Составление и решение химических уравнений. Уравнение прямой на плоскости

Составить уравнение - значит выразить в математической форме связь между данными (известными) задачи и искомыми (неизвестными) ее величинами. Иногда эта связь, настолько явно содержится в формулировке задачи, что составление уравнения есть просто дословный пересказ задачи, на языке математических знаков.

Пример 1. Петров получил за работу на 160 руб. больше, чем половина суммы, которую получил Иванов. Вместе они получили 1120 руб. Сколько получили за работу Петров и Иванов? Обозначим через х заработок Иванова. Половина его заработка есть 0,5x ; месячной заработок Петрова 0,5x + 160 вместе они зарабатывают 1120 руб.; математическая запись последней фразы будет

(0,5x + 160) + x = 1120.

Уравнение составлено. Решая его по раз установленным правилам, находим, заработок Иванова х = 640руб.; заработок же Петрова 0,5x+ 160=480 (руб.).

Чаше, однако, случается, что связь между данными и искомыми величинами не указывается в задаче прямо; ее нужно установить, исходя из условий задачи. В практических задачах так и бывает почти всегда. Только что приведенный пример носит надуманный характер; в жизни почти никогда подобных задач не встречается.

Для составления уравнения поэтому нельзя дать вполне исчерпывающих указаний. Однако на первых порах полезно руководствоваться следующим. Примем за значение искомой величины (или нескольких величин) какое-нибудь наугад взятое число (или несколько чисел) и поставим себе задачу проверить, угадали ли мы правильное решение задачи или нет. Если мы сумели провести эту проверку и обнаружить либо то, что догадка наша верна, либо то, что она неверна (скорее всего случится, конечно, второе), то мы немедленно можем составить нужное уравнение (или несколько уравнений). Именно, запишем те самые действия, которые мы производили для проверки, только вместо наугад взятого числа введем буквенной знак неизвестной величины. Мы получим требуемое уравнение.

Пример 2. Кусок сплава меди и цинка объемом в 1 дм3 весит 8,14 кг. Сколько меди содержится в сплаве? (уд. вес меди 8,9 кг/дм3; цинка - 7,0 кг/дм3).

Возьмем наугад число, выражающее искомый объем меди, например 0,3 дм3. Проверим, удачно ли мы взяли это число. Так как 1 кг/дм3 меди весит 8,9 кг, то 0,3 дм3 весят 8,9 * 0,3 = 2,67 (кг). Объем цинка в сплаве есть 1 - 0,3 = 0,7 (дм3). Вес его 7,0 0,7 = 4,9 (кг). Общий вес цинка и меди 2,67+ +4,9 = 7,57 (кг). Между тем вес нашего куска, по условию задачи, 8,14 кг. Догадка наша несостоятельна. Но зато мы немедленно получим уравнение решение которого даст правильный ответ. Вместо наугад взятого числа 0,3 дм3 обозначим объем меди (в дм3) через х. Вместо произведения 8,9 0,3 = 2,67 берем произведшие 8,9 x. Это - вес меди в сплаве. Вместо 1 – 0,3 = 0,7 берем 1 - х; это - объем цинка. Вместо 7,0 0,7 = 4,9 берем 7,0 (1 - x); это - вес цинка. Вместо 2,67+4,9 берем 8,9х + 7,0 (1 - х); это - общий вес цинка и меди. По условию он равен 8,14 кг; значит, 8,9х +7,0 (1 - x)= 8,14.

Решение этого уравнения дает x = 0,6. Проверку наугад взятого решения можно делать различными способами; соответственно этому можно получить для одной и той же задачи различные виды уравнения; все они, однако, дадут для искомой величины одно и, то же решение, такие уравнения называются равносильными друг другу.

Разумеется, после получения навыков в составлении уравнений нет нужды производить проверку наугад взятого числа: можно для значения искомой величины брать не число, а какую-нибудь букву (х, у и т. д.) и поступать так, как если бы эта буква (неизвестное) была тем числом, проверить которое мы собираемся.

Cтраница 1


Составление уравнений, отражающих химическое взаимодействие окисдителя и восстановителя, сводится к определению коэффициентов при формулах исходных веществ и продуктов реакции, состав которых выявлен из опыта.  

Составление уравнений для определения числа критериев рекомендуется выполнять так, чтобы в каждое из уравнений входили три переменные величины аъ а2, а3, а оставшиеся величины а4 и я включаются в уравнения поочередно.  

