Лекция: Цветные металлы, их свойства и сплавы. Особенности производства цветных металлов

Металлургический комплекс включает в себя промышленные виды экономической деятельности, продукцией которых являются разнообразные металлы. Металлургия занимается не только выплавкой металлов и производством различных видов металлопроката, но также добычей и подготовкой руд, производством вспомогательных материалов – огнеупоров, кислорода и др. То есть в состав металлургического комплекса входят как добывающие, так и обрабатывающие виды экономической деятельности.

Используемые в настоящее время металлы делятся на черные (железо, марганец, хром) и цветные (все остальные металлы) – соответственно, различают черную и цветную металлургию. Металлургический комплекс играет большую роль в экономике Российской Федерации в целом и ее отдельных субъектов. На него приходится около 12% промышленных основных фондов страны, около 10% производства промышленной продукции, 6% занятых в промышленности. Комплекс играет значимую роль во внешней торговле России – металлы составляют около 20% объема экспорта страны в денежном выражении. То есть черная и цветная металлургия – это важная отрасль специализации экономики России в мировом хозяйстве, вторая по значению после топливной промышленности.

Металлургия включает ряд процессов, основные из которых образуют главную технологическую цепочку: 1) добыча руд металлов; 2) обогащение руд; 3) производство (выплавка) чернового металла – обычно с помощью кокса, т.е. специально переработанного каменного угля; 4) производство чистого металла (рафинирование); 5) производство металлического проката разных видов (листы, проволока и т.д.). Кроме этого к металлургии относится изготовление изделий из металлических порошков, производство различных сплавов металлов и получение слитков, изготовление простых металлических изделий для конечных потребителей и другие процессы. При этом основная часть продукции металлургии потребляется не населением, а другими видами экономической деятельности, прежде всего машиностроительным комплексом и строительством.

Главными факторами, определяющими территориальную организацию металлургии, являются следующие:

  • высокая степень сырье- и топливоемкости. Для изготовления 1 т стали расходуется до 7 т сырья и топлива. Еще больше расход сырья и топлива в цветной металлургии. Для производства 1 т свинца или цинка требуется 16 т руды и 3 т топлива; для производства 1 т олова нужно более 300 т руды и 1 т топлива и т.д. Поэтому подавляющее большинство крупных металлургических предприятий располагаются вблизи месторождений руды, источников топлива или между ними;
  • высокая трудоемкость производства – обычно на крупном металлургическом заводе работают 20–40 тыс. человек, что при среднем коэффициенте семейности даст численность населения города не менее 90 тыс. человек. Черная металлургия – более трудоемкая отрасль, чем цветная металлургия. Поэтому поддерживать функционирование крупных металлургических предприятий можно только в больших городах;
  • значительная энергоемкость производства. Доля затрат на электроэнергию в себестоимости стального проката составляет 30–40%. Большинство производств цветной металлургии являются еще более энергоемкими, особенно выплавка алюминия, титана, магния. Поэтому для металлургических предприятий важна близость мощных источников дешевой электроэнергии;
  • значительное негативное воздействие на окружающую среду. Металлургия – один из самых главных загрязнителей атмосферного воздуха и поверхностных вод. Отходы металлургических предприятий могут занимать огромные площади. В итоге почти все города – крупные центры металлургии России имеют очень загрязненную атмосферу и нарушенные природные системы в своих окрестностях;
  • высокий уровень комбинирования и концентрации производства – основная часть продукции производится па крупных предприятиях-комбинатах. Руды металлов часто содержат, кроме основного, большое количество сопутствующих элементов. При этом на одном предприятии производятся разные виды продукции, отходы металлургических предприятий используются для производства химических продуктов и строительных материалов. В итоге металлургические предприятия, как правило, производят большой набор продукции, и не только металлургической.

Снизить значение этих факторов может повсеместное внедрение технологических новаций. Применение современных технологий (конверторного способа получения стали, непрерывной разливки и др.) позволяет значительно сократить потребление сырья и энергии, снизить загрязнение окружающей среды, увеличить качество продукции, сократить трудоемкость производства. В конечном итоге инновации могут резко повысить экономическую эффективность металлургического производства, обеспечить рост его конкурентоспособности на международных рынках металлов. Но для этого необходимы очень значительные инвестиции, которые окупятся в лучшем случае только через 15–20 лет.

Черная металлургия включает в себя:

  • – добычу руд черных металлов (железа, марганца, хрома);
  • – их обогащение;
  • – производство огнеупоров;
  • – добычу нерудного сырья для черной металлургии;
  • – производство чугуна, стали, проката черных металлов, а также ферросплавов, вторичную переработку черных металлов.

Динамика производства основных видов продукции за последние 50 лет показана в табл. 4.3.

Таблица 4.3

Динамика производства продукции черной металлургии в России за период 1970–2010 гг., млн т

Технологическим стержнем черной металлургии является металлургический передел, т.е. последовательная цепочка; руда – концентрат – чугун – сталь – прокат. Остальные производства являются смежным, сопутствующими; одни из них необходимы или способствуют основному технологическому процессу (производство огнеупоров и др.), другие имеют самостоятельное хозяйственное значение, функционируя на базе побочных результатов основного технологического процесса, отходов сырья и топлива (производство строительных материалов и др.). Особенно важно для России производство стальных труб, так как по трубопроводам транспортируется основная часть российского экспорта – нефть и природный газ. На территории России черная металлургия получила значительное развитие с начала XVIII в., когда реформы Петра I потребовали для оснащения армии, развития экономики большое количество чугуна и стали. Первые относительно крупные предприятия возникли в Туле и на Урале, они работали на местных рудах и древесном угле. В советский период были построены новые мощные комбинаты на Урале (около месторождений руды), в Кузнецком угольном бассейне, вблизи месторождений железной руды Курской магнитной аномалии (КМА), на севере европейской части России.

