гумаров В. З. Башкирская народная медицина. Уфа: Башк. кн. изд-во, 1985. 144 с.
9. Гурин И. С., Ажгихин И. С. Биологически активные вещества гидробионтов - источник новых лекарств и препаратов. М.: Наука, 1984. 135 с.
10. Джекобсон М. Половые феромоны насекомых. М.: Мир, 1976.
326 с.
11. Дерикер В. Сборник народноврачебных средств, знахарями в России употребляемых. СПб., 1866. 200 с.
12. Добряков Ю. И. Панты. Владивосток, 1970. 32 с.
13. Дудкевич Г. А. Биохимические сдвиги в мышцах при лечении костных переломов препаратами яичной скорлупы // Хирургия. 1939. № 8. С. 24-28.
14. Здравомыслова Я. И. Уринотерапия гриппозных заболеваний// Врачеб. дело. 1926. № 8. С. 730.
15. Ибрагимов Ф. И., Ибрагимова В. С. Основные лекарственные средства китайской медицины. М.: Медгиз, 1960. 351 с.
16. Йориш Н. П. Пчелы в жизни людей. Киев: Урожай, 1969. 145 с,
17. Китайская медицина: Труды членов Российской духовной миссии в Пекине. СПб., 1853. 379 с.
18. Колесниченко Ю. И. Некоторые вопросы применения и изучения лекарственных средств животного происхождения в восточной и русской медицине // Здравоохранение Белоруссии. 1967. № 2. С. 55-57.
19. Королев Р. В. Пчелы и здоровье. Л.: Знание, 1976. 32 с.
20. Коротаев Г. К., Носков В. А., Воропаев В. М. Физиологически активные вещества морских организмов и возможное использование их в медицине // Хим.-фармацев. журн. 1980. № 8. С. 25-32.
21. Кузьмина К. А. Лечение пчелиным медом и ядом. Саратов: Изд-во Сарат. ун-та, 1984. 79 с.
22. Кучеренко Н. Е., Германюк Я. Л., Васильев А. Н. Молекулярные механизмы гормональной регуляции обмена веществ. Киев: Вища шк., 1986. 247 с.
23. Лесевич В. А. К вопросу об уринотерапии // Врачеб дело. 1926 № 17-18. С. 1441.
24. Лобачев С. В. Константы жира промысловых млекопитающих и применение этого жира при лечении некоторых ран // Сов. медицина. 1943. № 10. С. 21, 22.
25. Мариковский П. И. Тайны мира насекомых. М.: Наука, 1967. 186 с.
26. Машковский М. Д. Лекарственные средства. М.: Медицина, 1984. Т. 1, 2.
27. Миклешевский В. Е. К механизмам видового иммунитета. Антибиотические вещества, обнаруженные в тканях комнатных мух и травяных лягушек: Автореф. дис. ... канд. мед. наук. М., 1951. 16 с.
28. Одо из Мена. О свойствах трав. М.: Медицина, 1976. 271 с.
29. Орлов В, Н., Корнева И. В., Крылов А. Н. Кардиотропное действие пчелиного яда и мелиттина // Физиология и биохимия животных. 1975. № 10. С. 39-45.
30. Орлов Б. Н., Гелашвили Д. Б. Зоотоксинология: (Ядовитые животные и их яды). М.: Высш. шк., 1985. 280 с.
31. Павловский Е. И. Ядовитые животные и значение их для человека. М., 1923. С. 72 – 76.
32. Пантокрин: (Сборник статей) /Под ред. проф. С. М. Павленко. Горно-Алтайск, 1969. 140 с.
33. Пигулевский С. В. Ядовитые животные. Токсикология позвоночных. Л.: Медицина, 1966. 374 с.
34. Пигулевский С. В. Ядовитые животные. Токсикология беспозвоночных. Л.: Медицина, 1975. 375 с.
35. Попов Г. Русская народно-бытовая медицина. СПб., 1903. 329 с.
36. Правоторова Е. А., Харахнина Е. Г. Биологическая активность депрессорных веществ животного происхождения // ДАН СССР. 1953. № 6. С. 1127-1129.
37. Ромоданов М. А. К вопросу об автоуринотерапии // Врач. дело. 1935. № 7. С. 655-658.
38. Самоник Квинт Серен. Медицинская книга (целебные предписания). М.: Медгиз, 1961. 270 с.
39. Сахибов Н., Сорокин В. И., Юкельсон Л. Я. Химия и биохимия змеиных ядов. Ташкент: Фан, 1972. 186 с.
40. Сидир П. Магические растения. СПб., 1909. 205 с.
41. Смоловик И. К. Об использовании препаратов «бобровой струи» в практической медицине // Научные основы боброводства Воронеж, 1984. С. 73-75.
42. Солдатова Л. Н. Структурная характеристика инсектицидов из яда скорпиона Buthus euplus: Автореф. дис. ... канд. техн. наук. М., 1977. 18 с.
43. Стекольников Л. И. и др. Биологические стимуляторы растительного и животного происхождения. М.: Знание, 1975. 40 с.
44. Стеколъников Л. И., Мурох В. И. Спасибо зверю, птице, рыбе. Минск: Урожай, 1982. 191 с.
45. Султанов М. Н. Лечебные свойства змеиного и пчелиного ядов и других продуктов пчеловодства. Ашхабад: Туркменистан, 1972. 127 с.
46. Султанов М. Н. Укусы ядовитых животных. М. Медицина, 1977. 192 с.
47. Талиев Д. О бактерицидных свойствах личинок мух//ДАН СССР. 1943. № 4. С, 164-166.
48. Талызин Ф. Ф. Ядовитые животные суши и моря. М.: Знание 1970. 96 с.
49. Талызин Ф. Ф. Змеи. М.: Изд-во АН СССР, 1963. 111 с.
50. Филиппович Ю. Б., Кутузова П. М. Гормональная регуляция обмена веществ у насекомых. М.: ВИНИТИ, 1985. 226 с.
51. Харборн Дж. Введение в экологическую биохимию. М.: Мир, 1985. 310 с.
52. Харитонов Д. Е. Об антибиотиках животного происхождения// Изв. естеств.-науч. ин-та при Пермском гос. ун-те. 1951. Т. 13 С. 2-3.
53. Худозаров А. М. Лечение ожогов кадаверолем: Автореф. дис..., канд. мед. наук. Баку, 1951. 10 с.
54. Цзинь Синь Чжун. Китайская народная медицина. М.: Знание 1958. 36 с.
55. Яды пчел и змей в биологии и медицине. Горький: Изд-во Горьк. ун-та, 1967. 197 с.