Составление уравнений возможно только для простейших объектов. Более сложные объекты, к которым относится большинство объектов нефтяной промышленности, изучаются пока экспериментально. Свойствами объекта, используемыми при изучении систем автоматического регулирования, являются само-выравнивание, емкость и запаздывание.  

Составление уравнений в разностной форме произведем для проводящей среды и для диэлектрика, а также для одномерных и двухмерных задач, в которы-х изменение величин поля по расстоянию происходит соответственно в одном или двух координатных направлениях.  

Составление уравнений для виртуальных вариаций демонстрируется на примере учета неголономных связей. Показано, что уравнение голономной связи с параметром является идеальной связью, когда оно описывает огибающую. Обсуждаются правила виртуального варьирования связей при двух независимых переменных.  

Составление уравнений имеет много общего с таким переводом. В легких случаях словесная формулировка почти механически распадается на ряд последовательных частей, каждую из которых можно непосредственно выразить математическими символами. В более трудных случаях условие состоит из частей, которые не могут быть непосредственно переведены на язык математических символов. В этом случае мы должны меньше обращать внимания на словесную формулировку и сосредоточить свое внимание на смысле этой формулировки. Перед тем, как приступить к математической записи, возможно нам придется по-иному сформулировать условия, все время имея в виду математические средства для записи этой новой формулировки.  

Составление уравнений таких химических процессов не представляет никаких трудностей.  

Составление уравнений в вариациях в общем виде рассмотрено ниже.  

Составление уравнения углов закручивания Q и определение его производных.  

Составление уравнений возможно только для простейших объектов. Более сложные объекты, к которым относится большинство объектов нефтяной промышленности, изучаются пока экспериментально. Свойствами объекта, используемыми при изучении систем автоматического регулирования, являются самовыравнивание, емкость и запаздывание.  

Составление уравнений аналитическим путем возможно только для относительно простых объектов, процессы или физические явления в которых достаточно хорошо изучены. В общем случае динамические свойства регулируемых объектов описываются дифференциальными уравнениями, выражающими зависимость между выходными и входными величинами во времени. Эти уравнения составляют на основании физических законов, определяющих переходные процессы в объектах.  

Составление уравнений (6 - 58) и их решение относительно Л и В. Общий метод решения этой задачи может быть указан при условии, что А и В входят в уравнение линейно.  

Поговорим о том, как составить химическое уравнение, ведь именно они являются основными элементами данной дисциплины. Благодаря глубокому осознанию всех закономерностей взаимодействий и веществ, можно управлять ими, применять их в различных сферах деятельности.

Теоретические особенности

Составление химических уравнений - важный и ответственный этап, рассматриваемый в восьмом классе общеобразовательных школ. Что должно предшествовать данному этапу? Прежде чем педагог расскажет своим воспитанникам о том, как составить химическое уравнение, важно познакомить школьников с термином «валентность», научить их определять данную величину у металлов и неметаллов, пользуясь таблицей элементов Менделеева.

Составление бинарных формул по валентности

Для того чтобы понять, как составить химическое уравнение по валентности, для начала нужно научиться составлять формулы соединений, состоящих из двух элементов, пользуясь валентностью. Предлагаем алгоритм, который поможет справиться с поставленной задачей. Например, необходимо составить формулу оксида натрия.

Сначала важно учесть, что тот химический элемент, который в названии упоминается последним, в формуле должен располагаться на первом месте. В нашем случае первым будет записываться в формуле натрий, вторым кислород. Напомним, что оксидами называют бинарные соединения, в которых последним (вторым) элементом обязательно должен быть кислород со степенью окисления -2 (валентностью 2). Далее по таблице Менделеева необходимо определить валентности каждого из двух элементов. Для этого используем определенные правила.

Так как натрий - металл, который располагается в главной подгруппе 1 группы, его валентность является неизменной величиной, она равна I.

Кислород - это неметалл, поскольку в оксиде он стоит последним, для определения его валентности мы из восьми (число групп) вычитаем 6 (группу, в которой находится кислород), получаем, что валентность кислорода равна II.

Между определенными валентностями находим наименьшее общее кратное, затем делим его на валентность каждого из элементов, получаем их индексы. Записываем готовую формулу Na 2 O.