Самыми большими объемы производства черных металлов в стране были в 1980-х гг., но это определялось в основном чрезмерно высокой металлоемкостью отечественного машиностроения. В развитых странах еще с 1950-х гг. использование стали как конструкционного материала стало сокращаться. Другим недостатком развития черной металлургии в России в советский период было широкое использование отсталых технологий. До 1990-х гг. главным был мартеновский метод производства стали, от которого уже в 1970-е гг. отказались США, Япония и страны Западной Европы из-за низкого качества получавшейся продукции. Чрезмерно большими были потери металла на стадии передела "сталь – прокат". Во время кризиса начала 1990-х гг. объемы производства в отрасли сократились примерно в 2 раза, но с 1995 г. объемы производства в черной металлургии стали расти, в значительной степени за счет экспортных поставок. В последние годы на экспорт поступает около половины продукции российской черной металлургии. В настоящее время Россия на мировом рынке стали и проката занимает второе место (после Японии), а по общему производству черных металлов – четвертое место в мире (после Китая, Японии и США).

Существует три основных типа предприятий черной металлургии:

  • 1) комбинат полного цикла, где осуществляется полная цепочка технологических процессов, в результате получают чугун, затем – сталь, затем – прокат;
  • 2) заводы неполного цикла: доменные заводы (на которых выплавляют чугун), сталелитейные заводы (выплавляют сталь), сталепрокатные заводы (выпускают прокат), в том числе трубопрокатные заводы, заводы по производству ферросплавов (сплавов чугуна с легирующими металлами – марганцем, хромом и др.), электрометаллургические заводы (производство стали и проката из железорудного концентрата без стадии чугуна);
  • 3) "малая металлургия" – металлургические цеха в составе машиностроительных заводов. При этом в России производство сильно сконцентрировано на крупных комбинатах полного цикла – на 30 предприятиях производится более 3/4 всей продукции отрасли.

Территориальная концентрация производства черных металлов в России также высока. В наибольшей степени она проявляется в добыче железной руды – 2/3 приходится на месторождения КМ А в Белгородской (Лебединское, Стойленское, Яковлевское) и Курской (Михайловское) областях. По 10–15% железной руды добывается в Северо-Западном (Костомукша и др.) и Уральском (Качканарское и др. месторождения) федеральных округах. Остальная часть железной руды добывается в Сибирском федеральном округе (области Кемеровская, Иркутская и др. регионы). Производство стали, проката и стальных труб по федеральным округам представлено в табл. 4.4. По всем главным видам продукции лидирует Уральский федеральный округ. Слабо развито производство на Северном Кавказе и Дальнем Востоке, хотя последний обладает большими запасами металлургического сырья, позволяющими организовать мощное эффективное производство металлов.

Таблица 4.4

Производство основных видов продукции черной металлургии по федеральным округам Российской Федерации в 2010 г., млн т

Территориально в России можно выделить три основные металлургические базы – группы предприятий, которые используют общие рудные или топливные ресурсы и обеспечивают главные потребности страны в черных металлах.

  • 1. Уральская металлургическая база (Свердловская и Челябинская области Уральского федерального округа, прилегающие районы Оренбургской области, Республики Башкортостан, Пермского края) – самая старая в России, на нее приходится около 1/2 производства стали, проката и труб. Мощнейшие комбинаты полного цикла расположены в Магнитогорске, Челябинске, Нижнем Тагиле, Новотроицкс. Самые крупные в стране трубные заводы находятся в Челябинске, Первоуральске, Полевском, Каменск-Уральском. Имеются собственные месторождения железных руд, но основную массу сырья приходится завозить с месторождений КМА и из Казахстана. Есть небольшие месторождения марганцевых и хромовых руд, но их также не хватает. Коксующийся уголь в основном поступает из Сибири (Кузнецкий бассейн). В итоге базу можно считать неперспективной, так как предприятия не обеспечены ни сырьем, ни топливом, которые являются главными факторами производства в черной металлургии.
  • 2. Сибирская металлургическая база сформировалась в 1930-е гг. около месторождений коксующегося угля Кузнецкого бассейна. Главный центр – Новокузнецк. База наиболее обеспечена сырьем, так как располагает необходимыми месторождениями железной и марганцевой руды. Не хватает только хрома (завозится из Казахстана). Недостатком базы является се территориальная удаленность от основных потребителей продукции в России и зарубежных странах, что значительно удорожает стоимость продукции для конечных потребителей из-за транспортировки сравнительно дорогим железнодорожным транспортом.
  • 3. Центральная металлургическая база сформировалась в 1960-е гг. в европейской части страны. Главные комбинаты полного цикла расположены в Череповце ("Северсталь") и Липецке (НЛМК – Новолипецкий металлургический комбинат). В Старом Осколе действует мощный электрометаллургический завод, производящий сталь сразу из железорудного концентрата. На территории этой базы находятся крупнейшие в стране месторождения железных руд. Но уголь приходится завозить из Кузнецкого и Печорского бассейнов, а марганец и хром – из других государств. Тем не менее, эта база является наиболее перспективной, так как здесь расположены самые современные предприятия вблизи основной сырьевой базы, а также сравнительно близко от экспортных портов и основных потребителей продукции внутри страны.

