Закон сохранения массы в химии. Открытие закона

· Упругость · Пластичность · Закон Гука · Реология · Вязкоупругость

Закон сохранения массы - закон физики , согласно которому масса физической системы сохраняется при всех природных и искусственных процессах.

Ничто не может произойти из ничего, и никак не может то, что есть, уничтожиться.

Ранее Эмпедокла «принцип сохранения» применялся представителями Милетской школы для формулировки теоретических представлений о первовеществе, основе всего сущего.

Позже аналогичный тезис высказывали Демокрит , Аристотель и Эпикур (в пересказе Лукреция Кара). Средневековые учёные также не высказывали никаких сомнений в истинности этого закона. В 1630 году Жан Рэ (Jean Rey, 1583-1645), доктор из Перигора, писал Мерсенну :

Вес настолько тесно привязан к веществу элементов, что, превращаясь из одного в другой, они всегда сохраняют тот же самый вес.

Все встречающиеся в природе изменения происходят так, что если к чему-либо нечто прибавилось, то это отнимается у чего-то другого. Так, сколько материи прибавляется к какому-либо телу, столько же теряется у другого, сколько часов я затрачиваю на сон, столько же отнимаю от бодрствования и т. д.

В дальнейшем, вплоть до создания физики микромира, закон сохранения массы считался истинным и очевидным. Иммануил Кант объявил этот закон постулатом естествознания (1786). Лавуазье в «Начальном учебнике химии» (), приводит точную количественную формулировку закона сохранения массы вещества, однако не объявляет его каким-то новым и важным законом, а просто упоминает мимоходом как о хорошо известном и давно установленном факте. Для химических реакций Лавуазье сформулировал закон так :

Ничто не творится ни в искусственных процессах, ни в природных, и можно выставить положение, что во всякой операции [химической реакции] имеется одинаковое количество материи до и после, что качество и количество начал остались теми же самыми, произошли лишь перемещения, перегруппировки. На этом положении основано всё искусство делать опыты в химии.

Другими словами, сохраняется масса закрытой физической системы , в которой происходит химическая реакция, а сумма масс всех веществ, вступивших в эту реакцию, равна сумме масс всех продуктов реакции (то есть тоже сохраняется). Масса считается аддитивной.

Современное состояние

В XX веке обнаружились два новых свойства массы.

(M1 ) Масса физического объекта зависит от его внутренней энергии (см. Эквивалентность массы и энергии). При поглощении внешней энергии масса растёт, при потере - уменьшается. Отсюда следует, что масса сохраняется только в изолированной системе , то есть при отсутствии обмена энергией с внешней средой. Особенно ощутимо изменение массы при ядерных реакциях . Но даже при химических реакциях, которые сопровождаются выделением (или поглощением) тепла, масса не сохраняется, хотя в этом случае дефект массы ничтожен. Академик Л. Б. Окунь пишет:

Чтобы подчеркнуть, что масса тела меняется всегда, когда меняется его внутренняя энергия, рассмотрим два обыденных примера:
1) при нагревании железного утюга на 200° его масса возрастает на величину ;
2) при полном превращении некоторого количества льда в воду .

(M2 ) Масса не является аддитивной величиной: масса системы не равна сумме масс её составляющих. Примеры неаддитивности:

  • Электрон и позитрон , каждый из которых обладает массой, могут аннигилировать в фотоны , не имеющие массы поодиночке, а обладающие ею только как система.
  • Масса дейтрона , состоящего из одного протона и одного нейтрона , не равна сумме масс своих составляющих, поскольку следует учесть энергию взаимодействия частиц.
  • При термоядерных реакциях, происходящих внутри Солнца, масса водорода не равна массе получившегося из него гелия.
  • Особенно яркий пример: масса протона (≈938 МэВ) в несколько десятков раз больше массы составляющих его кварков (около 11 МэВ).

Таким образом, при физических процессах, которые сопровождаются распадом или синтезом физических структур, не сохраняется сумма масс составляющих (компонентов) системы, но сохраняется общая масса этой (изолированной) системы:

  • Масса системы получившихся при аннигиляции фотонов равна массе системы, состоящей из аннигилирующих электрона и позитрона.
  • Масса системы, состоящей из дейтрона (с учётом энергии связи), равна массе системы, состоящей из одного протона и одного нейтрона отдельно.
  • Масса системы, состоящей из получившегося при термоядерных реакциях гелия, с учётом выделенной энергии, равна массе водорода.

Сказанное означает, что в современной физике закон сохранения массы тесно связан с законом сохранения энергии и выполняется с таким же ограничением - надо учитывать обмен системы энергией с внешней средой.

Более детально

Чтобы более детально пояснить, почему масса в современной физике оказывается неаддитивной (масса системы не равна - вообще говоря - сумме масс компонент), следует вначале заметить, что под термином масса в современной физике понимается лоренц-инвариантная величина :

где - энергия , - импульс , - скорость света . И сразу заметим, что это выражение одинаково легко применимо к точечной бесструктурной («элементарной») частице, так и к любой физической системе, причём в последнем случае энергия и импульс системы вычисляются просто суммированием энергий и импульсов компонент системы (энергия и импульс - аддитивны).

  • Можно попутно заметить также, что вектор импульса-энергии системы - это 4-вектор , то есть его компоненты преобразуются при переходе к другой системе отсчета в соответствии с преобразованиями Лоренца , поскольку так преобразуются его слагаемые - 4-векторы энергии-импульса составляющих систему частиц. А поскольку масса, определённая выше, есть длина этого вектора в Лоренцевой метрике, то она оказывается инвариантной (лоренц-инвариантной), то есть не зависит от системы отччета, в которой ее измеряют или рассчитывают.

Кроме того, заметим, что - универсальная константа, то есть просто число, которое не меняется никогда, поэтому в принципе можно выбрать такую систему единиц измерения, чтобы выполнялось , и тогда упомянутая формула будет менее загромождена:

как и остальные связанные с нею формулы (и мы ниже будем для краткости использовать именно такую систему единиц).

Рассмотрев уже самый парадоксальный на вид случай нарушения аддитивности массы - случай, когда система нескольких (для простоты ограничимся двумя) безмассовых частиц (например фотонов) может иметь ненулевую массу, легко увидеть механизм, порождающий неаддитивность массы.

Пусть есть два фотона 1 b 2 с противоположными импульсами: . Масса каждого фотона, как известно, равна нулю, следовательно можно записать:

то есть энергия каждого фотона равна модулю его импульса. Заметим попутно, что масса равна нулю за счет вычитания под знаком корня ненулевых величин друг из друга.

Рассмотрим теперь систему этих двух фотонов как целое, посчитав ее импульс и энергию. Как видим, импульс этой системы равен нулю (импульсы фотонов, сложившись, уничтожились, так как эти фотоны летят в противоположных направлениях) :

.

Энергия же нашей физической системы будет просто суммой энергий первого и второго фотона:

Ну и отсюда масса системы:

(импульсы уничтожились, а энергии сложились - они не могут быть разного знака).

В общем случае всё происходит аналогично этому, наиболее отчётливому и простому примеру. Вообще говоря, частицы, образующие систему, не обязательно должны иметь нулевые массы, достаточно, чтобы массы были малы или хотя бы сравнимы с энергиями или импульсами , и эффект будет большим или заметным. Также видно, что точной аддитивности массы нет практически никогда, за исключением лишь достаточно специальных случаев.

Масса и инертность

Отсутствие аддитивности массы, казалось бы, вносит затруднения. Однако они искупаются не только тем, что определённая так (а не иначе, например, не как энергия деленная на квадрат скорости света) масса оказывается лоренц-инвариантной, удобной и формально красивой величиной, но и имеет физический смысл, точно соответствующий обычному классическому пониманию массы как меры инертности.

А именно для системы отстчета покоя физической системы (то есть той системы отсчета, в которой импульс физической системы ноль) или систем отсчета, в которых система покоя медленно (по сравнению со скоростью света) движется, упомянутое выше определение массы

Полностью соответствует классической ньютоновской массе (входит во второй закон Ньютона).

Это можно конкретно проиллюстрировать, рассмотрев систему, снаружи (для внешних взаимодействий) являющейся обычным твердым телом, а внутри содержащую быстро движущиеся частицы. Например, рассмотрев зеркальный ящик с идеально отражающими стенками, внутри которого - фотоны (электромагнитные волны).

Пусть для простоты и большей четкости эффекта сам ящик (почти) невесом. Тогда, если, как в рассмотренном в параграфе выше примере, суммарный импульс фотонов внутри ящика ноль, то ящик будет в целом неподвижен. При этом он должен под действием внешних сил (например если мы станем его толкать), вести себя как тело с массой, равной суммарной энергии фотонов внутри, деленной на .

Рассмотрим это качественно. Пусть мы толкаем ящик, и он приобрел из-за этого некоторую скорость вправо. Будем для простоты сейчас говорить только об электромагнитных волнах, бегущих строго вправо и влево. Электромагнитная волна, отражающаяся от левой стенки, повысит свою частоту (вследствие эффекта Допплера) и энергию. Волна, отражающаяся от правой стенки, напротив, уменьшит при отражении свои частоту и энергию, однако суммарная энергия увеличится, так как полной компенсации не будет. В итоге тело приобретет кинетическую энергию , равную (если ), что означает, что ящик ведет себя как классическое тело массы . Тот же результат можно (и даже легче) получить для отражения (отскока) от стенок быстрых релятивистских дискретных частиц (для нерелятивистских тоже, но в этом случае масса просто окажется суммой масс частиц, находящихся в ящике).