Содержание

3
Аптека Нептуна .........................................................................................6
Лекарственные амфибии ......................................................................... 31
Змея-целительница ................................................................................. 46
Насекомые-фармацевты .......................................................................... 55
Оружие пауков и скорпионов ................................................................. 82
Червяк помогает больному ...................................................................... 91
Пахучие молекулы животных .................................................................. 98
Лекарства из рога ...................................................................................... 108
Целебные свойства продуктов жизнедеятельности .............................. 117
Целебные органы ...................................................................................... 134
Парадоксы животного мира..................................................................... 168
Литература ................................................................................................. 184

Корпачев В. В.
К68 Целебная фауна. – М.: Наука, 1989. – 189 с. 1 ил. (Научно-популярная литература. Серия «Человек и окружающая среда»). ISBN 5-02-005325-2

Книга представляет собой серию очерков о биологически активных веществах животного происхождения, применяемых с древнейших времен по настоящее время для лечения различных заболеваний. Одни из них потеряли свое значение из-за низкой эффективности, другие и сегодня могут служить химическими образцами для создания современных фармакологических препаратов. Рассказывается о лекарственной ценности и успешном применении в современной медицине гормонов, органопрепаратов, ферментов. Для широкого круга читателей.

К1907000000-034 НП ББК 52,82
054 (02)-89

Научно-популярное издание

Корпачев
Вадим Валерьевич

ЦЕЛЕБНАЯ ФАУНА
Утверждено к печати
Редколлегией серии
научно-популярных изданий Академии наук СССР

Редактор издательства Э. А. Вишнякова
Художник Б. К. Шаповалов
Художественный редактор И. Д. Богачев
Технический редактор Л. В. Прохорцева
Корректоры Ю. Л. Косорыгин, Л. И. Левашова

Сдано в набор 24.10.88
Подписано к печати 18.01.89
Т-00014. Формат 84Х108 1/32
Бумага книжно-журнальная
Гарнитура обыкновенная новая
Печать высокая
Усл. печ. л. 10,08. Усл. кр. отт. 10,5. Уч.-изд. л. 10,5
Тираж 100000 экз. (1 завод 1-50000 экз.),
Тип. зак. 2277 Цена 2 руб.
Ордена Трудового Красного Знамени издательство «Наука» 117864, ГСП-7, Москва, В-485, Профсоюзная ул., 90
2-я типография издательства «Наука» 121099, Москва, Г-99, Шубинский пер., 6