Цветная металлургия включает добычу руд цветных металлов, их обогащение, выплавку черновых металлов, рафинирование (очистка черновых металлов), производство сплавов и проката, а также добычу алмазов и других драгоценных камней. Технологическая цепочка в цветной металлургии, как правило, выглядит следующим образом: добыча руд – обогащение руд (получение концентрата руд) – плавка в печах обогащенной руды (получение чернового металла) – рафинирование (очищение от вредных примесей, получение рафинированного (очищенного) металла) – изготовление различных сплавов и видов проката.

В состав цветной металлургии входят производства, связанные с получением отдельных металлов и их групп: промышленность медная, свинцово-цинковая, никелькобальтовая, алюминиевая, титано-магниевая, вольфрам- молибденовая, а также производство благородных, редких металлов, алмазов и драгоценных камней. Распределение цветных металлов по группам показано на рис. 4.1.

Российская цветная металлургия развивается, в основном, на собственной сырьевой базе, но обеспеченность отрасли разными видами сырья неодинаковая, особенно при перспективной оценке. Например, разведанных запасов медных руд при современных масштабах добычи хватит на 85 лет, руд олова – на 55 лет, молибденовых руд – примерно на 130 лет. Не хватает в России высококачественных бокситов.

За последние 20 лет состояние сырьевой базы цветной металлургии ухудшалось, так как:

  • выбытие мощностей по добыче руды не компенсировалось вводом новых;
  • наблюдается истощение запасов руд во многих крупных месторождениях из-за их чрезмерной длительной эксплуатации;
  • сократились масштабы геологоразведочных работ;
  • ужесточились экологические нормативы, что сделало экономически невыгодным освоение некоторых месторождений.

Рис. 4.1.

Руды тяжелых металлов, как правило, имеют низкий процент содержания металла в руде, поэтому их обогащение обязательно. Например, медные руды содержат 5% и менее процентов меди, а в концентрате содержание меди увеличивается до 35%. Содержание металла в свинцово-цинковых рудах максимум 5–6%, а в концентрате – 78%. Содержание олова в оловянных рудах – менее 1%, а в концентрате – 65%. Получение концентратов руд цветных металлов позволяет транспортировать их на большие расстояния и тем самым территориально разобщить процессы добычи руды и производства металлов.

Производство многих цветных металлов требует большого количества электроэнергии. Особенно высокая энергоемкость характерна для выплавки легких металлов. Так, для выплавки 1 т титана требуется 30–60 тыс. кВт ч электроэнергии, магния и алюминия – 17–20 тыс. кВт-ч. Поэтому размещение предприятий по выплавке легких металлов определяется, в первую очередь, электроэнергетическим фактором. Крупнейшие заводы размещаются около мощных ГЭС, которые вырабатывают самую дешевую электроэнергию.

Производство цветных металлов и драгоценных камней в Российской Федерации сильно монополизировано. На долю 8 компаний, составляющих менее 1% от количества организаций, действующих в цветной металлургии, приходится почти половина всего объема выпускаемой продукции. Компании "Русал" и "Алроса" обеспечивают до 99% российского производства алюминия и алмазов соответственно. Компания "Норильский никель" выпускает более 40% российских металлов платиновой группы, свыше 70% меди, около 90% никеля. "Русал" и "Норильский никель" являются крупнейшими в мире производителями алюминия и никеля соответственно. На внешние рынки они поставляют до 90% производимой продукции. В советский период эти металлы (как и большая часть других цветных металлов) потреблялись внутри страны в основном предприятиями военно-промышленного комплекса. В настоящее время спрос на цветные металлы внутри России невелик, что и обуславливает большую зависимость производства от конъюнктуры мирового рынка металлов.

Максимальными объемами производства в российской цветной металлургии отличается алюминиевая промышленность – около 3 млн т металла в год. По объемам производства Россия занимает второе место в мире (после Китая). Сырьем для получения алюминия в России являются: а) бокситы (месторождения в Северо-Западном и Уральском федеральных округах); б) нефелины (в Северо-Западном и Сибирском федеральных округах). При этом российским сырьем отечественные предприятия обеспечены лишь на 40%. По этой причине в России используются такие бедные алюминием руды, как нефелины, которые в других странах мира не добываются. Большую часть сырья (бокситов и глинозема) приходится импортировать, в основном из Австралии. Из алюминиевых руд вначале выделяют окись алюминия – глинозем (Бокситогорск, Ачинск и др. центры). Размещение предприятий по производству глинозема определяется преимущественно сырьевым фактором, но некоторые российские предприятия расположены возле уже исчерпанных месторождений. Затем глинозем доставляют в районы, где вырабатывается большое количество дешевой электроэнергии.

Производство металлического алюминия – очень энергоемкое производство. Поэтому большинство алюминиевых заводов функционируют около мощных ГЭС. Почти 90% выплавки алюминия в России приходится на Сибирский федеральный округ (Красноярск, Братск, Саяногорск, Шелехов, Новокузнецк). В Красноярском крас строятся новые алюминиевые заводы – в Тайшете и около Богучанской ГЭС. Важные алюминиевые заводы расположены также в Волгограде, Волхове (Ленинградская область), Надвоицах (Республика Карелия), Кандалакше (Мурманская область), Краснотурьинске и Каменск-Уральском (Свердловская область). В последнем регионе, испытывающем дефицит электроэнергии, производство алюминия наименее эффективно с экономической точки зрения – оно возникло в годы Великой Отечественной войны, когда резко возросла потребность в алюминии для авиационной промышленности, а экономические факторы были несущественны.

