Молекулярный вес воды равен. Молекулярная масса: базовые принципы определения

Многие опыты показывают, что размер молекулы очень мал. Линейный размер молекулы или атома можно найти различными способами. Например, с помощью электронного микроскопа, получены фотографии некоторых крупных молекул, а с помощью ионного проектора (ионного микроскопа) можно не только изучить строение кристаллов, но определить расстояние между отдельными атомами в молекуле.

Используя достижения современной экспериментальной техники, удалось определить линейные размеры простых атомов и молекул, которые составляют около 10-8 см. Линейные размеры сложных атомов и молекул намного больше. Например, размер молекулы белка составляет 43*10 -8 см.

Для характеристики атомов используют представление об атомных радиусах, которые дают возможность приближённо оценить межатомные расстояния в молекулах, жидкостях или твёрдых телах, так как атомы по своим размерам не имеют чётких границ. То есть атомный радиус – это сфера, в которой заключена основная часть электронной плотности атома (не менее 90…95%).

Размер молекулы настолько мал, что представить его можно только с помощью сравнений. Например, молекула воды во столько раз меньше крупного яблока, во сколько раз яблоко меньше земного шара.

Моль вещества

Массы отдельных молекул и атомов очень малы, поэтому в расчётах удобнее использовать не абсолютные значения масс, а относительные.

Относительная молекулярная масса (или относительная атомная масса ) вещества М r – это отношение массы молекулы (или атома) данного вещества к 1/12 массы атома углерода.

М r = (m 0) : (m 0C / 12)

где m 0 – масса молекулы (или атома) данного вещества, m 0C – масса атома углерода.

Относительная молекулярная (или атомная) масса вещества показывает, во сколько раз масса молекулы вещества больше 1/12 массы изотопа углерода С 12 . Относительная молекулярная (атомная) масса выражается в атомных единицах массы.

Атомная единица массы – это 1/12 массы изотопа углерода С 12 . Точные измерения показали, что атомная единица массы составляет 1,660*10 -27 кг, то есть

1 а.е.м. = 1,660 * 10 -27 кг

Относительная молекулярная масса вещества может быть вычислена путём сложения относительных атомных масс элементов, входящих в состав молекулы вещества. Относительная атомная масса химических элементов указана в периодической системе химических элементов Д.И. Менделеева.

В периодической системе Д.И. Менделеева для каждого элемента указана атомная масса , которая измеряется в атомных единицах массы (а.е.м.). Например, атомная масса магния равна 24,305 а.е.м., то есть магний в два раза тяжелее углерода, так как атомная масса углерода равна 12 а.е.м. (это следует из того, что 1 а.е.м. = 1/12 массы изотопа углерода, который составляет большую часть атома углерода).

Зачем измерять массу молекул и атомов в а.е.м., если есть граммы и килограммы? Конечно, можно использовать и эти единицы измерения, но это будет очень неудобно для записи (слишком много чисел придётся использовать для того, чтобы записать массу). Чтобы найти массу элемента в килограммах, нужно атомную массу элемента умножить на 1 а.е.м. Атомная масса находится по таблице Менделеева (записана справа от буквенного обозначения элемента). Например, вес атома магния в килограммах будет:

m 0Mg = 24,305 * 1 a.e.м. = 24,305 * 1,660 * 10 -27 = 40,3463 * 10 -27 кг

Массу молекулы можно вычислить путём сложения масс элементов, которые входят в состав молекулы. Например, масса молекулы воды (Н 2 О) будет равна:

m 0Н2О = 2 * m 0H + m 0O = 2 * 1,00794 + 15,9994 = 18,0153 a.e.м. = 29,905 * 10 -27 кг

Моль равен количеству вещества системы, в которой содержится столько же молекул, сколько содержится атомов в 0,012 кг углерода С 12 . То есть, если у нас есть система с каким-либо веществом, и в этой системе столько же молекул этого вещества, сколько атомов в 0,012 кг углерода, то мы можем сказать, что в этой системе у нас 1 моль вещества .

Постоянная Авогадро

Количество вещества ν равно отношению числа молекул в данном теле к числу атомов в 0,012 кг углерода, то есть количеству молекул в 1 моле вещества.

ν = N / N A

где N – количество молекул в данном теле, N A – количество молекул в 1 моле вещества, из которого состоит тело.