Инструкция по составлению уравнения

А теперь подробнее поговорим о том, как составить химическое уравнение. Сначала рассмотрим теоретические моменты, затем перейдем к конкретным примерам. Итак, составление химических уравнений предполагает определенный порядок действий.

  • 1-й этап. Прочитав предложенное задание, необходимо определить, какие именно химические вещества должны присутствовать в левой части уравнения. Между исходными компонентами ставится знак «+».
  • 2-й этап. После знака равенства необходимо составить формулу продукта реакции. При выполнении подобных действий потребуется алгоритм составления формул бинарных соединений, рассмотренный нами выше.
  • 3-й этап. Проверяем количество атомов каждого элемента до и после химического взаимодействия, в случае необходимости ставим дополнительные коэффициенты перед формулами.

Пример реакции горения

Попробуем разобраться в том, как составить химическое уравнение горения магния, пользуясь алгоритмом. В левой части уравнения записываем через сумму магний и кислород. Не забываем о том, что кислород является двухатомной молекулой, поэтому у него необходимо поставить индекс 2. После знака равенства составляем формулу получаемого после реакции продукта. Им будет в котором первым записан магний, а вторым в формуле поставим кислород. Далее по таблице химических элементов определяем валентности. Магний, находящийся во 2 группе (главной подгруппе), имеет постоянную валентность II, у кислорода путем вычитания 8 - 6 также получаем валентность II.

Запись процесса будет иметь вид: Mg+O 2 =MgO.

Для того чтобы уравнение соответствовало закону сохранения массы веществ, необходимо расставить коэффициенты. Сначала проверяем количество кислорода до реакции, после завершения процесса. Так как было 2 атома кислорода, а образовался всего один, в правой части перед формулой оксида магния необходимо добавить коэффициент 2. Далее считаем число атомов магния до и после процесса. В результате взаимодействия получилось 2 магния, следовательно, в левой части перед простым веществом магнием также необходим коэффициент 2.

Итоговый вид реакции: 2Mg+O 2 =2MgO.

Пример реакции замещения

Любой конспект по химии содержит описание разных видов взаимодействий.

В отличие от соединения, в замещении и в левой, и в правой части уравнения будет два вещества. Допустим, необходимо написать реакцию взаимодействия между цинком и Алгоритм написания используем стандартный. Сначала в левой части через сумму пишем цинк и соляную кислоту, в правой части составляем формулы получаемых продуктов реакции. Так как в электрохимическом ряду напряжений металлов цинк располагается до водорода, в данном процессе он вытесняет из кислоты молекулярный водород, образует хлорид цинка. В результате получаем следующую запись: Zn+HCL=ZnCl 2 +H 2 .

Теперь переходим к уравниванию количества атомов каждого элемента. Так как в левой части хлора был один атом, а после взаимодействия их стало два, перед формулой соляной кислоты необходимо поставить коэффициент 2.

В итоге получаем готовое уравнение реакции, соответствующее закону сохранения массы веществ: Zn+2HCL=ZnCl 2 +H 2 .

Заключение

Типичный конспект по химии обязательно содержит несколько химических превращений. Ни один раздел этой науки не ограничивается простым словесным описанием превращений, процессов растворения, выпаривания, обязательно все подтверждается уравнениями. Специфика химии заключается в том, что с все процессы, которые происходят между разными неорганическими либо органическими веществами, можно описать с помощью коэффициентов, индексов.

Чем еще отличается от других наук химия? Химические уравнения помогают не только описывать происходящие превращения, но и проводить по ним количественные вычисления, благодаря которым можно осуществлять лабораторное и промышленное получение разных веществ.

Поговорим о том, как составить уравнение химической реакции. Именно этот вопрос в основном вызывает серьезные затруднения у школьников. Одни не могут понять алгоритм составления формул продуктов, другие неправильно расставляют коэффициенты в уравнении. Учитывая, что все количественные вычисления осуществляются именно по уравнениям, важно понять алгоритм действий. Попробуем выяснить, как составлять уравнения химических реакций.

Составление формул по валентности

Для того чтобы правильно записывать процессы, происходящие между различными веществами, нужно научиться записывать формулы. Бинарные соединения составляют с учетом валентностей каждого элемента. Например, у металлов главных подгрупп она соответствует номеру группы. При составлении конечной формулы между этими показателями определяется наименьшее кратное, затем расставляются индексы.