Медная промышленность использует небогатые руды, поэтому основные предприятия расположены около месторождений медесодержащих руд. В настоящее время самые крупные месторождения по объемам добычи находятся в районе Норильска (Красноярский край). Большое количество месторождений, но небольших, в значительной степени уже выработанных, находится на Урале – около городов Медногорск, Гай, Сибай, Карабаш, Красноуральск, Ревда, Кировград. В Забайкальском крае находятся крупнейшие по запасам, по пока не разрабатываемые месторождения медных руд (Удоканское и др.), так как они расположены в транспортно неосвоенных районах.

В настоящее время уральские заводы – Медногорский в Оренбургской области, Карабашский в Челябинской области, Ревдинский, Красноуральский и Кировградский в Свердловской области – не обеспечиваются местной рудой и частично работают на концентратах из Казахстана. Производят черновую медь также в Норильске (Красноярский край) и, в основном из норильского концентрата, в Мончегорске (Мурманская область). Рафинирование меди размещается вблизи производств чернового металла – в городах Норильск, Мончегорск, Кыштым (Челябинская область) и Верхняя Пышма (Свердловская область).

Производство никеля размещено на территории России в тех же регионах, что и медная промышленность. Самые крупные заводы около крупных месторождений находятся в Норильске. Руды здесь добывается больше, чем имеется мощностей по производству металла, кроме никеля из руды извлекают кобальт, платину и другие металлы. Избыточные медно-никелевые концентраты направляются в Мончегорск (Мурманская область), где имеется и собственная небольшая добыча руды (Псченга). На третьем месте находится Урал с никелевыми заводами в городах Орск (Оренбургская область), Верхний Уфалей (Челябинская область) и Реж (Свердловская область), расположенных возле небольших месторождений. Перспективной сырьевой базой для никелевой промышленности являются Восточная Сибирь и Дальний Восток.

Свинцово-цинковая промышленность использует полиметаллические руды, месторождения которых находятся в горных районах. В России это Кавказ (Садон), предгорья Алтая (Салаирское и Орловское месторождения), Сихотэ- Алинь (Дальнегорск) и хребты Забайкалья (Нерчинский Завод и др.). Производство металлов, как правило, привязано к месторождениям, но одновременно свинец и цинк производят лишь во Владикавказе (Республика Северная Осетия – Алания). В Забайкальском крае производят только свинцовые и цинковые концентраты, которые поступают в другие районы страны. В Приморском крае (Дальнегорск) производят свинец и цинковые концентраты, а в Кемеровской области (Белово) – цинк и свинцовые концентраты. Цинк из привозных концентратов (российских, казахстанских и среднеазиатских) производят в Челябинске. Российские свинец и цинк, в отличие от алюминия, меди и никеля, не пользуются спросом на мировом рынке, так как используемые месторождения истощены, применяются устаревшие технологии производства.

Оловянная промышленность в России сконцентрирована на Дальнем Востоке, где расположены основные месторождения – Депутатское и Эсэ-Хайя в Республике Саха (Якутия), Солнечное в Хабаровском крае, Перевальное и Хрустальненское (Кавалерово) в Приморском крае. Самое западное месторождение олова Шерловая Гора находится уже в Забайкальском крае. Производство металлического олова расположено в Новосибирске по пути следования концентратов из районов добычи (восточных) в районы потребления (западные). Российское олово также не пользуется спросом на мировом рынке, поэтому объемы его производства за последние 20 лет сильно сократились вместе с сокращением внутреннего потребления.

Производство легирующих металлов вольфрама и молибдена привязано к месторождениям, так как содержание металлов в руде составляет десятые доли процента. И вольфрам, и молибден одновременно добываются на Джидинском (Республика Бурятия) месторождении. Кроме этого молибден добывается в Забайкальском крае и Республике Хакасия, а вольфрам – в Приморском крае. Российские легирующие металлы также не пользуются спросом на мировом рынке, поэтому объемы производства за последние 20 лет сократились почти в 10 раз, многие предприятия (Тырныаузский вольфрамо-молибденовый комбинат в Кабардино-Балкарской Республике и др.) в настоящее время не действуют.

Добыча и производство золота также территориально совпадают из-за низкого содержания металла в руде. Основные запасы золота на территории России сосредоточены в коренных месторождениях, но их освоение требует значительных затрат. Поэтому разрабатываются в основном россыпные месторождения, на освоение которых требуется значительно меньше средств и времени. Около 2/3 добычи золота в России дает Дальневосточный федеральный округ, в котором больше всего производится этого металла в Республике Саха (Якутия), Магаданской области и Чукотском автономном округе. В основном это небольшие прииски, многие из которых разрабатываются еще с 1930-х гг. Но открыты и крупные коренные месторождения – Нежданинское и др. На втором месте по производству золота находится Сибирский округ, в котором выделяются Иркутская область (с крупными месторождениями около города Бодайбо) и Красноярский край. На третьем месте – Уральский округ с Кочкареким (Челябинская область) и Березовским (Свердловская область) месторождениями, самыми старыми в России, где золото добывают еще с XVIII в.

К цветной металлургии относится также добыча алмазов и других драгоценных камней. В настоящее время 99% добычи алмазов приходится на западную часть Республики Саха (Якутия), где расположены месторождения Айхал, Эбеляхское и др. Кроме этого имеется добыча алмазов на севере Пермского края. Крупные, но пока не разрабатываемые, месторождения открыты в Архангельской области (Ломоносовское и др.) – их освоение замедлилось из-за снижения мирового спроса на алмазы после глобального кризиса 2008 г., который во многих странах еще не преодолен.