N A – это постоянная Авогадро. Количество вещества измеряется в молях.

Постоянная Авогадро – это количество молекул или атомов в 1 моле вещества. Эта постоянная получила своё название в честь итальянского химика и физика Амедео Авогадро (1776 – 1856).

В 1 моле любого вещества содержится одинаковое количество частиц.

N A = 6,02 * 10 23 моль -1

Молярная масса – это масса вещества, взятого в количестве одного моля:

μ = m 0 * N A

где m 0 – масса молекулы.

Молярная масса выражается в килограммах на моль (кг/моль = кг*моль -1).

Молярная масса связана с относительной молекулярной массой соотношением:

μ = 10 -3 * M r [кг*моль -1 ]

Масса любого количества вещества m равна произведению массы одной молекулы m 0 на количество молекул:

m = m 0 N = m 0 N A ν = μν

Количество вещества равно отношению массы вещества к его молярной массе:

ν = m / μ

Массу одной молекулы вещества можно найти, если известны молярная масса и постоянная Авогадро:

m 0 = m / N = m / νN A = μ / N A

Более точное определение массы атомов и молекул достигается при использовании масс-спректрометра – прибора, в котором происходит разделение пучком заряженных частиц в пространстве в зависимости от их массы заряда при помощи электрических и магнитных полей.

Для примера найдём молярную массу атома магния. Как мы выяснили выше, масса атома магния равна m0Mg = 40,3463 * 10 -27 кг. Тогда молярная масса будет:

μ = m 0Mg * N A = 40,3463 * 10 -27 * 6,02 * 10 23 = 2,4288 * 10 -2 кг/моль

То есть в одном моле «помещается» 2,4288 * 10 -2 кг магния. Ну или примерно 24,28 грамм.

Как видим, молярная масса (в граммах) практически равна атомной массе, указанной для элемента в таблице Менделеева. Поэтому когда указывают атомную массу, то обычно делают так:

Атомная масса магния равна 24,305 а.е.м. (г/моль).

Вам понадобится

  • - периодическая таблица химических элементов;
  • - понятие о строении молекулы и атома;
  • - калькулятор.

Инструкция

Если известна , определите его молярную массу. Для этого определите , из которых состоит молекула, и найдите их относительные атомные массы в периодической системе химических элементов. Если один атом встречается в n раз, умножьте его массу на это число. Затем сложите найденные значения и получите молекулярную массу данного вещества, которая равна его молярной массе в г/моль. Найдите массу одной , поделив молярную массу вещества M на постоянную Авогадро NА=6,022∙10^23 1/моль, m0=M/ NА.

Пример Найдите массу одной молекулы воды. Молекула воды (Н2О) состоит из двух атомов водорода и одного атома кислорода. Относительная атомная масса водорода равна 1, для двух атомов получим число 2, а относительная атомная масса кислорода равна 16. Тогда молярная масса воды будет равна 2+16=18 г/моль. Определите массу одной молекулы: m0=18/(6,022^23)≈3∙10^(-23) г.

Массу молекулы можно рассчитать, если известно количество молекул в данном веществе. Для этого поделите общую массу вещества m на количество частиц N (m0=m/N). Например, если известно, что в 240 г вещества содержится 6∙10^24 молекул, то масса одной молекулы составит m0=240/(6∙10^24)=4∙10^(-23) г.

Определите массу одной молекулы вещества с достаточной точностью, узнав количество протонов и нейтронов, которые входят в состав ее ядер атомов, из которых она состоит. Массой электронной оболочки и дефектом масс в данном случае следует пренебречь. Массу протона и нейтрона берите равной 1,67∙10^(-24) г. Например, если известно, если молекула состоит из двух атомов кислорода, какова ее масса? Ядро атома кислорода имеет в своем составе 8 протонов и 8 нейтронов. Общее количество нуклонов 8+8=16. Тогда масса атома равна 16∙1,67∙10^(-24)=2,672∙10^(-23) г. Поскольку молекула состоит из двух атомов, то ее масса равна 2∙2,672∙10^(-23)=5,344∙10^(-23) г.

Молекула – это мельчайшая частица вещества, являющаяся носителем его химических свойств. Молекула электрически нейтральна. Химические свойства определяются совокупностью и конфигурацией химических связей между атомами, входящими в ее состав. Ее размеры, в подавляющем большинстве случаев, настолько малы, что даже в крохотном образце вещества их количество невообразимо огромно.