Примечания

Литература

  • Джеммер М. Понятие массы в классической и современной физике . - М.: Прогресс, 1967. (Переиздание: Едиториал УРСС, 2003, ISBN 5-354-00363-6)
  • Окунь Л. Б. Понятие массы (Масса, энергия, относительность). Успехи физических наук, № 158 (1989).
  • Спасский Б. И. История физики . - М .: Высшая школа, 1977.
    • Том 1: часть 1-я часть 2-я
    • Том 2: часть 1-я часть 2-я

Wikimedia Foundation . 2010 .

Смотреть что такое "Закон сохранения массы" в других словарях:

    Фундаментальный закон нерелятивистской ньютоновской механики, согласно которому масса вещества, поступающего в замкнутую систему, либо накапливается в ней, либо покидает ее, т. е. масса поступающего в систему вещества минус масса выходящего из… … Экологический словарь

    ЗАКОН СОХРАНЕНИЯ МАССЫ - важнейший закон химии, установленный в 1748 г. М. В. Ломоносовым, а позже и А. Л. Лавуазье. В соответствии с этим законом общая масса всех веществ, участвующих в хим. реакции, в ее начале равна их массе в конце, какие бы реакции ни происходили.… … Большая политехническая энциклопедия

Продукты любой химической реакции состоят из тех же самых атомов, из которых состояли исходные вещества. При химических реакциях атомы сохраняются, значит должна сохраняться и масса всех атомов. В таком случае продукты любой химической реакции должны иметь такую же массу, как и исходные вещества.

После проведения некоторых опытов, может показаться, что утверждение о массе веществ неверно. Например, при прокаливании металлы превращаются в хрупкие окалины, масса которых всегда больше массы металлов до опыта. Но почему? Может быть, какие-либо частицы из воздуха присоединяются к металлу? М.В.Ломоносов нашёл ответ на этот вопрос: он прокаливал металлы в закрытых сосудах. Металл превращался в окалину, и масса сосуда с окалиной оставалась такой же, как и масса сосуда с металлом. Получается, масса, которая содержится в сосуде воздуха, уменьшилась на столько, на сколько увеличилась масса металла.

Масса веществ, вступивших в химическую реакцию, всегда равна массе образовавшихся веществ.

Этот один из основных законов химии называется законом сохранения массы вещества. Впервые этот закон был сформулирован М.В. Ломоносовым так:

«Все перемены, в натуре случающиеся, такого суть состояния, что, сколько чего у одного тела отнимется, столько присовокупится к другому, так ежели где убудет несколько материи, то умножится в другом месте».

Из закона сохранения массы вещества следует, что вещества не могут возникать из ниоткуда и из ничего или превращаться в ничто. Даже, если нам кажется, что при химической реакции получается лишнее количество вещества или же масса вещества после химической реакции стала меньше, то это значит, что мы не учли всех участвующих в реакции или получающихся веществ.

Например, когда горит древесина нам кажется, что вещества, из которых она образована исчезают без следа. Но при тщательном изучении реакции можно увидеть, что это не так: масса веществ, затраченных при сгорании древесины (древесина + кислород), равна массе воды, золы и углекислого газа, которые получились при горении.

Пользуясь законом сохранения массы можно вычислить массу или одного вступившего в реакцию вещества или одного из полученных веществ, если известны массы всех остальных. Так, если необходимо узнать массу кислорода, получившегося при разложении определённого количества оксида ртути, то для этого нам не нужно собирать кислород для взвешивания. Достаточно определить массу участвующего в реакции оксида ртути и массу ртути, которая выделилась в результате реакции. Согласно закону сохранения массы сумма масс ртути и кислорода равняется массе разложившегося оксида ртути. Следовательно, вычитая из массы оксида ртути массу полученной ртути, мы получим массу выделившегося кислорода.

Например, решим такую задачу: мы взяли 2,56 г. оксида ртути, а после реакции получили 1,95 г. ртути. Какова масса образовавшегося в результате реакции кислорода?

Оксид ртути = ртуть + кислород

2, 56 = 1,95 + х

х = 2,56 – 1,95

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Химия - это наука о веществах, их устройстве, свойствах и их преобразовании, получающемся в итоге химических реакций, в фундаменте которых заложены химические законы. Вся общая химия держится на 4-х основных законах, многие из которых открыли русские ученые. Но в данной статье речь пойдет о законе сохранения массы веществ, который входит в основные законы химии.

Закон сохранения массы вещества рассмотрим подробно. В статье будет описана история открытия закона, его сущность и составляющие.

Закон сохранения массы вещества (химия): формулировка

Масса веществ, вступающих в химическую реакцию, равна массе веществ, образующихся в результате нее.

Но вернёмся к истории. Ещё более 20 веков назад древнегреческий философ Демокрит предположил, что вся материя представляет собой незримые частицы. И лишь в XVII веке химик английского происхождения выдвинул теорию: вся материя построена из мельчайших частиц вещества. Бойль проводил опыты с металлом, нагревая его на огне. Он взвешивал сосуды до нагревания и после и заметил, что вес увеличивался. Сожжение же древесины давало противоположный эффект - зола весила меньше древесины.

Новая история

Закон сохранения массы веществ (химия) предоставлен учёному объединению в 1748 г. М.В. Ломоносовым, а в 1756 г. засвидетельствован экспериментным путём. Русский учёный привёл доказательства. Если нагревать герметично закрытые капсулы с оловом и взвешивать капсулы до нагревания, а потом после, то будет очевиден закон сохранения массы вещества (химия). Формулировка, высказанная учёным Ломоносовым, очень похожа на современную. Русский естествоиспытатель внёс неоспоримый вклад в развитие атомно-молекулярного учения. Он объединял закон сохранения массы веществ (химия) с законом сохранения энергии. Нынешнее учение подтвердило эти убеждения. И только через тридцать лет, в 1789 году, естествоиспытатель Лавуазье из Франции подтвердил теорию Ломоносова. Но это было только предположение. Законом оно стало в ХХ веке (начало), спустя 10 лет исследований немецким учёным Г. Ландольтом.

Примеры опытов

Рассмотрим опыты, которые могут подтвердить закон сохранения массы веществ (химия). Примеры:

  1. В сосуд помещаем красный фосфор, прикрываем плотно пробкой и взвешиваем. Нагреваем на медленном огне. Образование белого дыма (оксид фосфора) говорит о том, что произошла химическая реакция. Взвешиваем повторно и убеждаемся, что вес сосуда с полученным веществом не изменился. Уравнение реакции: 4Р+3О2 =2Р2О3.
  2. Берём два сосуда Ландольта. В один из них аккуратно, чтобы не смешать, заливаем реагенты нитрата свинца и йодида калия. В другой сосуд помещаем и хлорид железа. Сосуды плотно закрываем. Чашки весов должны быть уравновешены. Смешиваем содержимое каждого сосуда. В одном образуется жёлтый осадок - это йодид свинца, в другом получается роданид железа тёмно-красного цвета. При образовании новых веществ весы сохранили равновесие.
  3. Зажжём свечку и поставим её в ёмкость. Герметически закрываем эту ёмкость. Приводим весы в равновесие. Когда в ёмкости закончится воздух, свечка погаснет, реакции закончится. Весы будут уравновешены, поэтому вес реагентов и вес образовавшихся веществ одинаковы.
  4. Проведём ещё один опыт и рассмотрим на примере закон сохранения массы веществ (химия). Формула хлористого кальция - CaCl2, а сульфатной кислоты - H2SO4. При взаимодействии этих веществ образуется белый осадок - сульфат кальция (CaSO4), и соляная кислота (HCl). Для опыта нам потребуются весы и сосуд Ландольта. Очень аккуратно наливаем в сосуд хлористый кальций и сульфатную кислоту, не перемешивая их, плотно закрываем пробкой. Взвешиваем на весах. Затем смешиваем реагенты и наблюдаем, что выпадает белый осадок (сульфат кальция). Это показывает, что произошла химическая реакция. Опять взвешиваем сосуд. Вес остался прежним. Уравнение этой реакции будет выглядеть так: CaCl2 + H2SO4 =CaSO4 + 2HCl.

Основное

Главная цель химической реакции в том, чтобы разрушить молекулы в одних субстанциях и образовать впоследствии новые молекулы вещества. В этом случае количество атомов каждого вещества до взаимодействия и после остаётся неизменным. Когда образуются новые вещества, выделяется энергия, а когда они распадаются с её поглощением, то присутствует энергетический эффект, проявляющийся в виде поглощения или выделения теплоты. Во время химической реакции молекулы исходных веществ - реагенты, распадаются на атомы, из которых затем получаются продукты химической реакции. Сами же атомы остаются без изменений.

Реакция может длиться веками, а может происходить стремительно. При изготовлении химической продукции нужно знать скорость протекания той или иной химической реакции, с поглощением или выделением температуры она проходит, какое нужно давление, количество реагентов и катализаторов. Катализаторы - небольшая по весу субстанция, не участвующая в химической реакции, но значительно влияющая на её скорость.

Как составлять химические уравнения

Зная закон сохранения массы веществ (химия), можно понять, как правильно составлять химические уравнения.