Значительная часть алмазов и золота, добываемых в России, поступает на внешние рынки. Но эти рынки очень неустойчивые, так как драгоценные металлы и камни имеют не только промышленное, но и большое инвестиционное значение – цены на них могут колебаться в широких пределах в течение коротких промежутков времени. Большая волотильность (неустойчивость) мирового рынка является серьезным препятствием для стабильного развития российских металлургических компаний.

  • Российский статистический ежегодник. 2001. М.: Госкомстат, 2001; Российский статистический ежегодник. 2011. М.: Росстат, 2011.
  • Регионы России. 2011. М.: Росстат, 2011. С. 506–508.

Цветными называются металлы, которые не содержат железо в значительных количествах. Это сплавы на основе меди, никеля, алюминия, магния, свинца и цинка. Медь обеспечивает высокую тепло- и электропроводность, сплав меди и цинка (латунь) применяется как недорогой коррозионностойкий материал, сплав меди с оловом (бронза) обеспечивает прочность конструкций.

Сплавы никеля с медью обладают высокой коррозионной стойкостью, сплавы никеля с хромом имеют высокое тепловое сопротивление, сплавы никеля с молибденом отличаются стойкостью к соляной кислоте. Алюминиевые сплавы обладают высокой коррозионной стойкостью, тепло- и электропроводностью. Сплавы на основе магния очень легкие, но не очень прочные, сплавы на основе титана обладают прочностью и легкостью. Все эти разновидности цветных металлов и сплавов широко применяются в промышленности, самолетостроении, приборостроении, для производства предметов, необходимых в быту.

Цветная металлургия – это отрасль тяжелой промышленности, которая занимается добычей, обогащением и переработкой руды цветных металлов. Руды цветных металлов обладают очень сложным составом, который различен не только в разных месторождениях, но даже в пределах одного месторождения на разных участках добычи руды. Часто встречающиеся полиметаллические руды состоят из свинца, цинка, меди, золота, серебра, селения, кадмия, висмута и других редких металлов.

Главная задача предприятий цветной металлургии – выявить и разделить металлы, при этом руда может проходить несколько десятков стадий переработки. Основные компоненты могут перерабатываться на месте добычи, другие – на специализированных предприятиях, благородные, редкие и рассеянные металлы извлекаются из руды на специализированных заводах путем рафинирования цветных металлов.

В Российской Федерации встречаются месторождения руд практически всех цветных металлов. Медные руды добывают, в основном, в Красноярском крае и на Урале. Алюминий добывают на Урале, в Западной Сибири (Новокузнецк), Восточной Сибири (Красноярск, Братск, Саянский). Свинцово-цинковые месторождения разрабатываются на Северном Кавказе (Садон), в (Нерчинск), на Дальнем Востоке (Дальнегорск). Магниевые руды широко встречаются на Урале и в Восточной Сибири. Месторождения титановых руд имеются на Урале, в Западной Сибири. Месторождения медно-никелевых и окисленных никелевых руд сосредоточены на Кольском полуострове (Мончегорск, Печенга-никель), в Восточной Сибири (Норильск), на Урале (Режское, Уфалейское, Орское).

В настоящее время лидирует по запасам железной руды и никеля, обладает значительными запасами титана, платиноидов, меди, свинца, цинка, серебра и других цветных металлов. Крупнейшими предприятиями цветной металлургии являются ГМК «Норильский никель», АО «Уралэлектромедь», Уральская горно-маталлургическая компания, Новгородский металлургический завод.

По данным аналитиков ИА «INFOLine», в 2007-2011 годах производственные мощности российских металлургических предприятий значительно возрастут: по выпуску глинозема – более чем на 30%, первичного алюминия – более чем на 25%, рафинированной меди – более чем на 35%, цинка – более чем на 50%.

Цветные металлы обладают рядом характерных только для них свойств, определяющих применение их в машино- и приборостроении, несмотря на то, что встречаются они в природе гораздо реже, чем железо. Это и высокие тепло- и электропроводность, хорошая коррозионная стойкость, малый или наоборот большой удельный вес, низкая или высокая температура плавления, высокая пластичность или наоборот прочность.

Основной продукцией цветной металлургии являются слитки цветных металлов для производства проката и отливок, лигатуры (сплавы с легирующими элементами для изготовления легированных сплавов), чистые и особо чистые металлы для электроники и приборостроения.

ПРОИЗВОДСТВО МЕДИ

За год в мире производится 3 … 5 млн. тонн меди. Она обладает важными для современной техники свойствами, такими как высокие электро- и теплопроводность, пластичность, хорошая коррозионная стойкость. Около половины всего годового производства чистой металлической меди идёт на изготовление проводов, кабелей, шин и прочих токопроводящих изделий электротехнической промышленности. Вместе с тем с давних пор широко применяются сплавы меди с цинком (латуни) и с оловом (бронзы).

В настоящее время главнейшим источником для получения меди служат сульфидные руды, содержащие халькопирит (медный колчедан) CuFeS 2 , халькозин CuS, пирит FeS 2 и сульфиды цинка, свинца, никеля, а нередко серебро и золото. Другим источником для получения меди являются окисленные медные руды, содержащие куприт Cu 2 O или азурит 2CuCO 3 ×Cu(OH) 2 .