Что такое уравнение

Под ним понимают символьную запись, которая отображает взаимодействующие химические элементы, их количественные соотношения, а также те вещества, которые получаются в результате процесса. Одно из заданий, предлагаемых ученикам девятого класса на итоговой аттестации по химии, имеет следующую формулировку: «Составьте уравнения реакций, характеризующих химические свойства предложенного класса веществ». Для того чтобы справиться с поставленной задачей, ученики должны владеть алгоритмом действий.

Алгоритм действий

Например, нужно написать процесс горения кальция, пользуясь символами, коэффициентами, индексами. Поговорим о том, как составить уравнение химической реакции, воспользовавшись порядком действий. В левой части уравнения через "+" записываем знаками вещества, которые участвуют в данном взаимодействии. Так как горение происходит с участием кислорода воздуха, который относится к двухатомным молекулам, его формулу пишем О2.

За знаком равенства формируем состав продукта реакции, используя правила расстановки валентности:

2Ca + O2 = 2CaO.

Продолжая разговор о том, как составить уравнение химической реакции, отметим необходимость использования закона постоянства состава, а также сохранения состава веществ. Они позволяют проводить процесс уравнивания, расставлять в уравнении недостающие коэффициенты. Данный процесс является одним из простейших примеров взаимодействий, происходящих в неорганической химии.

Важные аспекты

Для того чтобы понять, как составить уравнение химической реакции, отметим некоторые теоретические вопросы, касающиеся этой темы. Закон сохранения массы веществ, сформулированный М. В. Ломоносовым, объясняет возможность расстановки коэффициентов. Так как количество атомов каждого элемента до и после взаимодействия остается неизменным, можно проводить математические расчеты.

При уравнивании левой и правой частей уравнения используют наименьшее общее кратное, аналогично тому, как составляется формула соединения с учетом валентностей каждого элемента.

Окислительно-восстановительные взаимодействия

После того как у школьников будет отработан алгоритм действий, они смогут составить уравнение реакций, характеризующих химические свойства простых веществ. Теперь можно переходить к разбору более сложных взаимодействий, например протекающих с изменением степеней окисления у элементов:

Fe + CuSO4 = FeSO4 + Cu.

Существуют определенные правила, согласно которым расставляют степени окисления в простых и сложных веществах. Например, у двухатомных молекул этот показатель равен нулю, в сложных соединениях сумма всех степеней окисления также должна быть равна нулю. При составлении электронного баланса определяют атомы или ионы, которые отдают электроны (восстановитель), принимают их (окислитель).

Между этими показателями определяется наименьшее кратное, а также коэффициенты. Завершающим этапом разбора окислительно-восстановительного взаимодействия является расстановка коэффициентов в схеме.

Ионные уравнения

Одним из важных вопросов, который рассматривается в курсе школьной химии, является взаимодействие между растворами. Например, дано задание следующего содержания: «Составьте уравнение химической реакции ионного обмена между хлоридом бария и сульфатом натрия». Оно предполагает написание молекулярного, полного, сокращенного ионного уравнения. Для рассмотрения взаимодействия на ионном уровне необходимо по таблице растворимости указать ее для каждого исходного вещества, продукта реакции. Например:

BaCl2 + Na2SO4 = 2NaCl + BaSO4

Вещества, которые не растворяются на ионы, записывают в молекулярном виде. Реакция обмена ионами протекает полностью в трех случаях:

  • образование осадка;
  • выделение газа;
  • получение малодиссоциируемого вещества, например воды.

При наличии у вещества стереохимического коэффициента он учитывается при написании полного ионного уравнения. После того как будет написано полное ионное уравнение, проводят сокращение тех ионов, которые не были связаны в растворе. Конечным итогом любого задания, предполагающего рассмотрение процесса, протекающего между растворами сложных веществ, будет запись сокращенной ионной реакции.

Заключение

Химические уравнения позволяют объяснять с помощью символов, индексов, коэффициентов те процессы, которые наблюдаются между веществами. В зависимости от того, какой именно протекает процесс, существуют определенные тонкости записи уравнения. Общий алгоритм составления реакций, рассмотренный выше, основывается на валентности, законе сохранения массы веществ, постоянстве состава.