Выберите рубрику Биология Тесты по биологии Биология. Вопрос — ответ. Для подготовки к ЕНТ Учебно-методическое пособие по биологии 2008 г Учебная литература по биологии Биология-репетитор Биология. Справочные материалы Анатомия, физиология и гигиена человека Ботаника Зоология Общая биология Вымершие животные Казахстана Жизненные ресурсы человечества Действительные причины голода и нищеты на Земле и возможности их устранения Пищевые ресурсы Ресурсы энергии Книга для чтения по ботанике Книга для чтения по зоологии Птицы Казахстана. Том I География Тесты по географии Вопросы и ответы по географии Казахстана Тестовые задания, ответы по географии для поступающих в ВУЗы Тесты по географии Казахстана 2005 Информация История Казахстана Тесты по Истории Казахстана 3700 тестов по истории Казахстана Вопросы и ответы по истории Казахстана Тесты по истории Казахстана 2004 Тесты по истории Казахстана 2005 Тесты по истории Казахстана 2006 Тесты по истории Казахстана 2007 Учебники по истории Казахстана Вопросы историографии Казахстана Вопросы социально-экономического развития Советского Казахстана Ислам на территории Казахстана. Историография советского Казахстана (очерк) История Казахстана. Учебник для студентов и школьников. ВЕЛИКИЙ ШЕЛКОВЫЙ ПУТЬ НА ТЕРРИТОРИИ КАЗАХСТАНА И ДУХОВНАЯ КУЛЬТУРА В VI-XII вв. Древние государства на территории Казахстана: Уйсуны, Канглы, Хунну Казахстан в древности Казахстан в эпоху средневековья (XIII — 1 пол. XV вв.) Казахстан в составе Золотой Орды Казахстан в эпоху монгольского владычества Племенные союзы Саков и Сарматов Раннесредневековый Казахстан (VI-XII вв.) Средневековые государства на территории Казахстана в XIV-XV вв ХОЗЯЙСТВО И ГОРОДСКАЯ КУЛЬТУРА РАННЕСРЕДНЕВЕКОВОГО КАЗАХСТАНА (VI-XII вв.) Экономика и культура средневековых государств Казахстана XIII-XV вв. КНИГА ДЛЯ ЧТЕНИЯ ПО ИСТОРИИ ДРЕВНЕГО МИРА Религиозные верования. Распространение ислама Хунну: археология, происхождение культуры, этническая история Хуннский некрополь Шомбуузийн Бэльчээр в горах монгольского Алтая Школьный курс истории Казахстана Августовский переворот 19-21 августа 1991 года ИНДУСТРИАЛИЗАЦИЯ Казахско-китайские отношения в XIX веке Казахстан в годы застоя (60-80-е годы) КАЗАХСТАН В ГОДЫ ИНОСТРАННОЙ ИНТЕРВЕНЦИИ И ГРАЖДАНСКОЙ ВОЙНЫ (1918-1920 ГГ.) Казахстан в годы перестройки Казахстан в новое время КАЗАХСТАН В ПЕРИОД ГРАЖДАНСКОГО ПРОТИВОСТОЯНИЯ НАЦИОНАЛЬНО-ОСВОБОДИТЕЛЬНОЕ ДВИЖЕНИЕ 1916 ГОДА КАЗАХСТАН В ПЕРИОД ФЕВРАЛЬСКОЙ РЕВОЛЮЦИИ И ОКТЯБРЬСКОГО ПЕРЕВОРОТА 1917 г. КАЗАХСТАН В СОСТАВЕ СССР Казахстан во второй половине 40-х — середине 60-х годов. Общественно-политическая жизнь КАЗАХСТАНЦЫ В ВЕЛИКОЙ ОТЕЧЕСТВЕННОЙ ВОЙНЕ Каменный век Палеолит (древнекаменный век) 2,5 млн.-12 тыс. до н.э. КОЛЛЕКТИВИЗАЦИЯ МЕЖДУНАРОДНОЕ ПОЛОЖЕНИЕ НЕЗАВИСИМОГО КАЗАХСТАНА Национально-освободительные восстания Казахского народа в ХVIII-ХIХ вв. НЕЗАВИСИМЫЙ КАЗАХСТАН ОБЩЕСТВЕННО-ПОЛИТИЧЕСКАЯ ЖИЗНЬ В 30-е ГОДЫ. НАРАЩИВАНИЕ ЭКОНОМИЧЕСКОЙ МОЩИ КАЗАХСТАНА. Общественно-политическое развитие независимого Казахстана Племенные союзы и ранние государства на территории Казахстана Провозглашение суверенитета Казахстана Регионы Казахстана в раннем железном веке Реформы управления Казахстаном СОЦИАЛЬНО-ЭКОНОМИЧЕСКОЕ РАЗВИТИЕ В ХIХ-НАЧАЛЕ XX ВЕКА Средние века ГОСУДАРСТВА В ПЕРИОД РАСЦВЕТА СРЕДНЕВЕКОВЬЯ (Х-ХIII вв.) Казахстан в XIII-первой половине XV веков Раннесредневековые государства (VI-IX вв.) Укрепление Казахского ханства в XVI-XVII веках ЭКОНОМИЧЕСКОЕ РАЗВИТИЕ: УСТАНОВЛЕНИЕ РЫНОЧНЫХ ОТНОШЕНИЙ История России ИСТОРИЯ ОТЕЧЕСТВА XX ВЕК 1917 ГОД НОВАЯ ЭКОНОМИЧЕСКАЯ ПОЛИТИКА ОТТЕПЕЛЬ ПЕРВАЯ РУССКАЯ РЕВОЛЮЦИЯ (1905-1907) ПЕРЕСТРОЙКА ПОБЕДИВШАЯ ДЕРЖАВА (1945-1953) РОССИЙСКАЯ ИМПЕРИЯ В МИРОВОЙ ПОЛИТИКЕ. ПЕРВАЯ МИРОВАЯ ВОЙНА РОССИЯ В НАЧАЛЕ XX ВЕКА Политические партии и общественные движения в начале XX века. РОССИЯ МЕЖДУ РЕВОЛЮЦИЕЙ И ВОЙНОЙ (1907-1914) СОЗДАНИЕ В СССР ТОТАЛИТАРНОГО ГОСУДАРСТВА (1928-1939) Обществознание Различные материалы по учебе Русский язык Тесты по русскому языку Вопросы и ответы по русскому языку Учебники по русскому языку Правила русского языка