  1. Требуется знать формулы реагентов, вступающих в химическую реакцию, и формулы продуктов, которые получились в её результате.
  2. Слева пишутся формулы реагентов, между которыми ставится знак «+», а справа - формулы получившихся продуктов со знаком «+» между ними. Между формулами реагентов и получившихся продуктов ставится знак «=» или стрелка.
  3. Количество атомов всех компонентов реагентов должно равняться количеству атомов продуктов. Поэтому высчитываются коэффициенты, которые ставятся перед формулами.
  4. Запрещается перемещать формулы из левой части уравнения в правую или менять их местами.

Значение закона

Закон сохранения массы веществ (химия) дал возможность интереснейшему предмету развиваться как науке. Узнаем, почему.

  • Большое значение закона сохранения массы веществ в химии в том, что на его основании делают химические расчёты для промышленности. Предположим, нужно получить 9 кг сульфида меди. Мы знаем, что реакция меди и серы происходит в массовых соотношениях 2:1. По данному закону, при химической реакции меди массой 1 кг и серы массой 2 кг получается сульфид меди массой 3 кг. Так как нам нужно получить сульфид меди массой 9 кг, то есть в 3 раза больше, то и реагентов потребуется в 3 раза больше. То есть 6 кг меди и 3 кг серы.
  • Возможность составлять правильные химические уравнения.

Заключение

После прочтения данной статьи не должно остаться вопросов по сущности данного закона истории ее открытия, к которой, кстати, причастен наш известный соотечественник, ученый М.В. Ломоносов. Что опять подтверждает то, насколько велика сила отчественной науки. Также стало понятно значение открытия данного закона и его смысл. А те, кто не понимал, в школе, после прочтения статьи должны научиться или же вспомнить, как это делать.

ХИМИЯ

Методические указания к практическим занятиям

и для самостоятельной подготовки студентов всех

специальностей дневной и заочной форм обучения

Строение атома и химическая связь

учебно-методическим управлением

ГУ ВПО «Белорусско-Российский университет»

Одобрено кафедрой «Технологии металлов» « » мая 2011 г., протокол №

Составители: канд. хим. наук, доцент И. М. Лужанская

канд. биол. наук, ст. преподаватель И. А. Лисовая

Рецензент ст. преподаватель В.Ф. Пацей

В методических указаниях рассмотрены современные представления о строении атома, структура периодической системы элементов, дается объяснение свойств химических элементов в зависимости от их положения в периодической системе. Представлены основные виды химической связи и механизмы их образования. Даны примеры составления электронных конфигураций атомов и схемы образования химических соединенийэ.

Ответственный за выпуск Д. И. Якубович

Технический редактор А. Т. Червинская

Компьютерная верстка Н. П. Полевничая

Подписано в печать. Формат 60x84/16. Бумага офсетная. Гарнитура Таймс.

Печать трафаретная. Усл.- печ. л. . Уч.-изд. л. . Тираж 180 экз. Заказ №

Издатель и полиграфическое исполнение

Государственное учреждение высшего профессионального образования

«Белорусско-Российский университет»

ЛИ № 02330/375 от 29.06.2004 г.

212000, г. Могилев, пр. Мира, 43

© ГУ ВПО «Белорусско-Российский

университет», 2011


1 Основные понятия химии

Химия - одна из важнейших и обширных областей естествознания, наука о веществах, их свойствах, строении и превращениях, происходящих в результате химических реакций, а также фундаментальных законах, которым эти превращения подчиняются.

Вещество - вид материи, которая обладает массой покоя. Состоит из элементарных частиц: электронов, протонов, нейтронов, мезонов и др. Химия изучает главным образом вещество, организованное в атомы, молекулы, ионы и радикалы. Такие вещества принято подразделять на простые и сложные (химические соединения).

1.1 Простые и сложные вещества. Аллотропия

Простые вещества образованы атомами одного химического элемента и поэтому являются формой его существования в свободном состоянии, например, сера, железо, озон, алмаз, азот.

Сложные вещества образованы разными элементами и могут иметь состав постоянный (стехиометрические соединения или дальтониды) или меняющийся в некоторых пределах (нестехиометрические соединения или бертоллиды).

Химический элемент - множество атомов с одинаковым зарядом ядра, числом протонов, совпадающим с порядковым номером в Периодической системе элементов Менделеева. Каждый химический элемент имеет свое название и символ.

Атом - наименьшая химически неделимая часть химического элемента, являющаяся носителем его свойств.

Понятие простое вещество нельзя отождествлять с понятием химический элемент . Свойства химического элемента относятся к его отдельным атомам. Свойства простого вещества: плотность, растворимость, температуры плавления и кипения относятся к совокупности атомов. Один и тот же химический элемент может существовать в виде двух и более простых веществ, различных по строению и свойствам. Это явление называется аллотропией , а образующие вещества - аллотропными модификациями или аллотропными формами.

Химический элемент кислород образует две аллотропные модификации: кислород и озон, элемент углерод образует четыре аллотропные модификации: алмаз, графит, карбин, фуллерен.

Явление аллотропии вызывается двумя причинами: различным числом атомов в молекуле (например, кислород О 2 и озон О 3 ) либо образованием различных кристаллических форм (например, углерод образует аллотропные модификации, такие как алмаз, графит, карбин, фуллерен).

В структуре алмаза каждый атом углерода расположен в центре тетраэдра, вершинами которого служат четыре ближайших атома.

В кристаллической структуре графита атомы углерода формируют шестиугольные кольца, образующие, в свою очередь, прочную и стабильную сетку, похожую на пчелиные соты. Сетки располагаются друг над другом слоями, которые слабо связаны между собой.

В молекуле карбина атомы углерода соединены в цепочки либо тройными и одинарными связями, либо двойными связями.

В фуллерене плоская сетка шестиугольников свернута и сшита в замкнутую сферу. Атомы углерода, образующие сферу, связаны между собой сильной связью.

Сложные вещества состоят не из простых веществ, а из химических элементов. Так, водород и кислород, входящие в состав воды, содержатся в воде не в виде газообразных водорода и кислорода с их характерными свойствами, а в виде элементов водорода и кислорода.

Вещества подразделяются на вещества молекулярного и немолекулярного строения.

Вещества молекулярного строения – это вещества, основной структурной единицей которых является молекула.

Вещества немолекулярного строения – это вещества, основными структурными единицами которых являются атомы или ионы.

Для отображения качественного и количественного состава вещества используется формульная единица.

Формульная единица (ФЕ ) – реальная или условная частица, обозначаемая химической формулой.

Химическая формула – условная запись состава вещества при помощи химических символов и индексов.

Формульной единицей вещества молекулярного строения является молекула.

Молекула – электронейтральная частица вещества, представляющая собой замкнутую совокупность конечного числа атомов, связанных между собой силами ковалентной связи и образующих определенную структуру.

Формульной единицей простого вещества немолекулярного строения является атом. Например, формульная единица кремния атом Si.

Формульной единицей сложного вещества немолекулярного строения является «условная молекула». Например, формульной единицей оксида кремния является условная частица, состоящая из одного атома кремния (Si) и двух атомов кислорода (О). Она является условной потому, что в кристалле оксида кремния(IV) нет отдельных молекул SiO 2 , он состоит из множества атомов кремния и кислорода. Но весь кристалл можно условно разделить на группы, в каждой из которых будет один атом Si и два атома О. Таким образом, формульная единица оксида кремния (IV) –условная, реально не существующая частица – SiO 2 .

Если вещество немолекулярного строения образует ионную кристаллическую решетку, например хлорид натрия. Его формульной единицей будет условная частица, состоящая из одного иона Na + и одного иона Cl - . Она является условной потому, что в кристалле хлорида натрия нет молекул NaCl, так как он состоит из ионов. Но весь этот кристалл можно разделить на группы ионов, в каждой из которых будет один ион Na + и один ион Cl - . Следовательно, формульной единицей хлорида натрия является условная частица, состоящая из двух ионов – NaCl.

1.2 Относительная атомная масса

Современные методы исследования позволяют определить чрезвычайно малые массы атомов с большой точностью. Так, например, масса атома водорода составляет 1,674 × 10 -27 кг, углерода – 1,993 × 10 -26 кг.

В химии традиционно используются не абсолютные значения атомных масс, а относительные. Относительными они называются потому, что вычисляются по отношению к массе эталона. В настоящее время в качестве эталона выбрана 1/12 часть абсолютной массы атома изотопа углерода 12 С - атомная единица массы (сокращенно а.е.м.).

а.е.м. = m a (12 C)/12 = 19.9272 · 10 -27 кг/12 = 1,66· 10 -27 кг = 1,66 ·10 -24 г

Относительная атомная масса – безразмерная величина, равная отношению абсолютной массы данного атома к 1/12 части массы изотопа углерода 12 С.

Химические элементы в природе представляют собой смесь изотопов с различной массовой долей. Исходя из этого, под абсолютной массой атома химического элемента подразумевается средняя величина.

Средняя абсолютная масса атома элемента – масса атома элемента, выраженная в кг, вычисленная с учетом его изотопного состава.

Относительная атомная масса элемента (или просто атомная масса) – безразмерная величина, равная отношению средней абсолютной массы атома элемента к 1/12 части массы изотопа 12 С.