Инструкция

Представьте, что у вас есть какая-то емкость, плотно заполненная маленькими одинаковыми шариками. Вам известно, например, что общая масса этих шариков – , а их количество – 10 тысяч штук. Как найти массу одного ? Проще простого: разделив 1000 кг на 10000 штук, получите: 0,1 кг или 100 грамм.

В вашем случае роль количества шариков сыграет так называемый «моль». Это количество вещества, в котором содержится 6,022*10^23 его элементарных - , атомов, ионов. По-другому эта величина называется «число Авогадро», в честь знаменитого итальянского ученого. Значение моля любого вещества (молярная масса) численно совпадает с его молекулярной массой хотя измеряется в других величинах. То есть, просуммировав атомные веса всех элементов, входящих в молекулы какого-либо вещества (с учетом индексов, разумеется), вы определите не только молекулярную массу, но и численную величину его молярной массы. Вот она-то и играет роль массы тех самых шариков в предыдущем примере.

МКТ - это просто!

«Ничто не существует, кроме атомов и пустого пространства …» - Демокрит
«Любое тело может делиться до бесконечности» - Аристотель

Основные положения молекулярно-кинетической теории (МКТ)

Цель МКТ - это объяснение строения и свойств различных макроскопических тел и тепловых явлений, в них протекающих, движением и взаимодействием частиц, из которых состоят тела.
Макроскопические тела - это большие тела, состоящие из огромного числа молекул.
Тепловые явления - явления, связанные с нагреванием и охлаждением тел.

Основные утверждения МКТ

1. Вещество состоит из частиц (молекул и атомов).
2. Между частицами есть промежутки.
3. Частицы беспорядочно и непрерывно движутся.
4. Частицы взаимодействуют друг с другом (притягиваются и отталкиваются).

Подтверждение МКТ:

1. экспериментальное
- механическое дробление вещества; растворение вещества в воде; сжатие и расширение газов; испарение; деформация тел; диффузия; опыт Бригмана: в сосуд заливается масло, сверху на масло давит поршень, при давлении 10 000 атм масло начинает просачиваться сквозь стенки стального сосуда;

Диффузия; броуновское движение частиц в жидкости под ударами молекул;

Плохая сжимаемость твердых и жидких тел; значительные усилия для разрыва твердых тел; слияние капель жидкости;

2. прямое
- фотографирование, определение размеров частиц.

Броуновское движение

Броуновское движение - это тепловое движение взвешенных частиц в жидкости (или газе).

Броуновское движение стало доказательством непрерывного и хаотичного (теплового) движения молекул вещества.
- открыто английским ботаником Р. Броуном в 1827 г.
- дано теоретическое объяснение на основе МКТ А. Эйнштейном в 1905 г.
- экспериментально подтверждено французским физиком Ж. Перреном.

Масса и размеры молекул

Размеры частиц

Диаметр любого атома составляет около см.


Число молекул в веществе

где V - объем вещества, Vo - объем одной молекулы

Масса одной молекулы

где m - масса вещества,
N - число молекул в веществе

Единица измерения массы в СИ: [m]= 1 кг

В атомной физике массу обычно измеряют в атомных единицах массы (а.е.м.).
Условно принято считать за 1 а.е.м. :

Относительная молекулярная масса вещества

Для удобства расчетов вводится величина - относительная молекулярная масса вещества.
Массу молекулы любого вещества можно сравнить с 1/12 массы молекулы углерода.

где числитель - это масса молекулы, а знаменатель - 1/12 массы атома углерода

Это величина безразмерная, т.е. не имеет единиц измерения

Относительная атомная масса химического элемента

где числитель - это масса атома, а знаменатель - 1/12 массы атома углерода

Величина безразмерная, т.е. не имеет единиц измерения

Относительная атомная масса каждого химического элемента дана в таблице Менделеева.

Другой способ определения относительной молекулярной массы вещества

Относительная молекулярная масса вещества равна сумме относительных атомных масс химических элементов, входящих в состав молекулы вещества.
Относительную атомную массу любого химического элемента берем из таблицы Менделеева!)

Количество вещества

Количество вещества (ν) определяет относительное число молекул в теле.