В практике здравоохранения широкое применение нашел спленин. Этот препарат селезенки был получен в 1945 г. в Лаборатории экспериментальной эндокринологии (Институт экспериментальной биологии и патологии им. А. А. Богомольца) академиком АН УССР В. П. Комиссаренко. Химическая природа спленина изучена довольно подробно. В препарате обнаружено большое количество аминокислот, пептид, содержащий 13 аминокислот, множество жирных кислот, а также липиды, микроэлементы и витамины. Активное начало спленина еще не выделено.

Эксперименты на различных видах животных показали выраженное детоксикационное действие препарата.

Испытание действия спленина при токсикозах на ранних сроках беременности, проведенное в различных учреждениях нашей страны, показало, что он высокоэффективен при лечении этой патологии. Кроме того, применяя спленин при лечении осложнений у больных после рентгенотерапии, медики заметили, что уже после 3 – 4 инъекций препарата общее состояние человека значительно улучшается: прекращаются тошнота и рвота, головные боли, появляется аппетит, нормализуется сон. Благодаря ярко выраженным детоксикационным свойствам препарат оказывает выраженный терапевтический эффект при лечении различных форм гепатитов и функциональных нарушений печени, тиреотоксикоза, недостаточности паращитовидных желез, шизофрении и диабета.

Исследователями была обнаружена еще одна способность препарата – угнетать проявление аллергических реакций. Спленин оказывал выраженный терапевтический эффект при лечении аллергического насморка, крапивницы и аллергических дерматитов.

Многие эффекты спленина можно объяснить его мембранотропными свойствами, т. е. способностью стабилизировать клеточную мембрану. Так, эритроциты, обработанные этим препаратом, менее чувствительны к гипотоническому шоку. Механизм многих эффектов спленина изучен еще недостаточно. Не выяснена химическая природа биологически активных факторов, входящих в его состав. Изучение препарата продолжается.