Атомные массы элементов обозначают А r , где индекс r – начальная буква английского слова relative – относительный. Записи A r (H), A r (O), A r (C) – это относительная атомная масса водорода, относительная атомная масса кислорода, относительная атомная масса углерода соответственно.

1.3 Относительная молекулярная масса

Относительной молекулярной массой вещества (Мr) называется величина, равная отношению массы молекулы вещества к 1/12 массы атома углерода 12 С .

Молекулярная масса численно равна сумме относительных атомных масс всех атомов, входящих в состав молекулы вещества.

Относительная молекулярная масса показывает, во сколько раз масса молекулы данного вещества больше 1/12 массы атома 12 С . Так, молекулярная масса кислорода M r (O 2 ) равна 32. Это означает, что масса молекулы кислорода в 32раза больше, чем 1/12 массы атома 12 C.

К сложным веществам немолекулярного строения нельзя применить понятие «относительная молекулярная масса». Поскольку структурными единицами таких веществ являются не молекулы, а условные формульные единицы, к ним применим термин «относительная формульная масса»(Мfr).

Относительная формульная масса – величина, равная отношению массы одной формульной единицы вещества к 1/12 части массы изотопа 12 С.

1.4 Моль. Молярная масса

В химических процессах участвуют мельчайшие частицы – молекулы, атомы, ионы, электроны. Число таких частиц даже в малой порции вещества очень велико. Поэтому, чтобы избежать математических операций с большими числами, для характеристики количества вещества, участвующего в химической реакции, используется специальная единица – моль.

Моль – количество вещества, содержащее в своем составе столько атомов, молекул, ионов, электронов или других структурных единиц, сколько атомов содержится в 0,012 кг углерода 12 С .

Число атомов в 0,012 кг углерода, или в 1 моль называется числом Авогадро (N A) и составляет 6,02 · 10 23 .

Исходя из этого, можно сказать, что моль – это количество вещества, которое содержит 6,02 × 10 23 структурных единиц (молекул, атомов, ионов, электронов и др.)

Применяя понятие моль, необходимо в каждом конкретном случае точно указать, какие именно структурные единицы имеются в виду. Например, моль атомов Н, моль молекулы H 2 , моль ионов H + .

Масса одного моля вещества называется молярной массой вещества (M) .

Масса вещества (m) численно равна произведению его количества (n) на молярную массу:

Поскольку в одном моле любого вещества содержится одинаковое количество структурных единиц, то молярная масса вещества пропорциональна массе соответствующей структурной единицы, т. е. относительной молекулярной массе (М r):

К = 1, т. к. для углерода М r = 12 а.е.м., а молярная масса равна 12 (по определению понятия моля), следовательно, численные значения

М (г/моль) = М r .

Отсюда следует, что молярная масса вещества, выраженная в граммах, имеет то же численное значение, что и его относительная молекулярная масса.

1.5 Эквивалент. Фактор эквивалентности. Молярная масса эквивалента

Эквивалент(Э) – реальная или условная частица вещества, которая может замещать, присоединять или быть каким-либо другим способом эквивалентна (то есть равноценна) одному атому или иону водорода в обменных реакциях или одному электрону в окислительно-восстановительных реакциях.

Частица вещества, называемая эквивалентом, может быть равна или в целое число раз меньше формульной единицы, соответствующей данному веществу.

И так же, как состав молекул, атомов или ионов, состав эквивалента выражается с помощью химических знаков и формул.

Для того чтобы определить состав эквивалента вещества и правильно записать его химическую формулу, надо исходить из конкретной реакции, в которой участвует данное вещество.

Приведены несколько примеров определения формулы эквивалента.

В обменной реакции

KOH + HCl = KCl + H 2 O; (1)

K + + OH – + H + + Cl – = K + + Cl – + H 2 O;

H + + OH – = H 2 O

с одним ионом водорода реагирует один ион гидроксила.

Согласно определению эквивалента, Э(ОН –) = ОН – , а эквивалент гидроксида калия будет соответственно равен формульной единице КОН :

Э(КОН) = КОН.

В обменной реакции

Ca(OH) 2 + 2HCl = CaCl 2 + 2H 2 O (2)

Ca 2+ + 2OH – + 2H + + 2Cl – = Ca 2+ + 2Cl – = 2H 2 O

один ион водорода эквивалентен 1/2 иона , одному иону OH – и одному иону Cl – .

Следовательно, Э(Cl –) = Cl – ; Э(Са 2+) = 1/2Са 2+ ; Э(ОН –) = ОН – .

Вместе с тем, согласно молекулярному уравнению, с одной молекулой гидроксида кальция взаимодействует две молекулы соляной кислоты, то есть два иона водорода. Следовательно, один ион водорода потребуется на взаимодействие с 1/2 Са(ОН) 2 . Тогда по определению эквивалентом гидроксида кальция является частица, равная формульной единицы, то есть ½ Са(ОН) 2 . .

В реакции восстановления катиона цинка

Zn 2+ + 2e = Zn 0 (3)

с одним ионом цинка взаимодействуют два электрона, следовательно, одному электрону эквивалентна 1/2 иона Zn 2+ и Э(Zn 2+) = 1/2Zn 2+ .

В реакции

Fe 3+ + e = Fe 2+ (4)

ион Fe 3+ реагирует с одним электроном, и, соответственно,

В реакции

Fe 3+ + 3e = Fe 0 (5)

ион Fe присоединяет три электрона, следовательно, Э(Fe 3+) = 1/3Fe 3+ .

Число, показывающее, какая часть формульной единицы вещества соответствует эквиваленту, называется фактором эквивалентности (f э).

По реакции (1): f э (OH ) = 1; f э (КOH) = 1.

По реакции (2) : f э (OH ) = 1; f э((Cа 2+) = 1/2; f э (Cа(ОН) 2) = 1/2.

По реакции (3) f э (Zn 2+) = 1/2.

По реакции (4) f э (Fe ) = 1.

По реакции (5) f э (Fe ) = 1/3.

Таким образом, сочетая фактор эквивалентности и формульную единицу вещества, можно составить формулу эквивалента какой-либо частицы, где фактор эквивалентности записывается как коэффициент перед формулой частицы:

f э (формульная единица вещества) = эквивалент.

Следует учитывать,что эквивалент одного и того же вещества меняется в зависимости от того, в какую реакцию он вступает. Эквивалент элемента также может быть различным в зависимости от вида соединения, в состав которого он входит.

Фактор эквивалентности химического элемента .

где B – валентность элемента в данном соединении.

Например, в H 2 S – f э (S) = 1/2, Э(S) = 1/2; в NH - f э (N) = 1/3,

Э(N) = 1/3N; в AlCl - f э (Al) = 1/3, Э(Al) = 1/3Al, f э (Cl) = 1, Э(Cl) = Cl.

Фактор эквивалентности кислоты зависит от ее основности, которая определяется числом ионов водорода, замещающихся в реакции на атомы металла (n(H +)):

Если кислота многоосновная, то f э может принимать различные значения. Например, в реакции

H 2 SO 4 + KOH = KHSO 4 + H 2 O (6)

Серная кислота обменивает на металл один атом водорода, f э (Н 2 SO 4) = 1, Э(H 2 SO 4) = H 2 SO 4 .

В реакции

H 2 SO 4 + 2KOH = K 2 SO 4 +2H 2 O (7)

серная кислота обменивает на металл два атома водорода, т. е. ведет себя как двухосновная кислота, поэтому f э (H 2 SO 4) = 1/2, Э(H 2 SO 4) = 1/2 H 2 SO 4 .

Фактор эквивалентности основания зависит от кислотности основания, которая определяется числом гидроксильных групп, обменивающихся в реакции на кислотный остаток (n(OH -):

Для многокислотных оснований f э – величина переменная и зависит от условий проведения реакции. Например, в реакции

Al(OH) 3 + 2HCl = Al(OH) 2 Cl + 2H 2 O (8)

гидроксид алюминия обменивает одну гидроксильную группу на кислотный остаток, поэтому f э (Al(OH) 3) = 1, Э(Al(OH) 3) = Al(OH) 3 .

В реакции

Al(OH) 3 + 2HCl = Al(OH)Cl 2 + 2H 2 O (9)

гидроксид алюминия обменивает две гидроксильные группы на кислотный остаток, поэтому fэ(Al(OH) 3) = 1/2, Э(Al(OH) 3) = 1/2Al(OH) 3.

В реакции

Al(OH) 3 + 3HCl = AlCl 3 + 3H 2 O (10)

гидроксид алюминия обменивает три гидроксильные группы на кислотный остаток, поэтому f э (Al(OH) 3) = 1/3, Э(Al(OH) 3) = 1/3Al(OH) 3 .

Фактор эквивалентности средней соли определяется формулой

где В – валентность метала,

n – число атомов металла.

Например, f э (Na 2 SO 4) = 1/(1·2) = 1/2; f э (Fe 2 SO 4) 3) = 1/(2·3) =1/6.

Фактор эквивалентности кислых и основных солей определяется исходя из уравнения реакции с учетом того, что вещества взаимодействуют друг с другом в эквивалентных количествах.

B реакции

NaHSO 4 +NaOH = Na 2 SO 4 + H 2 O (11)

одна молекула гидросульфата натрия взаимодействует с одним эквивалентом NaOH, следовательно, f э (NaHSO 4) = 1, Э(NaHSO 4) = NaHSO 4 .