Уравнение прямой на плоскости.
Направляющий вектор прямой. Вектор нормали

Прямая линия на плоскости – это одна из простейших геометрических фигур, знакомая вам ещё с младших классов, и сегодня мы узнаем, как с ней справляться методами аналитической геометрии. Для освоения материала необходимо уметь строить прямую; знать, каким уравнением задаётся прямая, в частности, прямая, проходящая через начало координат и прямые, параллельные координатным осям. Данную информацию можно найти в методичке Графики и свойства элементарных функций , я её создавал для матана, но раздел про линейную функцию получился очень удачным и подробным. Поэтому, уважаемые чайники, сначала разогрейтесь там. Кроме того, нужно обладать базовыми знаниями о векторах , иначе понимание материала будет неполным.

На данном уроке мы рассмотрим способы, с помощью которых можно составить уравнение прямой на плоскости. Рекомендую не пренебрегать практическими примерами (даже если кажется очень просто), так как я буду снабжать их элементарными и важными фактами, техническими приёмами, которые потребуются в дальнейшем, в том числе и в других разделах высшей математики.

  • Как составить уравнение прямой с угловым коэффициентом?
  • Как ?
  • Как найти направляющий вектор по общему уравнению прямой?
  • Как составить уравнение прямой по точке и вектору нормали?

и мы начинаем:

Уравнение прямой с угловым коэффициентом

Всем известный «школьный» вид уравнения прямой называется уравнением прямой с угловым коэффициентом . Например, если прямая задана уравнением , то её угловой коэффициент: . Рассмотрим геометрический смысл данного коэффициента и то, как его значение влияет на расположение прямой:

В курсе геометрии доказывается, что угловой коэффициент прямой равен тангенсу угла между положительным направлением оси и данной прямой : , причём угол «откручивается» против часовой стрелки.

Чтобы не загромождать чертёж, я нарисовал углы только для двух прямых. Рассмотрим «красную» прямую и её угловой коэффициент . Согласно вышесказанному: (угол «альфа» обозначен зелёной дугой). Для «синей» прямой с угловым коэффициентом справедливо равенство (угол «бета» обозначен коричневой дугой). А если известен тангенс угла, то при необходимости легко найти и сам угол с помощью обратной функции – арктангенса. Как говорится, тригонометрическая таблица или микрокалькулятор в руки. Таким образом, угловой коэффициент характеризует степень наклона прямой к оси абсцисс .

При этом возможны следующие случаи:

1) Если угловой коэффициент отрицателен: , то линия, грубо говоря, идёт сверху вниз. Примеры – «синяя» и «малиновая» прямые на чертеже.

2) Если угловой коэффициент положителен: , то линия идёт снизу вверх. Примеры – «чёрная» и «красная» прямые на чертеже.

3) Если угловой коэффициент равен нулю: , то уравнение принимает вид , и соответствующая прямая параллельна оси . Пример – «жёлтая» прямая.

4) Для семейства прямых , параллельных оси (на чертеже нет примера, кроме самой оси ), углового коэффициента не существует (тангенс 90 градусов не определён) .

Чем больше угловой коэффициент по модулю, тем круче идёт график прямой .

Например, рассмотрим две прямые . Здесь , поэтому прямая имеет более крутой наклон. Напоминаю, что модуль позволяет не учитывать знак, нас интересуют только абсолютные значения угловых коэффициентов.

В свою очередь, прямая более крутА, чем прямые .

Обратно: чем меньше угловой коэффициент по модулю, тем прямая является более пологой .

Для прямых справедливо неравенство , таким образом, прямая более полога. Детская горка, чтобы не насадить себе синяков и шишек.

Зачем это нужно?

Продлить ваши мучения Знания вышеперечисленных фактов позволяет немедленно увидеть свои ошибки, в частности, ошибки при построении графиков – если на чертеже получилось «явно что-то не то». Желательно, чтобы вам сразу было понятно, что, например, прямая весьма крутА и идёт снизу вверх, а прямая – очень полога, близко прижата к оси и идёт сверху вниз.

В геометрических задачах часто фигурируют несколько прямых, поэтому их удобно как-нибудь обозначать.

Обозначения : прямые обозначаются маленькими латинскими буквами: . Популярный вариант – обозначение одной и той же буквой с натуральными подстрочными индексами. Например, те пять прямых, которые мы только что рассмотрели, можно обозначить через .

Поскольку любая прямая однозначно определяется двумя точками, то её можно обозначать данными точками: и т.д. Обозначение совершенно очевидно подразумевает, что точки принадлежат прямой .