В настоящее время из селезенки выделено только два пептида, структура которых установлена: 1. Тафцин, биосинтез которого происходит в селезенке в виде лейкокинина, а окончательная структура формируется на поверхности мембран лейкоцитов. В настоящее время тафцин синтезирован, а также получены его биологически активные аналоги. 2. Фактор, напоминающий по своей структуре тимопоэтин и названный спленином. Он так же,как и тимопоэтин, состоит из 49 аминокислот и имеет активный участок из пяти

Тир-Лиз-Про-Арг

Тафцин

аминокислот, который был назван спленопентином. Спленопентин отличается от тимопентина одной аминокислотой.

Арг-Лиз-Асп-Вал-Тир

Тимопентин

Арг-Лиз-Глу-Вал-Тир

Спленопентин

Биологические эффекты спленопентина и тимопентина имеют существенные различия.

Изучением гуморальных факторов селезенки занимаются в Киевском научно-исследовательском институте эндокринологии и обмена веществ. В последние годы здесь получен ряд новых важных данных, позволивших значительно расширить наши представления о физиологии и патологии функций селезенки, о значении тех явлений, которые возникают при ее нарушении. Однако многие загадки этого органа остаются еще неразгаданными.

Парадоксы животного мира

При изучении биологически активных веществ различной природы и различного происхождения становится очевидной условность их разделения на медиаторы, обеспечивающие межклеточные связи, гормоны, передающие сигналы на более далекие расстояния, феромоны, являющиеся средствами общения между организмами, и токсины, служащие животным для защиты.

Анализ строения биологических регуляторов показывает, что одно и то же соединение у различных видов животного царства может выполнять разную роль. Люлиберин в системе гипоталамус – гипофиз выступает в роли гормона, в то время как тот же пептид в симпатическом ганглии лягушки является нейромедиатором. Феромон спаривания у дрожжей α-фактор связывается с рецепторами гипофиза млекопитающих и при действии на гонадотропы в тканевой культуре вызывает секрецию лютеинизирующего гормона. Изучение его химического состава показало, что он имеет с люлиберином обширную гомологию последовательностей аминокислот.

Структурная гомология играет важную роль во взаимодействии биостимулятора с рецептором, в то время как физиологический ответ определяется функциональной системой, на которую он действует.

В 1931 г. фон Эйлер и Гэддум обнаружили в экстрактах мозга и кишечника животных вещество, которое при введении наркотизированному кролику вызывало снижение кровяного давления и усиливало сокращение изолированного кишечника. Его назвали «вещество Р». В дальнейшем было установлено, что оно является нейромедиатором чувствительных нейронов и содержание его в задних (чувствительных) корешках спинного мозга превышает в два раза концентрацию в передних корешках. Структура вещества была определена через 40 лет, и оказалось, что она сходна со строением таких пептидов, как физалемин, выделенный из кожи южноафриканской лягушки, и эледозин, обнаруженный в слюнных железах осьминогов.

Арг-Про-Лиз-Про-Гли-Гли-Фен-Гли-Лей-Мет-NH 2

Вещество Р

Пироглу-Ала-Асп-Про-Асп-Лиз-Феп-Три-Гли-Лей-Мет-NH 2

Физалемин

Пироглу-Про-Сер-Лиз-Асп-Ала-Фен-Илей-Гли-Гли-Лей-Мет-NH 2

Эледозин

Эти три вещества имеют сходную структуру, включающую гомологичные участки пептидов, в то время как получены они из разных источников и выполняют разные функции.

В качестве другого примера можно привести пептид бомбезин, который был выделен из кожи европейской лягушки Bombina bombina, а затем обнаружен в Р-клетках слизистой желудка и двенадцатиперстной кишки млекопитающих. Бомбезин выполняет функцию освобождающего фактора при выделении гастрина и холецистокинина. В связи с этим он вызывает стимуляцию желудка и поджелудочной железы, сокращает желчный пузырь и усиливает движение кишечника. С помощью иммунологических методов исследования было установлено, что в нервных клетках коры головного мозга, гипоталамуса, гипофиза, шишковидной железы и мозжечка, кроме обычных гормонов органов пищеварения, содержится и бомбезин. Он не имеет себе равных среди известных веществ по способности воздействовать на терморегуляцию. При введении его в гипоталамическую структуру мозга крысы при 4° происходит снижение температуры тела – она оказывается на несколько градусов ниже, чем обычно у крысы. При 36° температура тела повышалась. Этот пептид был эффективен только при введении в гипоталамус, там, где расположен центр терморегуляции. С этим свойством, вероятно, связано его участие в зимней спячке некоторых животных. Введение бомбезина в желудочки мозга крысы вызывало изменение поведения и снижение болевой чувствительности. Кроме того, он увеличивает содержание глюкозы в крови, повышает концентрацию глюкагона, снижает уровень инсулина и угнетает потребление пищи голодными крысами. Это единственный пептид, который регулирует чувство насыщения, так как он влияет не на частоту приема пищи, а лишь на съеденное количество. Поступление бомбезина в желудочки мозга препятствовало возникновению язв желудка при стрессе. При этом снижалась секреция соляной кислоты и возрастало выведение слизи. Бомбезин стимулирует также секрецию соматотропного и лактотропного гормонов. Его свойства позволяют предполагать, что он является нейромедиатором в нервных структурах.