В реакции

NaHSO 4 + BaCl 2 = BaSO 4 + NaCl + HCl(12)

одна молекула гидросульфата натрия взаимодействует с двумя эквивалентами хлорида бария, т.к. f э (ВаCl 2) = 1/2 и Э(BaCl 2) = 1/2BaCl 2 , следовательно, fэ(NaHSO 4 ) также равен 1/2 и Э(NaHSO 4) = 1/2NaHSO 4.

В реакции

Al(OH)Cl 2 + HCl = AlCl 3 + H 2 O (13)

одна молекула дихлорида гидроксоалюминия взаимодействует с одним эквивалентом HCl, поэтому fэ(Al(OH)Cl 2) = 1, Э(Al(OH)Cl 2) = Al(OH)Cl 2 .

В реакции

Al(OH)Cl 2 + 2NaOH= Al(OH) 3 + 2NaCl (14)

одна молекула дихлорида гидроксоалюминия взаимодействует с двумя эквивалентами NaОН (f э (NaOH) = 1), следовательно, f э (AlOHCl 2) = 1/2, Э(AlOHCl 2) = 1/2 AlOHCl 2 .

В реакции

Al(OH)Cl 2 + Na 3 PO 4 = AlPO 4 + 2NaCl= Na(OH) (15)

одна молекула дихлорида гидроксоалюминия взаимодействует с тремя эквивалентами Na 3 PO 4 (fэ(Na 3 PO 4) = 1/3), поэтому fэ(AlOHCl 2) = 1/3, Э(AlOHCl 2) = 1/3AlOHCl 2 .

Фактор эквивалентности оксидов, проявляющих основные свойства , определяется по формуле

где В – валентность металла,

n – число атомов металла в оксиде.

Например: CaO f э (СaO) = 1/2, Э(CaO) = 1/2 CaO;

Na 2 O f э (Na 2 O) = 1/2, Э(Na 2 O) = 1/2Na 2 O;

Al 2 O 3 f э (Al 2 O 3) = 1/6, Э(Al 2 O 3) = 1/6 Al 2 O 3.

Фактор эквивалентности оксидов , проявляющих кислотные свойства , определяется исходя из уравнения реакции.

В реакции

SO 3 + 2NaOH= Na 2 SO 4 + H 2 O(16) одна молекула оксида серы (VI) взаимодействует с двумя эквивалентами гидроксида натрия (f э (NaOH) = 1) , cледовательно, f э (SO 3) = 1/2, Э(SO 3) = 1/2SO 3 .

В реакции

Al 2 O 3 + 2NaOH = 2NaAlO 2 + H 2 O (17)

одна молекула оксида алюминия взаимодействует с двумя эквивалентами гидроксида натрия, поэтому f э (Al 2 O 3) равен 1/2, Э(Al 2 O 3) = 1/2 Al 2 O 3 .

Таким образом, на основании всех вышеприведенных примеров можно сделать вывод, что фактор эквивалентности любого вещества равен единице, деленной на число образующихся либо перестраивающихся связей.

Для эквивалента справедливы все понятия, характеризующие структурные единицы вещества, в том числе количество вещества и молярная масса вещества.

Количество вещества эквивалентов измеряется в молях.

Моль эквивалентов – это количество вещества, которое соединяется с 1 молем атомов водорода или 1/2 моля атомов кислорода или замещает те же количества водорода в их соединениях. Например, в соединениях HCl,H 2 S, NH 3 , CH 4 моль эквивалентов хлора, серы, азота, углерода равен соответственно 1 моль Cl, 1/2 моля S, 1/3 моля N, 1/4 моля углерода.

Молярная масса эквивалента (М э) – это масса одного моля эквивалентов.

Для нахождения молярной массы эквивалентов химического элемента нужно молярную массу данного элемента умножить на фактор эквивалентности:

Например, в соединениях:

HCl M э (Cl) = f э (Cl) · M(Cl) = 1· 35.5 г/моль;

NH 3 M э (N) = f э (N) · M(N) = 1/3· 14 = 4.67 г/моль;

H 2 S М э (S) = f э S) · Ms = 1/2 · 32 = 16 г/моль;

CH 4 М э (C) = fэ · Mc = 1/4 · 12 = 3 г/моль.

Для кислот, оснований, средних солей и оксидов, проявляющих основные свойства, молярная масса эквивалентов может быть рассчитана как сумма молярных масс эквивалентов, составляющих данное соединение ионов или элементов, если речь идет об оксидах.

Например, в реакции (6) Мэ(H 2 SO 4) равна:

М э (Н +) + М э (HSO 4 –) = f э (H +)· M(H +) + f э (HSO 4 –) · M(HSO 4 –) = 98 г/моль.

В реакции (7) Мэ(H 2 SO 4) равна:

М э (Н +) + М э (SO 4 2–) = f э (H +) · M(H +) + f э (SO 4 2–) · M(SO 4 2–) = 49 г/моль

В реакции (8) М э (Al(OH) 3 ) равна:

М э (Al(OH) 2 +) + M э (OH –) = f э (Al(OH) 2 +) · M(Al(OH) 2 +) + f э (OH –) · M э (OH –) = 78 г/моль

В реакции (9) М э (Al(OH) 3) равна:

М э (AlOH 2+) + M э (OH –) = f э (Al(OH) 2+) · M(AlOH 2+) + f э (OH –) · M э (OH –) = 39г/моль

В реакции (10) М э (Al(OH) 3)равна:

М э (Al 3+) + M э (OH –) = f э (Al 3+) · M(Al) + f э (OH –) · M(OH –) = 26 г/моль

М э (Al 2 (SO 4) 3) = f э (Al 3+) · M(Al) +f э (SO 4 2-) · M(SO 4 2-) = 57 г/моль

Основные законы химии

Раздел химии, рассматривающий массовые и объемные отношения между реагирующими веществами, называется стехиометрией. Основу стехиометрии составляют стехиометрические законы: сохранения массы веществ, постоянства состава, эквивалентов, кратных отношений, объемных отношений, Авогадро. К рассмотрению предложены некоторые из них.

Закон сохранения массы вещества

Закон сохранения массы вещества был сформулирован великим русским ученым Михаилом Васильевичем Ломоносовым в 1748 г. и подтвержден экспериментально им самим в 1756 г. и независимо от него французским химиком А. Л. Лавуазье в 1789 г.

В настоящее время он формулируется так: масса веществ, вступающих в химическую реакцию, равна массе веществ, образующихся в результате реакции.

С точки зрения атомно-молекулярного учения суть закона сохранения массы веществ заключается в том, что в химических реакциях атомы не исчезают и не возникают из ничего, их число остается неизменным до и после реакции. Поэтому атомы имеют постоянную массу и их число в результате реакции не изменяется, а происходит только перегруппировка атомов, то масса веществ до и после реакции остается постоянной.

Закон сохранения массы является частным случаем общего закона природы закона сохранения энергии, который утверждает, что энергия изолированной системы постоянна. Энергия - это мера движения и взаимодействия различных видов материи. При любых процессах в изолированной системе энергия не производится и не уничтожается, она может только переходить из одной формы в другую.

Одной из форм энергии является так называемая энергия покоя, которая связана с массой уравнением Эйнштейна:

Е = m · C 2

где E - энергия тела,

m -масса тела,

c - скорость света в вакууме, равная 299 792 458 м/с.

Это соотношение выражает эквивалентность массы и энергии. Эквивалентность массы и энергии - физическая концепция, согласно которой масса тела является мерой энергии, заключённой в нём. Самое важное состоит в том, что формула Эйнштейна раскрывает возможность взаимных превращений энергии и массы или, иначе говоря, возможность превращений энергии покоя в другие виды энергии. Следовательно, масса и энергия сохраняются не по отдельности, а вместе, что дает основание говорить об объединенном законе сохранения массы и энергии.

В химических реакциях изменением массы, вызванным выделением или поглощением энергии, можно пренебречь. Типичный тепловой эффект химической реакции по порядку величины равен 100 кДж/моль. При этом изменение массы

Таким образом, совершенно правомерно использование закона сохранения массы вещества при составлении химических уравнений и при проведении стехиометрических расчетов.

Закон постоянства состава

Согласно закону постоянства состава каждое химически чистое соединение всегда имеет один и тот же количественный состав независимо от способа его получения. Этот закон появился в результате длительного (1801 1808) спора французских химиков Ж.Пруста, считавшего, что отношения между элементами, образующими соединения, должны быть постоянными, и К.Бертолле, который считал, что состав химических соединений является переменным. В результате тщательной экспериментальной проверки восторжествовала точка зрения Пруста, считавшего состав соединений постоянным. Закон постоянства состава сыграл важную роль в развитии химии и до сих пор сохранил свое значение, однако выяснилось, что не все соединения имеют постоянный состав. В 1912–1913 гг Н. С. Курнаков установил, что существуют соединения переменного состава, которые он предложил назвать бертоллидами.

Согласно современным представлениям, постоянство состава свойственно лишь соединениям с молекулярной структурой.

Таким образом, постоянный и неизменный химический состав наблюдается только для молекул (например, NH 3 , H 2 O, SO 2 и т. п.), а также кристаллов с молекулярной структурой, составляющих от 3 до 5 % от общего числа неорганических твердых тел. Хорошо известными примерами являются твердый йод, кислород, азот, диоксид углерода, благородные газы в твердом состоянии.