где N - число молекул в теле, а Na - постоянная Авогадро

Единица измерения количества вещества в системе СИ: [ν]= 1 моль

1 моль - это количество вещества, в котором содержится столько молекул (или атомов), сколько атомов содержится в углероде массой 0,012 кг.

Запомни!
В 1 моле любого вещества содержится одинаковое число атомов или молекул!

Но!
Одинаковые количества вещества для разных веществ имеют разную массу!


Постоянная Авогадро

Число атомов в 1 моле любого вещества называют числом Авогадро или постоянной Авогадро:

Молярная масса

Молярная масса (M) - это масса вещества, взятого в одном моле, или иначе - это масса одного моля вещества.

Масса молекулы
- постоянная Авогадро

Единица измерения молярной массы: [M]=1 кг/моль.

Формулы для решения задач

Эти формулы получаются в результате подстановки вышерассмотренных формул.

Масса любого количества вещества

Массы атомов и молекул очень малы, поэтому в качестве единицы измерения удобно выбрать массу одного из атомов и выражать массы остальных атомов относительно нее. Именно так и поступал основоположник атомной теории Дальтон, который составил таблицу атомных масс, приняв массу атома водорода за единицу.

До 1961 года в физике за атомную единицу массы (а.е.м. сокращенно) принимали 1/16 массы атома кислорода 16 О, а в химии - 1/16 средней атомной массы природного кислорода, который является смесью трех изотопов. Химическая единица массы была на 0,03% больше, чем физическая.

В настоящее время за в физике и химии принята единая система измерения. В качестве стандартной единицы атомной массы выбрана 1/12 часть массы атома углерода 12 С.

1 а.е.м. = 1/12 m(12 С) = 1,66057×10 -27 кг = 1,66057×10 -24 г.

Относительная атомная и молекулярная масса элемента

ОПРЕДЕЛЕНИЕ

Относительная атомная масса элемента (A r) - это безразмерная величина, равная отношению средней массы атома элемента к 1/12 массы атома 12 С.

При расчете относительной атомной массы учитывается распространенность изотопов элементов в земной коре. Например, хлор имеет два изотопа 35 Сl (75,5%) и 37 Сl (24,5%).Относительная атомная масса хлора равна:

A r (Cl) = (0,755×m(35 Сl) + 0,245×m(37 Сl)) / (1/12×m(12 С) = 35,5.

Из определения относительной атомной массы следует, что средняя абсолютная масса атома равна относительной атомной массе, умноженной на а.е.м.:

m(Cl) = 35,5 ×1,66057×10 -24 = 5,89×10 -23 г.

ОПРЕДЕЛЕНИЕ

Относительная молекулярная масса вещества (M r) - это безразмерная величина, равная отношению массы молекулы вещества к 1/12 массы атома 12 С.

Относительная молекулярная масса молекулы равна сумме относительных атомных масс атомов, входящих в состав молекулы, например:

M r (N 2 O) = 2×A r (N) + A r (O) = 2×14,0067 + 15,9994 = 44,0128.

Абсолютная масса молекулы равна относительной молекулярной массе, умноженной на а.е.м.

Число атомов и молекул в обычных образцах веществ очень велико, поэтому при характеристике количества вещества используют специальную единицу измерения - моль.

Моль - это количество вещества, которое содержит столько же частиц (молекул, атомов, ионов, электронов), сколько атомов углерода содержится в 12 г изотопа 12 С.

Масса одного атома 12 С равна 12 а.е.м., поэтому число атомов в 12 г изотопа 12 С равно:

N A = 12 г / 12 × 1,66057×10 -24 г = 1/1,66057×10 -24 = 6,0221×10 -23 .

Таким образом, моль вещества содержит 6,0221×10 -23 частиц этого вещества.

Физическую величину N A называют постоянной Авогадро, она имеет размерность = моль -1 . Число 6,0221×10 -23 называют числом Авогадро.

Молярная масса вещества

ОПРЕДЕЛЕНИЕ

Молярная масса (М) - это масса 1 моль вещества.

Легко показать, что численные значения молярной массы М и относительной молекулярной массы M r равны, однако первая величина имеет размерность [M] = г/моль, а вторая безразмерна:

M = N A × m (1 молекулы) = N A × M r × 1 а.е.м. = (N A ×1 а.е.м.) × M r = × M r .

Это означает, что если масса некоторой молекулы равна, например, 44 а.е.м., то масса одного моля молекул равна 44 г.