В зарубежном журнале «Biochem. J.» (1981. Т. 197, № 3) опубликовано сообщение, что из голов падальной мухи Calliphora vomitoria выделено вещество, подобное полипептиду поджелудочной железы млекопитающих, а в другом иностранном журнале (Insect. Biochem. 1977. Т. 7. № 5 – 6) описаны белковые фракции, выделенные из жуков Adalia bipunctata, бабочек Galleria mellonella и пчел, которые по своим свойствам близки к соматотропному гормону сыворотки крови быка.

Спешл фо 218 (=^_^ =)

За основу взяты старые задачи- 113 штук. Те, которые выбросили из нового списка, просто не буду печатать. Хотя некоторых у меня просто напросто нет. Ответы здесь конечно не айс, но все равно, хоть что-то взять отсюда можно.

    В: В пептидной цепи между радикалами аминокислот могут возникать химические связи. Выберите пары аминокислот, способные их образовать: а) вал-изолей; б) цис-цис; в) глу-лиз; г) фен-асп. Ответ обоснуйте.

О: а) образуют связь – гидрофобная связь, т.к. обе аминокислоты гидрофобные

б) образуют связь – дисульфидная связь за счет SH

в) образуют связь – ионная связь, т.к. кислая и основная аминокислоты

г) не образуют связи

2. В: Напишите формулу трипептида: лиз-арг-гис. В какой среде находится его ИЭТ? Ответ обоснуйте.

О: ИЭТ – это значение pH, при котором заряд белка стремится к нулю. В этом трипептиде все аминокислоты основные. А значит ИЭТ в щелочной среде.

3: В: Напишите формулу трипептида: глу-асп-ала. Определите его заряд в нейтральной среде. Как изменится заряд в кислой среде? Растворимость? Почему?

О: Глу и асп – кислые аминокислоты, ала – гидрофобная. При рН =7 заряд трипептида отрицательный. В кислой среде (при добавлении протонов Н +) заряд будет уменьшаться, т.е стремиться к ИЭТ. При уменьшении заряда уменьшается и растворимость.

4. В: Трипептид: вал-лей-ала. Уточните его способность растворяться в воде. Почему?

О: Трипептид образован гидрофобными аминокислотами, между радикалами которых образуются гидрофобные связи. Поэтому в воде не растворяется.

5. В: Два пациента больны дизентерией. У одного величина белкового коэффициента – 0,9, у другого – 1,9. Какова тактика врача в обоих случаях?

О: Дизентерия – это инфекционное заболевание. Обусловленное внедрением в макроорганизм микроорганизма.

БК – это соотношение альбуминов к глобулинам в сыворотке крови. БК= [А]/[Г]=1,5 – 2,3. При внедрении микроорганизма запускается гуморальный иммунитет, что обуславливает выработку гамма-глобулинов. При увеличении глобулинов в крови значение БК уменьшается – значит организм борется с инфекцией- как у первого пациента. Во втором случае БК=1,9, т.е гамма-глобулины не вырабатываются, а значит организм не борется с микроорганизмом. Следовательно, состояние хуже у второго больного. В первом случае – врач назначает антибиотики, которые действуют на мембрану микроба, проникают внутрь клетки, действуют на ДНК микроорганизма, тем самым не позволяя размножаться. Во втором случае назначают иммуностимуляторы- взрослым, а детям и старикам – вводят готовые антитела. Так же и в 1ом и во 2ом случаях дают водно-солевые растворы для предотвращения обезвоживания.

6. В: Объясните механизм образования кефира из молока. Почему белки кефира лучше усваиваются детским организмом?