В настоящее время установлено, что к соединениям переменного состава относятся не только металлические соединения (металлиды), но и многочисленные оксиды, сульфиды, селениды, теллуриды, нитриды, фосфиды, карбиды, силициды.

Природа отклонений от стехиометрии в соединениях переменного состава состоит в том, что при любых температурах, отличных от абсолютного нуля, в реальном кристалле существуют дефекты структуры. При повышении температуры концентрация этих дефектов возрастает, что приводит к увеличению энтропии (неупорядоченности) системы. Абсолютно упорядоченной структурой обладает так называемый идеальный кристалл, в котором каждый атом занимает предназначенный ему узел в подрешетке. При этом все узлы заняты, а междоузлия вакантны. Такая идеализированная структура обладает полным порядком (энтропия равна нулю) и может быть реализована только при температуре абсолютного нуля. При повышении температуры нарушения идеальной структуры возможны за счет возникновения незанятых узлов в кристаллической решетке, появления атомов в междоузлиях или существования в узлах решетки чужеродных атомов. Возникновение таких дефектов в реальных кристаллах приводит к нестехиометрии. Хорошо изученным соединением переменного состава является сульфид железа FeS. Для природных кристаллов сульфида железа наблюдается недостаток от 10 до 20 % атомов железа против формульного состава.Для оксида титана (II) нарушение стехиометрического состава наблюдается относительно обоих сортов атомов. В TiO в зависимости от условий получения (температура, давление кислорода) атомная доля кислорода может меняться от 0,58 до 1,33. Это значит, что все составы оксида титана (II) от 0,58 до 1,00 будут характеризоваться недостатком атомов кислорода (соответственно избытком атомов титана) против стехиометрии. А составы от 1,00 до 1,33 будут иметь избыток атомов кислорода (или недостаток атомов титана) по сравнению со стехиометрическим составом.

Закон постоянства состава был в свое время сформулирован применительно к молекулам, а потому справедлив для молекулярной формы существования вещества. В настоящее время этот закон формулируется с учетом существования молекулярной и немолекулярной структуры вещества.

Состав молекулярного соединения остается постоянным независимо от способа его получения. В отсутствие молекулярной структуры в данном агрегатном состоянии состав вещества зависит от условий его получения и предыдущей обработки.

Например, аммиак независимо от способов получения (прямой синтез из элементов, разложение аммонийных солей, действие кислот на нитриды активных металлов и т. п.) имеет постоянный состав молекулы: на один атом азота приходится три атома водорода. А для оксида титана (II) состав соединения зависит от условий получения температуры и давления пара кислорода.

2.3 Закон Авогадро

Изучение свойств газов позволило итальянскому физику А. Авогадро в 1811г. высказать гипотезу, которая впоследствии была подтверждена опытными данными, и стала называться законом Авогадро: в равных объемах различных газов при одинаковых условиях (температуре и давлении) содержится одинаковое число молекул.

Из закона Авогадро вытекает важное следствие: моль любого газа при нормальных условиях (0 С (273 К) и давлении 101,3 кПа) занимает объем, равный 22,4 л. В этом объеме содержится 6,02× 10 23 молекул газа (число Авогадро).

Из закона Авогадро также следует, что массы равных объемов различных газов при одинаковых температуре и давлении относятся друг к другу как молярные массы этих газов:

где m 1 и m 2 – массы,

М 1 и М 2 – молекулярные массы первого и второго газов.

Поскольку масса вещества определяется по формуле

где ρ– плотность г аза,

V – объем газа,

то плотности различных газов при одинаковых условиях пропорциональны их молярным массам. На этом следствии из закона Авогадро основан простейший метод определения молярной массы веществ, находящихся в газообразном состоянии.

.

Из этого уравнения можно определить молярную массу газа:

.

Закон объемных отношений

Первые количественные исследования реакций между газами принадлежат французскому ученому Гей-Люссаку, автору известного закона о тепловом расширении газов. Измеряя объемы газов, вступивших в реакцию и образующихся в результате реакций, Гей-Люссак пришел к обобщению, известному под названием закона простых объемных отношений: объемы вступающих в реакцию газов относятся друг к другу и объемам образующихся газообразных продуктов реакции как небольшие целые числа, равные их стехиометрическим коэффициентам .

Например, 2H 2 + O 2 = 2H 2 O при взаимодействии двух объемов водорода и одного объема кислорода образуются два объема водяного пара. Закон справедлив в том случае, когда измерения объемов проведены при одном и том же давлении и одной и той же температуре.

Закон эквивалентов

Введение в химию понятий «эквивалент» и «молярная масса эквивалентов» позволило сформулировать закон, называемый законом эквивалентов: массы (объемы) реагирующих друг с другом веществ пропорциональны молярным массам (объемам) их эквивалентов .

Следует остановиться на понятии объема моля эквивалентов газа. Как следует из закона Авогадро, моль любого газа при нормальных условиях занимает объем, равный 22,4 л. Соответственно, для вычисления объема моля эквивалентов газа необходимо знать число моль эквивалентов в одном моле. Так как один моль водорода содержит 2 моля эквивалентов водорода, то 1 моль эквивалентов водорода занимает при нормальных условиях объем:

Решение типовых задач


Похожая информация.


Закон сохранения массы.

Масса веществ, вступающих в химическую реакцию, равна массе веществ, образующихся в результате реакции.

Закон сохранения массы является частным случаем общего закона природы – закона сохранения материи и энергии. На основании этого закона химические реакции можно отобразить с помощью химических уравнений, используя химические формулы веществ и стехиометрические коэффициенты, отражающие относительные количества (число молей) участвующих в реакции веществ.

Например, реакция горения метана записывается следующим образом:

Закон сохранения массы веществ

(М.В.Ломоносов, 1748 г.; А.Лавуазье, 1789 г.)

Масса всех веществ, вступивших в химическую реакцию, равна массе всех продуктов реакции.

Атомно-молекулярное учение этот закон объясняет следующим образом: в результате химических реакций атомы не исчезают и не возникают, а происходит их перегруппировка (т.е. химическое превращение- это процесс разрыва одних связей между атомами и образование других, в результате чего из молекул исходных веществ получаются молекулы продуктов реакции). Поскольку число атомов до и после реакции остается неизменным, то их общая масса также изменяться не должна. Под массой понимали величину, характеризующую количество материи.

В начале 20 века формулировка закона сохранения массы подверглась пересмотру в связи с появлением теории относительности (А.Эйнштейн, 1905 г.), согласно которой масса тела зависит от его скорости и, следовательно, характеризует не только количество материи, но и ее движение. Полученная телом энергия E связана с увеличением его массы mсоотношением E = m c 2 , где с - скорость света. Это соотношение не используется в химических реакциях, т.к. 1 кДж энергии соответствует изменению массы на ~10 -11 г и mпрактически не может быть измерено. В ядерных реакциях, где Е в ~10 6 раз больше, чем в химических реакциях, m следует учитывать.

Исходя из закона сохранения массы, можно составлять уравнения химических реакций и по ним производить расчеты. Он является основой количественного химического анализа.

Закон постоянства состава

Закон постоянства состава (Ж.Л. Пруст , 1801 -1808гг .) - любое определенное химически чистое соединение независимо от способа его получения состоит из одних и тех же химических элементов , причем отношения их масс постоянны, а относительные числа их атомов выражаются целыми числами. Это один из основных законов химии .

Закон постоянства состава не выполняется для бертоллидов (соединений переменного состава). Однако условно для простоты состав многих бертоллидов записывают как постоянный. Например, состав оксида железа(II) записывают в виде FeO (вместо более точной формулы Fe 1-x O).

ЗАКОН ПОСТОЯНСТВА СОСТАВА

Согласно закону постоянства состава, всякое чистое вещество имеет постоянный состав независимо от способа его получения. Так, оксид кальция можно получить следующими способами:

Независимо от того, каким способом получено вещество СаО, оно имеет постоянный состав: один атом кальция и один атом кислорода образуют молекулу оксида кальция СаО.

Определяем молярную массу СаО:

Определяем массовую долю Са по формуле:

Вывод: В химически чистом оксиде массовая доля кальция всегда составляет 71,4% и кислорода 28,6%.

Закон кратных отношений

Закон кратных отношений - один из стехиометрических законов химии : если два вещества (простых или сложных ) образуют друг с другом более одного соединения, то массы одного вещества, приходящиеся на одну и ту же массу другого вещества, относятся как целые числа , обычно небольшие.

Примеры

1) Состав оксидов азота (в процентах по массе) выражается следующими числами:

Закись азота N 2 O

Окись азота NO

Азотистый ангидрид N 2 O 3

Двуокись азота NO 2

Азотный ангидрид N 2 O 5

Частное O/N

Разделив числа нижней строки на 0,57, видим, что они относятся как 1:2:3:4:5.

2) Хлористый кальций образует с водой 4 кристаллогидрата , состав которых выражается формулами: CaCl 2 ·H 2 O, CaCl 2 ·2H 2 O, CaCl 2 ·4H 2 O, CaCl 2 ·6H 2 O, т. е. во всех этих соединениях массы воды, приходящиеся на одну молекулу CaCl 2 , относятся как 1: 2: 4: 6.

Закон объемных отношений

(Гей-Люссак, 1808 г.)

"Объемы газов, вступающих в химические реакции, и объемы газов, образующихся в результате реакции, относятся между собой как небольшие целые числа".