Постоянная Авогадро является коэффициентом пропорциональности, обеспечивающим переход от молекулярных отношений к молярным.

МОЛЕКУЛЯРНЫЙ ВЕС есть относительный вес молекулы вещества. Кроме возможности находиться в трех различных фазах (см. Аггрвгатное состояние) вещества обладают способностью распределяться одно в другом, образуя так наз. растворы. Согласно вант Гоффу (van"t Hoff) молекулы растворенного вещества при достаточном разведении раствора ведут себя подобно молекулам разреженных газов, т. е. вполне независимо друг от друга и действительно для разбавленных растворов газовые законы оказываются вполне справедливыми. В сжатых газах и еще более в жидкостях проявляются в значительной степени силы сцепления между молекулами, вызывая отступления от идеальных газовых законов и приводя к образованию сложных «полимеризованных» молекул. В твердых телах эти силы сцепления сказываются,наиболее резко, отдельные простейшие молекулы уже не различимы как отдельные индивидуумы, и весь кристалл твердого тела можно рассматривать как целую огромную молекулу. Т.о., говоря о М. в. какого-либо вещества, необходимо иметь в виду то состояние, в котором оно находится. Так как газовое состояние, а тем самым и растворенное, является наиболее изученным как теоретически, так и экспериментально, то наиболее разработанными оказываются методы определения М. в. газообразных (или парообразных) и растворенных веществ. Основное уравнение газового состояния есть уравнение Клапейрона pv=nRT(\), где р- давление, v -объем газа, п -число грамм молекул, R -газовая постоянная, Т -абсолютная t°. Заменяя п через выражение п - -- (2), где G -вес данного объема газа, а М -вес отдельной молекулы, мы получаем ур-ние pv = jjRT (3), на основании к-рого чисто экспериментальным путем, измеряя р, v, О и Т, мы можем определить относительный М. в. вещества. Принято М. в. относить к весу атома водорода, что позволяет выразить М. в. как сумму атомных весов элементов, входящих в молекулу. Напишем уравнение (3) для данного газа {х) и для водорода, взятых в равных объемах, при одинаковой t° и давлении: pv = - м х - RT и pv= = ~RT. Согласно закону Авогадро в равных объемах газов при одинаковых условиях находится равное число молекул, следовательно: |^=§|. Отсюда М Х = ^М Н, Отношение - - весов двух равных объемов газа, из к-рых один принят за единицу, есть плотность газа, в данном случае по водороду-Dff. Т. к. молекулы водорода, а также большинства элементарных газов заключают по 2 атома, то M ff = 2, откуда М х = 2 D# <4). В случае, если известна плотность дан- ного газа по отношению к воздуху, то, т. к. воздух в 14,37 раз тяжелее водорода, уравнение (4) принимает вид М х - 2.14,37 Ь воздуяа ~ =28,74 D в03духа (5). Так. обр. экспериментальное определение М. в. газообразных или парообразных веществ сводится к определению пло но ти данного газа. Существует несколько различных методов определения плотностей газов (п ров), основанных на различных принципах. Так, метод Д ю-м a (Dumas) состоит в определении веса известного объема газа. Сначала взвешивается баллон (с оттянутой трубкой), наполненный воздухом, затем в него помещают некоторое количество вещества и погружают в баню с t° выше t° кипения вещества, держа до тех пор, пока не прекратится выделение пара. Баллон запаивают и одновременно отмечают барометрическое давление= =упругости пара (Р) и температуру (t°). Зная объем баллона, мы знаем вес содержащегося в нем воздуха, откуда можно высчитать вес пустого баллона. Зная же вес пустого баллона и вес его с паром, определяем вес пара вещества в данном объеме при данных условиях. Относя затем этот вес к весу равного объема воздуха или водорода при тех же условиях, узнаем плотность газа (вес 1 с„% 8 воздуха=0,001293 г, водорода- 0,0000899 г при 0° и давлении 760 мм). Приведение веса 1 см 3 газа к условиям опыта производится по формуле G = -ц^щ^щ » г Д е G - искомый вес 1 ом 3 газа (в данном случае воздуха или водорода), G 0 -вес их при нормальных условиях, а -коеф. расширения газов, t°-температура опыта.-М е т о д Гофмана (Hofmann) основан на обратном принципе и заключается в следующем: отвешенное количество вещества в запаянной ампуле помещается в пустоту над ртутью барометрической трубки (длина к-рой более 760 мм). При нагревании снаружи ампула лопается, вещество испаряется под уменьшенным давлением и объем полученного пара непосредственно отсчитывается по шкале барометрической трубки (рис. 2). Наиболее широкое применение однако имеет метод В. М е й е р a (Meyer). Он заключается в следующем: небольшое отвешенное количество-вещества испаряют в трубке, наполненной воздухом, собирают вытесненный воздух и измеряют его объем. Трубка, в к-рую вводят вещество, окружается муфтой, наполненной какой-либо жидкостью, t° кипения к-рой по крайней мере на 30° выше t° кипения исследуемого вещества. В верхней своей части трубка имеет ответвление, соединяющее ее с приб ром для измерения объема вытесненного воздуха (рис. 1). Верхний конец трубки снабжен приспособлением, позволяющим в нужный момент вводить испытуемое вещество. Сначала кипятят жидкость в муфте до тех пор, пока не прекратится выделение воздуха и затем вводят вещество. которое быстро испаряется и вытесняет нек-рое количество воздуха, переходящего в эвдиометр. Объем его равен объему пара, образовавшегося в трубке при испарении взвешенного вещества, независимо от его собственной t°. Метод этот, как и метод Гофмана, требует очень мало вещества и при- ■605 меним при очень высоких t°. В этом случае стеклянная аппаратура заменяется стойкими сортами фарфоровой, выдерживающей t° до 1 700°. В случае, если вещество реагирует с кислородом воздуха, прибор наполняется каким-нибудь индиферентным газом (азотом, водородом, аргоном).-Определение плотностей паров и газов привело к ряду важных выводов. М. в. элементарных газов при обыкновенных условиях оказались вдвое больше, чем их атомные веса, и следовательно молекулы их заключают по два атома. При более высоких t° плотность их начинает