О: Кефир – продукт кисломолочного брожения, как следствие работы микроорганизмов, продуктами питания которых являются углеводы. Конечный продукт этого процесса – молочная кислота. В молоке лактоза подвергается брожения с образованием молочной кислоты. При этом меняется рН с нейтральной на кислую. Подавляющее большинство белков – кислые, в том числе и белки молока. При изменении рН меняется и заряд белков – он уменьшается, уменьшается также и растворимость. Молочная кислота действует на химические связи между радикалами аминокислот белков молока, рвет эти связи – т.е происходит денатурация) белки разворачиваются). В кефире белки не осаждаются, а остаются на поверхности. Детьми белки кефира, т.к. они находятся в развернутом виде, усваиваются лучше – т.к. доступны пептидные связи.

7. В: Какие белки плазмы крови альбумины или глобулины быстрее движется при электрофорезе? Почему?

О: Электрофорез – это движение частиц раствора, помещенного в электрическое поле. Скорость движения частиц прямо пропорциональна заряду, и обратно пропорциональна массе частиц. Альбумины и глобулины – кислые белки, значит имеют «-» заряд, но у альбуминов величина этого заряда выше. По массе: альбумины меньше, чем глобулины. Значит по 2м критериям видно, что альбумины при электрофорезе движется быстрее.

8. В: Где в медицине применяют способность белков к денатурации.?

О: Три направления медицины

А) ПРОФИЛАКТИКА: кварцевание, обработка хирургического поля, обработка кожи перед уколом, стерилизация.

Б) ЛЕЧЕНИЕ: химиотерапия – разрушение опухоли, остановка кровотечения – коагуляция (свертывание)

В) ДИАГНОСТИКА: осаждение белков для определения их количества, осаждение для определения количества других веществ в био.жидкостях.

9. В: Что лучше растворяется в воде нуклеиновые кислоты или нуклеопротеиды? Почему?

При уменьшении заряда, уменьшается и растворимость. Значит лучше растворяются в воде НК.

10. В: Чем опасны неумеренные попытки загореть?

О: При попытке загореть в организме увеличивается синтез меланина. Значит действие УФИ не очень предпочтительно. Если меланина в организме вырабатывается недостаточно, то УФ проникает в более глубокие слои кожи. Таким образом он действует на клетки кожи. А именно на их мембраны. В основе мембран клеток лежит билипидный слой, состоящий из ФЛ, ВЖК. А ВЖК имеют следующий тип строения: -С-С-С-.. т.е. цепь из углеродных атомов. А УФ луч – это сгусток энергии, который рвет эту цепь по гомолитическому типу распада связи, т.е. образуются свободные радикалы, имеющие неспаренный электрон. Именно эти радикалы и запускают ПОЛ. При этом процессе повреждаемся мембрана клетки, и УФ луч проникает внутрь. А внутри клетки с большом количестве находятся белки и НК, которые являются полимерами. При действии на них УФИ – происходит денатурация. Последствия: ожоги, опухоли. Так же при неумеренных попытках загореть провоцируется избыточный синтез витамина D, чо может привести к гипервитаминозу, последствиями чего является увеличения концентрации Са2+ в крови, и он может откладываться в тканях и органах, нарушая их деятельность.

11. : В: У пепсина ИЭТ равна 1. Какие аминокислоты преобладают в его молекуле?

О: Кислые аминокислоты.

12: В: Приходилось ли вам наблюдать за работой ферментов? Приведите примеры.

О: Углеводы: брожение – молочнокислое, спиртовое, лимоннокислое, уксуснокислое и т.д. (йогурты, кефир, квас, квашение капусты, кислое тесто)

Липиды: прогоркание сливочного масла

Белки: гниение (тухлые яйца, испорченные продукты, плесневелый сыр)

13. В: Напишите реакцию декарбоксилирования глутамата. Назовите класс фермента. Роль продукта.

О:

Продукт – гамма-аминомасляная кислота – тормозный медиатор. Фермент- ГЛУТАМАТДЕКАРБОКСИЛАЗА. Класс фермента – лиазы (рвет –С-С- связь)

14. В: Укажите класс фермента альдолазы гликолиза. Ответ обоснуйте

О: Класс фермента- лиаза. Рвет –С-С- связь. С помощью этого фермента фруктоза-1,6-дифосфат превращается в ГА-3-Ф и ДГАФ.

    в новых задачах нет!

    В: Что опаснее ожог кислотой или щелочью (при их равной ионной силе)? Ответ поясните.