Следствие. Стехиометрические коэффициенты в уравнениях химических реакций для молекул газообразных веществ показывают, в каких объемных отношениях реагируют или получаются газообразные вещества.

2CO + O 2  2CO 2

При окислении двух объемов оксида углерода (II) одним объемом кислорода образуется 2 объема углекислого газа, т.е. объем исходной реакционной смеси уменьшается на 1 объем.

b) При синтезе аммиака из элементов:

n 2 + 3h 2  2nh 3

Один объем азота реагирует с тремя объемами водорода; образуется при этом 2 объема аммиака - объем исходной газообразной реакционной массы уменьшится в 2 раза.

Уравнение Клайперона-Менделеева

Если записать объединенный газовый закон для любой массы любого газа, то получается уравнение Клайперона-Менделеева:

где m - масса газа; M - молекулярная масса; p - давление; V - объем; T - абсолютная температура (°К); R - универсальная газовая постоянная (8,314 Дж/(моль К) или 0,082 л атм/(моль К)).

Для данной массы конкретного газа отношение m / M постоянно, поэтому из уравнения Клайперона-Менделеева получается объединенный газовый закон.

Какой объем займет при температуре 17°C и давлении 250 кПа оксид углерода (II) массой 84 г?

Количество моль CO равно:

 (CO) = m(CO) / M(CO) = 84 / 28 = 3 моль

Объем CO при н.у. составляет

3 22,4 л = 67,2 л

Из объединенного газового закона Бойля-Мариотта и Гей-Люссака:

(P V) / T = (P 0 V 0) / T 2

V (CO) = (P 0 T V 0) / (P T 0) = (101,3 (273 + 17) 67,2) / (250 273) = 28,93 л

Относительная плотность газов показывает, во сколько раз 1 моль одного газа тяжелее (или легче) 1 моля другого газа.

D A(B) = (B)  (A) = M (B) / M (A)

Средняя молекулярная масса смеси газов равна общей массе смеси, деленной на общее число молей:

M ср = (m 1 +.... + m n) / ( 1 +.... +  n) = (M 1 V 1 + .... M n V n) / ( 1 +.... +  n)

ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ : в изолир. системе энергия системы остается постоянной, возможны лишь переходы одного вида энергии в другой. В термодинамике сохранения энергии закону соответствует первое начало термодинамики, к-рое выражается ур-нием Q = DU + W, где Q-кол-во сообщенной системе теплоты, DU-изменение внутр. энергии системы, W - совершенная системой работа. Частный случай сохранения энергии закона-Гесса закон.

Понятие энергии подверглось пересмотру в связи с появлением теории относительности (А. Эйнштейн, 1905): полная энергия E пропорциональна массе т и связана с ней соотношением Е = тс2, где с-скорость света. Поэтому массу можно выражать в единицах энергии и сформулировать более общий закон сохранения массы и энергии: в изо-лир. системе сумма масс и энергии постоянна и возможны лишь превращения в строго эквивалентных соотношениях одних форм энергии в другие и эквивалентно связанные друг с другом изменения массы и энергии.

Закон эквивалентов

вещества взаимодействуют друг с другом в количествах, пропорциональных их эквивалентам. При решении некоторых задач удобнее пользоваться другой формулировкой этого закона: массы (объемы) реагирующих друг с другом веществ пропорциональны их эквивалентным массам (объемам).

эквивалентов: химические элементы соединяются друг с другом в строго определенных количествах, соответствующих их эквивалентам. Математическое выражение закона эквивалентов имеет следующий вид: где m1 и m2 - массы реагирующих или образующихся веществ, m экв(1) и m экв(2) - эквивалентные массы этих веществ.

Например: некоторое количество металла, эквивалентная масса которого равна 28г/моль, вытесняет из кислоты 0,7 л водорода, измеренного при нормальных условиях. Определить массу металла. Решение: зная, что эквивалентный объем водорода равен 11,2 л/моль, составляет пропорцию: 28 г металла эквивалентны 11,2 л водорода х г металла эквивалентны 0,7 л водорода. Тогда х=0,7*28/11,2= 1,75 г.

Для определения эквивалента или эквивалентной массы необязательно исходить из его соединения с водородом. Их можно определить по составу соединения данного элемента с любым другим, эквивалент которого известен.

Например: при соединении 5,6 г железа с серой образовалось 8,8 г сульфида железа. Нужно найти эквивалентную массу железа и его эквивалент, если известно, что эквивалентная масса серы равна 16 г/моль. Решение: из условия задачи следует, что в сульфиде железа на 5,6 г железа приходится 8,8-5,6=3,2 г серы. Согласно закону эквивалентов, массы взаимодействующих веществ пропорциональны их эквивалентным массам, то есть 5,6 г железа эквивалентны 3,2 г серы mэкв (Fе) эквивалентна 16 г/моль серы. Отсюда следует, что m3KB(Fe) = 5,6*16/3,2=28 г/моль. Эквивалент железа равен: 3=mэкв(Fe)/M(Fe)=28 г/моль:56 г/моль=1/2. Следовательно, эквивалент железа равен 1/2 моля, то есть в 1 моле железа содержится 2 эквивалента.

Закон Авогадро

Следствия закона

Первое следствие из закона Авогадро: один мольлюбого газа при одинаковых условиях занимает одинаковый объём .

В частности, при нормальных условиях, т. е. при 0 °C (273К) и 101,3 кПа, объём 1 моля газа, равен 22,4 л. Этот объём называют молярным объёмом газа V m . Пересчитать эту величину на другие температуру и давление можно с помощью уравнения Менделеева-Клапейрона:

.

Второе следствие из закона Авогадро: молярная масса первого газа равна произведению молярной массы второго газа на относительную плотность первого газа по второму .

Положение это имело громадное значение для развития химии, так как оно дает возможность определять частичный вес тел, способных переходить в газообразное или парообразное состояние. Если через m мы обозначим частичный вес тела, и через d - удельный вес его в парообразном состоянии, то отношение m / d должно быть постоянным для всех тел. Опыт показал, что для всех изученных тел, переходящих в пар без разложения, эта постоянная равна 28,9, если при определении частичного веса исходить из удельного веса воздуха, принимаемого за единицу, но эта постоянная будет равняться 2, если принять за единицуудельный весводорода. Обозначив эту постоянную, или, что то же, общий всем парам и газам частичный объём черезС , мы из формулы имеем с другой стороны m = dC . Так как удельный вес параопределяется легко, то, подставляя значениеd в формулу, выводится и неизвестный частичный вес данного тела.

Термохимия

Тепловой эффект химической реакции

Материал из Википедии - свободной энциклопедии

Тепловой эффект химической реакции или изменение энтальпии системы вследствие протекания химической реакции - отнесенное к изменению химической переменной количество теплоты, полученное системой, в которой прошла химическая реакция и продукты реакции приняли температуру реагентов.

Чтобы тепловой эффект являлся величиной, зависящей только от характера протекающей химической реакции, необходимо соблюдение следующих условий:

Реакция должна протекать либо при постоянном объёме Q v (изохорный процесс), либо при постоянном давлении Q p (изобарный процесс ).

В системе не совершается никакой работы, кроме возможной при P = const работы расширения.

Если реакцию проводят при стандартных условиях при Т = 298,15 К = 25 ˚С и Р = 1 атм = 101325 Па, тепловой эффект называют стандартным тепловым эффектом реакции или стандартной энтальпией реакции ΔH r O . В термохимии стандартный тепловой эффект реакции рассчитывают с помощью стандартных энтальпий образования.

Стандартная энтальпия образования (стандартная теплота образования)

Под стандартной теплотой образования понимают тепловой эффект реакции образования одного моля вещества из простых веществ, его составляющих, находящихся в устойчивыхстандартных состояниях .

Например, стандартная энтальпия образования 1 моль метана из углерода и водорода равна тепловому эффекту реакции:

С(тв) + 2H 2 (г) = CH 4 (г) + 76 кДж/моль.

Стандартная энтальпия образования обозначается ΔH f O . Здесь индекс f означает formation (образование), а перечеркнутый кружок, напоминающий диск Плимсоля - то, что величина относится к стандартному состоянию вещества. В литературе часто встречается другое обозначение стандартной энтальпии - ΔH 298,15 0 , где 0 указывает на равенство давления одной атмосфере (или, несколько более точно, на стандартные условия ), а 298,15 - температура. Иногда индекс 0 используют для величин, относящихся к чистому веществу , оговаривая, что обозначать им стандартные термодинамические величины можно только тогда, когда в качестве стандартного состояния выбрано именно чистое вещество . Стандартным также может быть принято, например, состояние вещества в предельно разбавленном растворе. «Диск Плимсоля» в таком случае означает собственно стандартное состояние вещества, независимо от его выбора.

Энтальпия образования простых веществ принимается равной нулю, причем нулевое значение энтальпии образования относится к агрегатному состоянию, устойчивому при T = 298 K. Например, для йода в кристаллическом состоянии ΔH I2(тв) 0 = 0 кДж/моль, а для жидкого йода ΔH I2(ж) 0 = 22 кДж/моль. Энтальпии образования простых веществ при стандартных условиях являются их основными энергетическими характеристиками.