Пора немного размяться:

Как составить уравнение прямой с угловым коэффициентом?

Если известна точка , принадлежащая некоторой прямой, и угловой коэффициент этой прямой, то уравнение данной прямой выражается формулой :

Пример 1

Составить уравнение прямой с угловым коэффициентом , если известно, что точка принадлежит данной прямой.

Решение : Уравнение прямой составим по формуле . В данном случае:

Ответ :

Проверка выполняется элементарно. Во-первых, смотрим на полученное уравнение и убеждаемся, что наш угловой коэффициент на своём месте. Во-вторых, координаты точки должны удовлетворять данному уравнению. Подставим их в уравнение:

Получено верное равенство, значит, точка удовлетворяет полученному уравнению.

Вывод : уравнение найдено правильно.

Более хитрый пример для самостоятельного решения:

Пример 2

Составить уравнение прямой, если известно, что её угол наклона к положительному направлению оси составляет , и точка принадлежит данной прямой.

Если возникли затруднения, перечитайте теоретический материал. Точнее больше практический, многие доказательства я пропускаю.

Прозвенел последний звонок, отгремел выпускной бал, и за воротами родной школы нас поджидает, собственно, аналитическая геометрия. Шутки закончились…. А может быть только начинаются =)

Ностальгически машем ручкой привычному и знакомимся с общим уравнением прямой. Поскольку в аналитической геометрии в ходу именно оно:

Общее уравнение прямой имеет вид : , где – некоторые числа. При этом коэффициенты одновременно не равны нулю, так как уравнение теряет смысл.

Оденем в костюм и галстук уравнение с угловым коэффициентом . Сначала перенесём все слагаемые в левую часть:

Слагаемое с «иксом» нужно поставить на первое место:

В принципе, уравнение уже имеет вид , но по правилам математического этикета коэффициент первого слагаемого (в данном случае ) должен быть положительным. Меняем знаки:

Запомните эту техническую особенность! Первый коэффициент (чаще всего ) делаем положительным!

В аналитической геометрии уравнение прямой почти всегда будет задано в общей форме. Ну, а при необходимости его легко привести к «школьному» виду с угловым коэффициентом (за исключением прямых, параллельных оси ординат).

Зададимся вопросом, что достаточно знать, чтобы построить прямую? Две точки. Но об этом детском случае позже, сейчас властвуют палочки со стрелочками. У каждой прямой есть вполне определённый наклон, к которому легко «приспособить» вектор .

Вектор, который параллелен прямой, называется направляющим вектором данной прямой . Очевидно, что у любой прямой бесконечно много направляющих векторов, причём все они будут коллинеарны (сонаправлены или нет – не важно).

Направляющий вектор я буду обозначать следующим образом: .

Но одного вектора недостаточно для построения прямой, вектор является свободным и не привязан к какой-либо точке плоскости. Поэтому дополнительно необходимо знать некоторую точку , которая принадлежит прямой.

Как составить уравнение прямой по точке и направляющему вектору?

Если известна некоторая точка , принадлежащая прямой, и направляющий вектор этой прямой, то уравнение данной прямой можно составить по формуле :

Иногда его называют каноническим уравнением прямой .

Что делать, когда одна из координат равна нулю, мы разберёмся в практических примерах ниже. Кстати, заметьте – сразу обе координаты не могут равняться нулю, так как нулевой вектор не задаёт конкретного направления.

Пример 3

Составить уравнение прямой по точке и направляющему вектору

Решение : Уравнение прямой составим по формуле . В данном случае:

С помощью свойств пропорции избавляемся от дробей:

И приводим уравнение к общему виду:

Ответ :

Чертежа в таких примерах, как правило, делать не нужно, но понимания ради:

На чертеже мы видим исходную точку , исходный направляющий вектор (его можно отложить от любой точки плоскости) и построенную прямую . Кстати, во многих случаях построение прямой удобнее всего осуществлять как раз с помощью уравнения с угловым коэффициентом. Наше уравнение легко преобразовать к виду и без проблем подобрать ещё одну точку для построения прямой.

Как отмечалось в начале параграфа, у прямой бесконечно много направляющих векторов, и все они коллинеарны. Для примера я нарисовал три таких вектора: . Какой бы направляющий вектор мы не выбрали, в результате всегда получится одно и то же уравнение прямой .