Рисунок 1.рис. 2.

Уменьшаться, что указывает на диссоциацию их на атомы. Плотности паров металлов отвечают одноатомным молекулам, тогда как молекулы паров фосфора, серы, мышьяка содержат более двух атомов и с повышением t° распадаются на более простые молекулы. Так, сера при 500° шестиатомна (S e), при 800° молекулы ее распадаются на £ 2 . Определение М. в. растворенных веществ основано на применении к растворам газовых законов. Как это было показано вант Гоффом, для растворенного вещества можно написать такое же уравнение состояния, как и для газа в аналогичных условиях, т. е. pv - nRT = -™ RT, где р есть осмотическое давление, т. е. то давление, которое растворенное вещество оказывает на полупроницаемую перегородку. Распространяя закон Авогадро на растворы, вант Гофф показал, что осмотическое давление, точно так же, как и газовое давление, зависит не от природы растворенного вещества, а лишь от числа растворенных молекул, и равно тому давлению, которое имело бы вещество, если бы находилось в газообразном состоянии при соответствующих условиях. Следовательно, если в одном литре растворена одна грамм-молекула вещества, то осмотическое давление будет равно 22,41 атмосферам при 0° и 22,41 (1+cct) атм. при t°. Т. о. измерение осмотического давления приводит к непосредственному определению М. в. растворенного вещества. Однако прямые измерения осмотич. давления сопряжены с большими трудностями. Наука обязана Раулю (Raoult) разработкой косвенных методов определения осмотического давления, а вместе с тем следовательно и М. в. растворенных веществ (см. Криоскопия). Между М. в. и понижением точки замерзания или повышением точки кипения раствора существует следующая зависимость, выражаемая уравнением М=С-^, где G -вес вещества, растворенного в 100 г растворителя, At -понижение точки замерзания или повышение точки кипения, а С-постоянная, найденная эмпирически Раулем, т. н. «молекулярное понижение» точки замерзания или «молекулярное повышение» точки кипения, величина, связанная со скрытой теплотой плавления или испарения уравне- нием С = щ-, где Т -абсолютная t° замерзания (или кипения) чистого растворителя, a q -скрытая теплота плавления или испарения на 1 грамм растворителя. Для воды молекулярное понижение =18,6, а молекулярное повышение = 5,15. Для измерения понижения t° замерзания или повышения t° кипения предложено большое число аппаратов, которые в принципе одинаковы. Наио"о-лее употребительны Бекмана приборы (см.). Метод криоскопический по существу возможен лишь для таких растворов, при которых происходит замерзаниетолькоодногорастворителя, но не раствора. При работах же с очень разбавленными растворами термометр Бекмана заменяется набором термоэлементов, соединенных с чувствительным гальванометром, что позволяет измерять t° до 0,00001 градуса. - Измерение М. веса растворенных веществ привело к выводам, имеющим важное теоретическое значение. Так, по отклонению от вышеприведенных формул был установлен с одной стороны факт электролитической диссоциации для электролитов, а с другой-ассоциации растворенного вещества, а также его гидратации или сольватации, т. е. соединения молекул растворенного вещества с молекулами растворителя. Следует подчеркнуть, что М. в., определяемый указанными методами, относится лишь к растворенному состоянию и на основании