Тепловой эффект любой реакции находится как разность между суммой теплот образования всех продуктов и суммой теплот образования всех реагентов в данной реакции (следствиезакона Гесса ):

ΔH реакции O = ΣΔH f O (продукты) - ΣΔH f O (реагенты)

Термохимические эффекты можно включать в химические реакции. Химические уравнения в которых указано количество выделившейся или поглощенной теплоты, называются термохимическими уравнениями. Реакции, сопровождающиеcя выделением тепла в окружающую среду имеют отрицательный тепловой эффект и называются экзотермическими . Реакции, сопровождающиеся поглощением тепла имеют положительный тепловой эффект и называются эндотермическими . Тепловой эффект обычно относится к одному молю прореагировавшего исходного вещества, стехиометрический коэффициент которого максимален.

Температурная зависимость теплового эффекта (энтальпии) реакции

Чтобы рассчитать температурную зависимость энтальпии реакции, необходимо знать мольные теплоемкости веществ, участвующих в реакции. Изменение энтальпии реакции при увеличении температуры от Т 1 до Т 2 рассчитывают по закону Кирхгофа (предполагается, что в данном интервале температур мольные теплоемкости не зависят от температуры и нет фазовых превращений ):

Если в данном интервале температур происходят фазовые превращения, то при расчёте необходимо учесть теплоты соответствующих превращений, а также изменение температурной зависимости теплоемкости веществ, претерпевших такие превращения:

где ΔC p (T 1 ,T f) - изменение теплоемкости в интервале температур от Т 1 до температуры фазового перехода; ΔC p (T f ,T 2) - изменение теплоемкости в интервале температур от температуры фазового перехода до конечной температуры, и T f - температура фазового перехода.

Стандартная энтальпия сгорания

Стандартная энтальпия сгорания - ΔH гор о, тепловой эффект реакции сгорания одного моля вещества в кислороде до образования оксидов в высшей степени окисления. Теплота сгорания негорючих веществ принимается равной нулю.

Стандартная энтальпия растворения

Стандартная энтальпия растворения - ΔH раств о, тепловой эффект процесса растворения 1 моля вещества в бесконечно большом количестве растворителя. Складывается из теплоты разрушения кристаллической решетки и теплоты гидратации (или теплоты сольватации для неводных растворов), выделяющейся в результате взаимодействия молекул растворителя с молекулами или ионами растворяемого вещества с образованием соединений переменного состава - гидратов (сольватов). Разрушение кристаллической решетки, как правило, эндотермический процесс - ΔH реш > 0, а гидратация ионов - экзотермический, ΔH гидр < 0. В зависимости от соотношения значений ΔH реш и ΔH гидр энтальпия растворения может иметь как положительное, так и отрицательное значение. Так растворение кристаллического гидроксида калия сопровождается выделением тепла:

ΔH раствKOH о = ΔH реш о + ΔH гидрК +о + ΔH гидрOH −о = −59 КДж/моль

Под энтальпией гидратации - ΔH гидр, понимается теплота, которая выделяется при переходе 1 моля ионов из вакуума в раствор.

Стандартная энтальпия нейтрализации

Стандартная энтальпия нейтрализации - ΔH нейтр о энтальпия реакции взаимодействия сильных кислот и оснований с образованием 1 моля воды при стандартных условиях:

HCl + NaOH = NaCl + H 2 O

H + + OH − = H 2 O, ΔH нейтр ° = −55,9 кДж/моль

Стандартная энтальпия нейтрализации для концентрированных растворов сильных электролитов зависит от концентрации ионов, вследствие изменения значения ΔH гидратации ° ионов при разбавлении.

Энтальпия

Энтальпия - это свойство вещества, указывающее количество энергии, которую можно преобразовать в теплоту.

Энтальпия - это термодинамическое свойство вещества, которое указывает уровень энергии, сохраненной в его молекулярной структуре. Это значит, что, хотя вещество может обладать энергией на основании температуры и давления, не всю ее можно преобразовать в теплоту. Часть внутренней энергии всегда остается в веществе и поддерживает его молекулярную структуру. Часть кинетической энергии вещества недоступна, когда его температура приближается к температуре окружающей среды. Следовательно, энтальпия - это количество энергии, которая доступна для преобразования в теплоту при определенной температуре и давлении.Единицы энтальпии - британская тепловая единица или джоуль для энергии и Btu/lbm или Дж/кг для удельной энергии.

Количество энтальпии

Количество энтальпии вещества основано на его данной температуре. Данная температура - это значение, которая выбрано учеными и инженерами, как основание для вычислений. Это температура, при которой энтальпия вещества равна нулю Дж. Другими словами, у вещества нет доступной энергии, которую можно преобразовать в теплоту. Данная температура у различных веществ разная. Например, данная температура воды - это тройная точка (О °С), азота −150°С, а хладагентов на основе метана и этана −40°С.

Если температура вещества выше его данной температуры или изменяет состояние на газообразное при данной температуре, энтальпия выражается положительным числом. И наоборот при температуре ниже данной энтальпия вещества выражается отрицательным числом. Энтальпия используется в вычислениях для определения разницы уровней энергии между двумя состояниями. Это необходимо для настройки оборудования и определения коэффициента полезного действия процесса.

Энтальпию часто определяют как полную энергию вещества , так как она равна сумме его внутренней энергии (и) в данном состоянии наряду с его способностью проделать работу (pv). Но в действительности энтальпия не указывает полную энергию вещества при данной температуре выше абсолютного нуля (-273°С). Следовательно, вместо того, чтобы определять энтальпию как полную теплоту вещества, более точно определять ее как общее количество доступной энергии вещества, которое можно преобразовать в теплоту. H = U + pV

Внутренняя энергия

Вну́тренняя эне́ргия тела (обозначается как E или U) - это сумма энергий молекулярных взаимодействий и тепловых движений молекулы. Внутренняя энергия является однозначной функцией состояния системы. Это означает, что всякий раз, когда система оказывается в данном состоянии, её внутренняя энергия принимает присущее этому состоянию значение, независимо от предыстории системы. Следовательно, изменение внутренней энергии при переходе из одного состояния в другое будет всегда равно разности между ее значениями в конечном и начальном состояниях, независимо от пути, по которому совершался переход.

Внутреннюю энергию тела нельзя измерить напрямую. Можно определить только изменение внутренней энергии:

Подведённая к телу теплота , измеренная в джоулях

- работа , совершаемая телом против внешних сил, измеренная в джоулях

Эта формула является математическим выражением первого начала термодинамики

Для квазистатических процессов выполняется следующее соотношение:

-температура , измеренная в кельвинах

-энтропия , измеренная в джоулях/кельвин

-давление , измеренное в паскалях

-химический потенциал

Количество частиц в системе

Идеальные газы

Согласно закону Джоуля, выведенному эмпирически, внутренняя энергия идеального газа не зависит от давления или объёма. Исходя из этого факта, можно получить выражение для изменения внутренней энергии идеального газа. По определению молярной теплоёмкости при постоянном объёме, . Так как внутренняя энергия идеального газа является функцией только от температуры, то

.

Эта же формула верна и для вычисления изменения внутренней энергии любого тела, но только в процессах при постоянном объёме (изохорных процессах ); в общем случае C V (T ,V ) является функцией и температуры, и объёма.

Если пренебречь изменением молярной теплоёмкости при изменении температуры, получим:

ΔU = νC V ΔT ,

где ν - количество вещества, ΔT - изменение температуры.

ВНУТРЕННЯЯ ЭНЕРГИЯ ВЕЩЕСТВА, ТЕЛА, СИСТЕМЫ

(Греч.: ένέργια - деятельность , энергия ). Внутренняя энергия - это часть полной энергии тела (системы тел ): E = E k + E p + U , где E k - кинетическая энергия макроскопического движения системы, E p - потенциальная энергия , обусловленная наличием внешних силовых полей (гравитационного, электрического и т.д.), U - внутренняя энергия. Внутренняя энергия вещества , тела, системы тел - функция состояния , определяемая как полный запас энергии внутреннего состояния вещества, тела, системы, изменяющийся (высвобождающийся) в процессе химической реакции , теплообмена и выполнения работы . Составляющие внутренней энергии: (а) кинетическая энергия теплового вероятностного движения частиц (атомов, молекул, ионов и др.), составляющих вещество (тело, систему); (б) потенциальная энергия частиц, обусловленная их межмолекулярным взаимодействием ; (в) энергия электронов в электронных оболочках, атомов и ионов; (г) внутриядерная энергия. Внутренняя энергия не связана с процессом изменения состояния системы. При любых изменениях системы внутренняя энергия системы вместе с ее окружением остается постоянной. То есть внутренняя энергия не утрачивается и не приобретается. Вместе с тем, энергия может переходить от одной части системы к другой или превращаться из одной формы в другую. Это одна из формулировок закона сохранения энергии - первый закон термодинамики. Часть внутренней энергии, может превращаться в работу. Эту часть внутренней энергии называют свободной энергией - G . (В химических соединениях ее называют химическим потенциалом ). Остальную часть внутренней энергии, которая не может превращаться в работу, называют связанной энергией - W b .

Энтропия

Энтропи́я (от греч. ἐντροπία - поворот, превращение) в естественных науках - мера беспорядка системы , состоящей из многих элементов . В частности, в статистической физике - мера вероятности осуществления какого-либо макроскопического состояния; в теории информации - мера неопределённости какого-либо опыта (испытания), который может иметь разные исходы, а значит и количество информации ; в исторической науке , для экспликации феномена альтернативности истории (инвариантности и вариативности исторического процесса).