О: Опаснее ожог щелочью. И кислота, и щелочь при попадании на кожу вызывают денатурацию белков ткани. Но кислота обладает свойством – гигроскопичности. Это свойство обуславливает захват воды из ткани, т.е при попадании на кожу кислота как бы вытягивает всю воду из ткани и остается сухая корочка. Она и является препятствием для дальнейшего проникновения кислоты в более глубокие слои кожи. Щелочь же таким свойством не обладает и поэтому может вызвать денатурацию белков более глубоких слоев кожи.

    В: С какой целью кварцуют операционные? Механизм явления.

О: Кварцевание – воздействие УФИ на какую-либо поверхность. Кварцевание используют для обезвреживания микроорганизмов. В основе этого лежит денатурация белков этих микроорганизмов, причем в первую очередь рвутся гидрофобные взаимодействия радикалов аминокислот в пептидах, что «открывает» пептидные связи первичной структуры белка.

    В: Первая помощь при отравлении солями тяжелых металлов. Ответ поясните

О: Главная задача – предотвратить всасывание этих солей. Для этого внутрь вводят раствор природных белков. Чаще это молоко. Белки молока связываются с солями, что вызывает их денатурацию и они осаждаются на слизистую, уменьшая доступ солей к слизистой. После этого делают промывание.

    В: Сколько глюкозы в норме в моче и почему?

О: В норме глюкозы в моче нет, т.к. она полностью реабсорбируется почечными канальцами. В первичной моче есть глюкоза, но затем она полностью реабсорбируется, причем реабсорбция идет путем активного транспорта, т.е. с затратой энергии. При хронической гипергликемии (9-10 ммоль/л) уменьшается процент реабсорбции этого соединения, т.к. не хватает энергии и может развиться глюкозурия.

    В: Назовите фермент, принимающий участи в синтезе и распаде гликогена. Формулы реакций.

О:

Фермент – ФОСФОГЕКСОМУТАЗА.

21.В: Чем грозит ранее и неумеренное употребление легкоусвояемых углеводов у детей? Почему?

О: Легкоусвояемые углеводы детям можно давать с 5 лет. До этого срока нельзя, т.к. чревато:

а) диатез,

б) кариес,

в) в крови наблюдается гипергликемия – а значит выработка инсулина, что ведет к липогенезу в липоцитах - как следствие ожирение, в печени липогенез – жировая инфильтрация (перерождение) печени,

г) может развиться СД II типа,

д) увеличивается синтез ХС – атеросклероз,

е) увеличенное поступление ХС в печень, выводится с желчью, если его содержание в желчи превышено – осаждение, желчные камни.

    В: Разница в использовании гликогена в мышцах и печени.

23.: Почему блок глюкозо-6-фосфатазы обуславливает стимуляцию синтеза гликогена? Пример патологии.

О: Дефицит глюкозо-6-фосфатазы составляет основу болезни Гирке, или гликогеноза типа 1. Недостаточность этого фермента приводит к невозможности превращения глюкозо-6-фосфата в глюкозу, что сопровождается накоплением гликогена в печени и почках. Болезнь наследуется по аутосомно-рецессивному типу.

Поступление глюкозы в организм с пищей, в принципе, дает возможность поддерживать в крови нормальный уровень глюкозы, однако для этого поступление пищи, содержащей глюкозу, должно быть практически непрерывным. В реальных условиях существования, т. е. при отсутствии непрерывного поступления глюкозы, в здоровом организме последняя депонируется в виде гликогена, который при необходимости используется при его полимеризации.

Первичное нарушение при болезни Гирке происходит на генетическом уровне. Оно состоит в полной или почти полной неспособности клеток продуцировать глюкозо-6-фосфатазу, обеспечивающую отщепление свободной глюкозы от глюкозо-6-фосфата. В результате этого гликогенолиз прерывается на уровне глюкозо-6-фосфата и дальше не идет. Дефосфорилирование с участием глюкозо-6-фосфатазы является ключевой реакцией не только гликогенолиза, но и глюконеогенеза, который, таким образом, при болезни Гирке также прерывается на уровне глюкозо-6-фосфата. Возникновение устойчивой гипогликемии, которая в реальных условиях неизбежна из-за непоступления в кровь глюкозы как конечного продукта гликогенолиза и глюконеогенеза, в свою очередь приводит к постоянной повышенной секреции глюкагона как стимулятора гликогенолиза. Глюкагон, однако, в условиях прерывания этого процесса способен лишь без пользы для организма непрерывно стимулировать его начальные стадии.