данных эбулиоскопии или криоскопии нельзя делать заключения о М. в. веществ в чистом состоянии. Переходя к М. в. сжатых газов и жидкостей, необходимо отметить, что до сих пор не имеется вполне совершенного и точного метода для их определения. Отступления от теории, наблюдаемые для сжатых газов и жидкостей, дают лишь косвенное указание на то, что мы имеем здесь дело с измененными молекулами. Так например согласно правилу Трутона (Trouton) отношение молекулярной теплоты испарения к абсолютной t° кипения жидкости есть величина постоянная -= = С. Величина С согласно II закону термодинамики связана с упругостью пара жидкости диференциальным ур-нием т - ВТ ~ d ~ . Т. о., измеряя скрытую теплоту испарения, мы имеем в руках метод для определения М. в. жидких веществ, т. к. А= М. I, где I -скрытая теплота испарения 1 грамма вещества. Однако правило Трутона не имеет универсального значения и справедливо лишь для небольшого числа жидкостей, для большинства же их отношение „ имеет свое особое значение, что одно уже указывает на различие М. в. в жидком и парообразном состоянии и на значительную ассоциацию жидкостей. Более определенные результаты дает метод, основанный на формуле Этвеша (Eotvos), выражающей зависимость между М. в. и поверхностным натяжением уv* 1 * = к(Т к - Т), где у - поверхностное натяжение, выражаемое в динах на см, v -молекулярный объем (=мол. вес х уд. объем), Т к -"Критическая t°, T - t° опыта, к -константа, независимая от температуры, равная в среднем 2,12. Но и в этом случае далеко не для всех жидкостей коеф. к оказывается независимым от t°. Принимается, что вещества, имеющие нормальный коеф. (не изменяющийся с t°), имеют в -жидком состоянии М. в, равный М. в. пара. Жидкости с коефшщенгом, меняющимся от t°, называются ассоциированными. М. в. их получается умножением М. в. газа на т. н. «фактор ассоциации», к-рыа вычисляется из отношения нормальной константы к к величине, получающейся на опыте. К числу ассоциированных жидкостей относятся спирты, жирные кислоты, фенол, вода (с фактором ассоциации = 4). Что касается М. в. твердых т е л, то все простейшие частицы кристалла так тесно связаны между собой, что движение одной вызывает движение всего кристалла целиком. Согласно последних воззрений на кристаллическое строение атомы в кристаллах сдерживаются теми же силами, что и атомы в отдельных газовых молекулах, т.е. силами химическими, поэтому мы можем рассматривать весь кристалл как целую молекулу и за М. в. его принимать вес этого кристалла. В настоящ. время целым рядом независимых друг от друга методов установлено абсолютное значение числа Авогадро, т.е. числа молекул в грамм-молекулярном объеме (22,41 л при 0° и 760 мм давления). Оно равно в среднем из различных определений 6,06 х10 23 . Отсюда нетрудно высчитать абсолютный вес атома водорода. Он оказывается равным 1,66х10 -84 г. Помножая это число на относительный М. в. вещества, находим абсолютный вес его молекулы. Лит.: Вознесенский С.иРебиндер П., Руководство к практическим работам по физической химии, гл. IV, М.-Л., 1928; Д ж о н с Г., Основы физической химии, гл. II, III и V, СПБ, 1911; У о к е р Д., Введение в физическую химию, гл. XIX, М., 1926: Ostwald-Luther, Hand- u. Hllfsbuch 7. Austuhrung physikochemischer Messungeri, hrsg. v. C. Drucker, Lnz.. 1927.Л. Лепинь. Н. Шилов.