Указанные руды бедные. Содержание меди в них незначительно – 1 … 5%, поэтому руды перед плавкой подвергают обогащению. Обогащение флотацией позволяет выделить из руды отдельно медный концентрат, содержащий 11 … 35% меди, а также цинковый или пиритный концентраты.

Природные запасы меди постоянно сокращаются. Поэтому в настоящее время существенным становится использование металлолома и других отходов промышленности, содержащих медь. Крупнейшие промышленно развитые страны из отходов получают меди больше, чем выплавляют её из руд.

Для получения меди из руд обычно используют пирометаллургический способ, состоящий из плавки на штейн и восстановительной плавки, но некоторые руды успешно перерабатывают и гидрометаллургическим способом, например выщелачиванием серной кислотой.

Процесс производства меди наиболее распространенным, пирометаллургическим способом можно разделить на следующие этапы: измельчение медных руд, их обогащение, обжиг концентрата, получение медного штейна, переработка медного штейна, рафинирование меди (рис. 1.16).

Обогащение медных руд осуществляют методом флотации, основанном на различном смачивании водой соединений меди и пустой породы. Для обогащения образуют пульпу, состоящую из измельченной руды, воды и флотационного реагента (пихтового масла). Последний адсорбируется на частицах руды в виде пленок, не смачиваемых водой. При продувке пульпы пузырьки воздуха собираются на поверхности этих частиц и увлекают их вверх, образуя на поверхности слой пены. Смачиваемая водой пустая порода оседает на дно ванны. Пену с поверхности ванны собирают, сушат и получают концентрат с необходимым содержанием меди.

Обжиг концентрата производят при 750 … 850 °С в воздушной среде для окисления сульфидов и уменьшения содержания серы. Наиболее производительным является обжиг в кипящем слое. Измельченный концентрат загружается в окно в средней ее части, а снизу в печь через поддон подается воздух. Давление воздуха устанавливается таким, чтобы частицы концентрата находились во взвешенном (кипящем) состоянии. Обожженный концентрат «переливается» через порог печи в виде огарка. Отходящие сернистые газы очищаются в циклоне от твердых частиц и направляются в сернокислотное производство.

Получение медного штейна. Штейн в застывшем виде – это сплав сульфидов меди и железа и сульфидов цинка, свинца, никеля, содержащий 20 … 60% меди, 10 … 60% железа и до 25% серы. Жидкие штейны хорошо растворяют в себе золото и серебро, и, если эти металлы есть в руде, они почти полностью концентрируются в штейне. Цель плавки на штейн – отделение сернистых соединений меди и железа от содержащихся в руде примесей, присутствующих в ней в виде окисных соединений.

В зависимости от химического состава руды и ее физического состояния штейн получают либо в шахтных печах, если сырьем служит кусковая медная руда, содержащая много серы, либо в отражательных или дуговых электропечах, если исходным продуктом служат порошкообразные флотационные концентраты.

В качестве огнеупоров отражательных печей используют динасовые или магнезитовые кирпичи. Огнеупор выбирают в зависимости от преобладания в шихте основных или кислотных оксидов, так как соответствие состава шихты и огнеупорных материалов удлиняет срок их службы. Отражательные печи отапливают мазутом, угольной пылью или газом, вдувая топливо форсунками. Максимальная температура в головной части печи 1550 °С, в хвостовой – 1250 … 1300 °С. Шихту в эти печи загружают через отверстия в своде, расположенные вдоль печи у боковых стенок. При загрузке шихта ложится откосами вдоль стен, предохраняя кладку от прямого воздействия шлаков и газов. По мере нагрева шихты начинаются реакции частичного восстановления высших оксидов железа и меди, окисления серы и шлакообразования:

FeS + 3Fe 3 O 4 + 5SiO 2 = 5(2FeO*SiO 2) + SO 2 ;

2Cu 2 S + 3O 2 = 2Cu 2 O + 2SO 2 .

Сульфиды меди и железа, сплавляясь, дают первичный штейн, который, стекая по откосам, изменяет свой состав, обедняясь железом и обогащаясь медью:

2FeS + 2Cu 2 O + SiO 2 = 2FeO*SiO 2 + 2Cu 2 S.

При этом 2FeO*SiO 2 поступает в шлак, а 2Cu 2 S – в штейн. Штейн, имеющий плотность около 5000 кг/м 3 , собирается на поду печи, а шлак (плотность около 3500 кг/м 3) образует второй верхний жидкий слой. Его выпускают по мере накопления через шлаковое окно, расположенное в хвостовой части печи. Выпуск штейна производят по мере его образования и потребности в нем последующего конвертерного передела.

Переработка медного штейна. Расплавленный штейн перерабатывают на черновую медь продувкой его воздухом в конвертере – горизонтально расположенном цилиндрическом сосуде из листовой стали длиной 5 … 10 и диаметром 3 … 4 м, футерованном магнезитовым кирпичом.

Переработка штейна протекает в два периода. В конвертер загружают кусковой кварц, заливают расплавленный штейн и продувают его воздухом. Воздух, энергично перемешивая штейн, окисляет сульфиды меди и железа:

2FeS + 3O 2 = 2FeO + 2SO 2 + 940 кДж;

2Cu 2 S + 3O 2 = 2Cu 2 O + 2SO 2 + 775 кДж,

при этом закись меди благодаря обменному взаимодействию вновь превращается в сульфид:

Cu 2 O + FeS = Cu 2 S + FeO.

Поэтому в первом периоде идет практически окисление только железа, а закись железа шлакуется кварцем:

2FeO + SiO 2 = 2FeO*SiO 2 .