Составим уравнение прямой по точке и направляющему вектору :

Разруливаем пропорцию:

Делим обе части на –2 и получаем знакомое уравнение:

Желающие могут аналогичным образом протестировать векторы или любой другой коллинеарный вектор.

Теперь решим обратную задачу:

Как найти направляющий вектор по общему уравнению прямой?

Очень просто:

Если прямая задана общим уравнением в прямоугольной системе координат, то вектор является направляющим вектором данной прямой.

Примеры нахождения направляющих векторов прямых:

Утверждение позволяет найти лишь один направляющий вектор из бесчисленного множества, но нам больше и не нужно. Хотя в ряде случаев координаты направляющих векторов целесообразно сократить:

Так, уравнение задаёт прямую, которая параллельна оси и координаты полученного направляющего вектора удобно разделить на –2, получая в точности базисный вектор в качестве направляющего вектора. Логично.

Аналогично, уравнение задаёт прямую, параллельную оси , и, разделив координаты вектора на 5, получаем в качестве направляющего вектора орт .

Теперь выполним проверку Примера 3 . Пример уехал вверх, поэтому напоминаю, что в нём мы составили уравнение прямой по точке и направляющему вектору

Во-первых , по уравнению прямой восстанавливаем её направляющий вектор: – всё нормально, получили исходный вектор (в ряде случаев может получиться коллинеарный исходному вектор, и это обычно несложно заметить по пропорциональности соответствующих координат).

Во-вторых , координаты точки должны удовлетворять уравнению . Подставляем их в уравнение:

Получено верное равенство, чему мы очень рады.

Вывод : задание выполнено правильно.

Пример 4

Составить уравнение прямой по точке и направляющему вектору

Это пример для самостоятельного решения. Решение и ответ в конце урока. Крайне желательно сделать проверку по только что рассмотренному алгоритму. Старайтесь всегда (если это возможно) выполнять проверку на черновике. Глупо допускать ошибки там, где их 100%-но можно избежать.

В том случае, если одна из координат направляющего вектора нулевая, поступают очень просто:

Пример 5

Решение : Формула не годится, так как знаменатель правой части равен нулю. Выход есть! Используя свойства пропорции, перепишем формулу в виде , и дальнейшее покатилось по глубокой колее:

Ответ :

Проверка :

1) Восстановим направляющий вектор прямой :
– полученный вектор коллинеарен исходному направляющему вектору.

2) Подставим координаты точки в уравнение :

Получено верное равенство

Вывод : задание выполнено правильно

Возникает вопрос, зачем маяться с формулой , если существует универсальная версия , которая сработает в любом случае? Причин две. Во-первых, формула в виде дроби гораздо лучше запоминается . А во-вторых, недостаток универсальной формулы состоит в том, что заметно повышается риск запутаться при подстановке координат.

Пример 6

Составить уравнение прямой по точке и направляющему вектору .

Это пример для самостоятельного решения.

Вернёмся к вездесущим двум точкам:

Как составить уравнение прямой по двум точкам?

Если известны две точки , то уравнение прямой, проходящей через данные точки, можно составить по формуле:

На самом деле это разновидность формулы и вот почему: если известны две точки , то вектор будет направляющим вектором данной прямой. На уроке Векторы для чайников мы рассматривали простейшую задачу – как найти координаты вектора по двум точкам. Согласно данной задаче, координаты направляющего вектора:

Примечание : точки можно «поменять ролями» и использовать формулу . Такое решение будет равноценным.

Пример 7

Составить уравнение прямой по двум точкам .

Решение : Используем формулу:

Причёсываем знаменатели:

И перетасовываем колоду:

Именно сейчас удобно избавиться от дробных чисел. В данном случае нужно умножить обе части на 6:

Раскрываем скобки и доводим уравнение до ума:

Ответ :

Проверка очевидна – координаты исходных точек должны удовлетворять полученному уравнению:

1) Подставим координаты точки :

Верное равенство.

2) Подставим координаты точки :

Верное равенство.

Вывод : уравнение прямой составлено правильно.

Если хотя бы одна из точек не удовлетворяет уравнению, ищите ошибку.

Стоит отметить, что графическая проверка в данном случае затруднительна, поскольку построить прямую и посмотреть, принадлежат ли ей точки , не так-то просто.

Отмечу ещё пару технических моментов решения. Возможно, в данной задаче выгоднее воспользоваться зеркальной формулой и, по тем же точкам составить уравнение:

Таки дробей поменьше. Если хотите, можете довести решение до конца, в результате должно получиться то же самое уравнение.