Образующийся шлак периодически сливают и в конвертер добавляют свежие порции медного штейна и кускового кварца. Температура заливаемого штейна составляет около 1200 °С, но за время продувки, за счет большого выделения тепла при окислении сульфидов температура повышается до 1350 °С. Продолжительность первого периода зависит от количества меди в штейне и составляет 6 … 10 ч. Добавка в воздушное дутье кислорода повышает температуру в конвертере и позволяет загружать в него холодный концентрат, заменив им некоторую часть расплавленного штейна.

Первый период закончится, когда в продуваемом штейне окислится сернистое железо. После этого тщательно удаляют шлак и продолжают продувку без добавки штейна и кварца. Воздух окисляет теперь только Cu 2 S, и образовавшаяся закись меди способствует появлению в конвертере металлической меди по реакции

Cu 2 S + 2Cu 2 O = 6Cu + SO 2 .

Второй период заканчивается, когда в конвертере весь штейн превращается в медь, на что обычно уходит 2 … 3 ч. В конвертере и во втором периоде образуется небольшое количество богатого медью шлака, который остается в нем после выливания черновой меди и перерабатывается в следующем цикле.

Черновую медь по окончании процесса, наклоняя конвертер, выпускают в ковш и разливают в изложницы. Полученную медь называют черновой, так как она содержит до 1,5% примесей железа, цинка, никеля, мышьяка, сурьмы, кислорода, серы.

Рафинирование меди. Черновая медь подвергается рафинированию для удаления примесей, ухудшающих ее качество, а также для извлечения из нее золота и серебра. В современной практике применяют огневое и электролитическое рафинирование.

Огневое (пирометаллургическое) рафинирование заключается в окислении примесей в отражательных печах при продувке черновой меди воздухом. Кислород воздуха соединяется с медью и образует оксид Cu 2 O, который затем реагирует с примесями металлов (Me) по реакции

Me + Cu 2 O = MeO + 2Cu.

Одновременно окисляется и сера:

Cu 2 S + 2Cu 2 O = 6Cu + SO 2.

После этого приступают к раскислению меди – восстановлению Cu 2 O. Для этого медь перемешивают деревянными жердями. Бурное выделение паров воды и углеводородов способствует удалению газов и восстановлению меди:

4Cu 2 O + CH 4 = 8Cu + 2H 2 O + CO 2 .

После огневого рафинирования чистота меди достигает 99 … 99,5%.

Электролитическое рафинирование меди проводят в ваннах, наполненных раствором сернокислой меди, подкисленным серной кислотой. Анодами служат пластины из черновой меди размером 1х1 м и толщиной 50 мм, катодами – листы толщиной 0,5 мм из чистой меди.

При прохождении тока напряжением 2 … 3 В и плотностью 100 … 400 А/м 2 анод растворяется, медь переходит в раствор в виде катионов, которые затем разряжаются на катодах и откладываются слоем чистой меди.

Примеси, имеющие более отрицательный потенциал (Zn, Fe, Ni, Bi, Sb, As и др.) переходят в раствор, но не могут выделиться на катоде при наличии в нем большого количества ионов меди. Золото и серебро не переходят в раствор и оседают на дно ванны вместе с не успевшими раствориться на аноде отдельными кусочками меди, образуя шлам. В шлам переходят также соединения серы, селена и теллура. Иногда в шламе содержатся до 35% Ag, 6% Se, 3% Fe, 1% Au и другие ценные элементы. Поэтому шламы обычно перерабатывают и извлекают эти элементы.

ПРОИЗВОДСТВО АЛЮМИНИЯ

Алюминий является достаточно распространенным в природе металлом. Насчитывается 250 минералов, содержащих алюминий. Основные алюминиевые руды – это бокситы, нефелины, алуниты, каолины. В них он встречается в виде гидроокисей (АlООН, Аl(OH) 3), каолинита (Al 2 O 3 ×2SiO 2 ×2H 2 O), корунда (Al 2 O 3).

Основной рудой, используемой для производства алюминия, являются бокситы. Алюминий в них содержится в виде гидрооксидов Al 2 O 3 ×Н 2 О и Al 2 O 3 ×3Н 2 О. В руде много примесей, однако, производство экономически целесообразно при содержании глинозёма в ней не менее 12 … 14%. В нашей стране главные месторождения бокситов находятся в Ленинградской области, на Урале и в Красноярском крае.

Технологический процесс производства алюминия состоит из трех этапов: извлечение глинозема из руд, его электролиз с целью получения алюминия и рафинирование. Последовательность технологических операций приведена на рис. 1.17.

Наиболее распространённым в мировой практике способом получения глинозёма из бокситов является мокрый щелочной способ.

Существует определенная последовательность технологических операций.

Подготовка боксита, заключающаяся в прокаливании его в проходных трубчатых печах, дроблении и измельчении на дробилках, разделении по крупности на грохотах, последующем измельчении в мельницах и отделении фракции тонкого помола при помощи классификаторов.

Выщелачивание боксита, состоящее в его химическом разложении при взаимодействии с водным раствором щёлочи. Для этого измельчённый боксит загружают в автоклав и смешивают с раствором щелочи при температуре 200 … 250 °С и давлении 3 МПа. Для этого через автоклав внизу пропускают струю пара, которая перемешивает и подогревает полученную пульпу.

В результате в пульпе происходят следующие реакции

Al 2 O 3 ×Н 2 О + 2NaOH = 2NaAlO 2 + H 2 O.