Второй момент состоит в том, чтобы посмотреть на итоговый ответ и прикинуть, нельзя ли его ещё упростить? Например, если получилось уравнение , то здесь целесообразно сократить на двойку: – уравнение будет задавать ту же самую прямую. Впрочем, это уже тема разговора о взаимном расположении прямых .

Получив ответ в Примере 7, я на всякий случай, проверил, не делятся ли ВСЕ коэффициенты уравнения на 2, 3 или 7. Хотя, чаще всего подобные сокращения осуществляются ещё по ходу решения.

Пример 8

Составить уравнение прямой, проходящей через точки .

Это пример для самостоятельного решения, который как раз позволит лучше понять и отработать технику вычислений.

Аналогично предыдущему параграфу: если в формуле один из знаменателей (координата направляющего вектора) обращается в ноль, то переписываем её в виде . И снова заметьте, как неуклюже и запутанно она стала выглядеть. Не вижу особого смысла приводить практические примеры, поскольку такую задачу мы уже фактически прорешали (см. № 5, 6).

Вектор нормали прямой (нормальный вектор)

Что такое нормаль? Простыми словами, нормаль – это перпендикуляр. То есть, вектор нормали прямой перпендикулярен данной прямой. Очевидно, что у любой прямой их бесконечно много (так же, как и направляющих векторов), причём все векторы нормали прямой будут коллинеарными (сонаправленными или нет – без разницы).

Разборки с ними будут даже проще, чем с направляющими векторами:

Если прямая задана общим уравнением в прямоугольной системе координат, то вектор является вектором нормали данной прямой.

Если координаты направляющего вектора приходится аккуратно «вытаскивать» из уравнения, то координаты вектора нормали достаточно просто «снять».

Вектор нормали всегда ортогонален направляющему вектору прямой. Убедимся в ортогональности данных векторов с помощью скалярного произведения :

Приведу примеры с теми же уравнениями, что и для направляющего вектора:

Можно ли составить уравнение прямой, зная одну точку и вектор нормали? Нутром чувствуется, можно. Если известен вектор нормали, то однозначно определено и направление самой прямой – это «жёсткая конструкция» с углом в 90 градусов.

Как составить уравнение прямой по точке и вектору нормали?

Если известна некоторая точка , принадлежащая прямой, и вектор нормали этой прямой, то уравнение данной прямой выражается формулой :

Тут всё обошлось без дробей и прочих нежданчиков. Такой вот у нас нормальный вектор. Любите его. И уважайте =)

Пример 9

Составить уравнение прямой по точке и вектору нормали . Найти направляющий вектор прямой.

Решение : Используем формулу:

Общее уравнение прямой получено, выполним проверку:

1) «Снимаем» координаты вектора нормали с уравнения : – да, действительно, получен исходный вектор из условия (либо должен получиться коллинеарный исходному вектор).

2) Проверим, удовлетворяет ли точка уравнению :

Верное равенство.

После того, как мы убедились в том, что уравнение составлено правильно, выполним вторую, более лёгкую часть задания. Вытаскиваем направляющий вектор прямой:

Ответ :

На чертеже ситуация выглядит следующим образом:

В целях тренировки аналогичная задача для самостоятельного решения:

Пример 10

Составить уравнение прямой по точке и нормальному вектору . Найти направляющий вектор прямой.

Заключительный раздел урока будет посвящен менее распространённым, но тоже важным видам уравнений прямой на плоскости

Уравнение прямой в отрезках.
Уравнение прямой в параметрической форме

Уравнение прямой в отрезках имеет вид , где – ненулевые константы. Некоторые типы уравнений нельзя представить в таком виде, например, прямую пропорциональность (так как свободный член равен нулю и единицу в правой части никак не получить).

Это, образно говоря, «технический» тип уравнения. Обыденная задача состоит в том, чтобы общее уравнение прямой представить в виде уравнения прямой в отрезках . Чем оно удобно? Уравнение прямой в отрезках позволяет быстронайти точки пересечения прямой с координатными осями, что бывает очень важным в некоторых задачах высшей математики.

Найдём точку пересечения прямой с осью . Обнуляем «игрек», и уравнение принимает вид . Нужная точка получается автоматически: .

Аналогично с осью – точка, в которой прямая пересекает ось ординат.