Достаточная концентрация алюмината натрия (NaAlO 2) получается в растворе примерно через 4 часа Другие компоненты боксита (SiO 2 , Fe 2 O 3 , TiO 2 и др.) образуют осадок (красный шлам). Пульпа вытесняется из автоклава и по трубе транспортируется для дальнейшей переработки.

Отделение алюминатного раствора от красного шлама. Пульпу разбавляют водным раствором, полученным от промывки красного шлама предыдущей партии, и подвергают обработке в сгустителях (температура пульпы 90 … 100 °С). В результате этой обработки красный шлам оседает, после чего алюминатный раствор сливают и отфильтровывают (осветляют).

Разложение алюминатного раствора происходит по реакции

NaAlO 3 + 2H 2 O = NaOH + Al(OH) 3 .

Процесс разложения называется выкручиванием или декомпозицией. Его производят путём медленного перемешивания (96 … 120 ч) алюминатного раствора в присутствии кристаллической гидроокиси алюминия Al(OH) 3 . Процесс протекает в камерах (декомпозёрах) при температуре 30 … 60 °С. В результате из алюминатного раствора выделяется кристаллическая гидроокись алюминия. Полученную пульпу подвергают сгущению. Часть сгущённой пульпы употребляют для выкручивания в следующем цикле, а основную часть пульпы фильтруют и промывают. В результате получают кристаллическую гидроокись алюминия с 3 … 4% влаги.

Обезвоживание гидроокиси алюминия (кальцинация) - завершающая стадия производства глинозема. Её проводят в трубчатых вращающихся печах длиной 50 … 70 м и диаметром около 4 м. Печь расположена с наклоном. С высокой стороны в печь поступает сырье и, проходя по всей её длине, обезвоживается топочными газами, идущими навстречу. При 40 … 200 °С материал высушивается. При 200 … 1250 °С из него удаляется гидратная вода и образуется безводная окись алюминия.

2Al(OH) 3 = Al 2 O 3 + 3H 2 O.

В конце печи (зоне охлаждения) температура полученного глинозёма снижается до 60 … 70 °С, и его выгружают из печи (через 1,5 часа после начала процесса кальцинации). Глинозём по трубопроводу передаётся для хранения в цех электролиза.

Вышеописанная технология позволяет получить чистый глинозём (примеси составляют не более 0,4 … 0,66%).

Следующий этап технологического процесса производства алюминия заключается в электролизе глинозема.

Электролиз глинозёма производят в жидком криолите (3NaF×AlF 3 или Na 3 AlF 6) в электролизере (рис. 1.17). Катодное устройство электролизёра 1 представляет собой ванну в стальном кожухе, футерованную изнутри угольными блоками. К угольной подине ванны подключены медные шины для подвода электрического тока.

Анодное устройство 2 представляет собой вертикально установленный угольный блок. Нижняя его часть погружена в электролит. К электролизеру подводится постоянный электрический ток силой 70 …75 кА и напряжением 4 … 4,5 В. Ток используется как в процессе электролиза, так и для разогрева электролита до температуры 1000 ºС.

Электролит состоит из расплава криолита, в котором содержится 8 … 10% глинозёма.

В процессе работы в результате разложения глинозема на подине ванны под электролитом собирается жидкий алюминий. Его называют сырцом из-за большого содержания примесей.

Завершающий этап процесса – рафинирование алюминия. Операция заключается в продувке расплава алюминия хлором. При этом образуется парообразный хлористый алюминий. Пузырьки образующихся газов адсорбируют на своей поверхности атомы примесей и выносят их на поверхность ванны металла.

После рафинирования жидкий алюминий отстаивают – выдерживают в ковше или электропечи в течении 30 … 45 мин. В результате чистота алюминия достигает 99,5 … 99,85%. Полученный алюминий разливают в изложницы и получают в итоге слитки.

Описанная выше технология требует большого количества электроэнергии. Расход энергии на 1 т металла составляет 10000 … 12000 квт-ч.

ПРОИЗВОДСТВО МАГНИЯ

Магний широко используется в металлургии при производстве чугуна, стали и цветных металлов. В технике магний применяется в виде сплавов в авиационной и автомобильной промышленности.

Магний как металл достаточно широко распространен в природе. Его содержание в земной коре составляет около 2,3%. Встречается магний в виде следующих минералов, которые и являются сырьем для его производства: магнезит – природный карбонат магния (МaСО 3), содержащий 28,8% Mg; доломит – двойной карбонат магния и кальция (MgCO 3 ×СаСО 3), содержащий 13,2% Mg; карналлит – двойной хлорид магния и калия (MgCl 2 ×KCl ×6H 2 O), содержащий 8,8% Mg, и бишофит – шестиводный хлорид магния (MgCl 2 × 6Н 2 О), растворенный в морской воде и воде соленых озер.

Независимо от вида исходного сырья процесс получения магния можно разбить на три периода: подготовка сырья, получение из него магния и рафинирование. В зависимости от типа сырья магний получают термическим и электролитическим способами. Последний применяется наиболее часто.

Основным сырьем для получения магния в нашей стране является карналлит. Последовательность процесса получения магния следующая (рис. 1.18).

Обогащение карналлита. Руду измельчают, после чего обрабатывают горячей водой (T = 110 … 120 °С). При этом MgCl 2 и KCl переходят в раствор, а нерастворимые примеси после выпадения в осадок удаляются. Далее раствор охлаждают в вакуум-кристаллизаторах до нормальной температуры, в результате чего из него выпадают кристаллы так называемого искусственного карналлита MgCl 2 ×KCl×6H 2 O, которые при фильтровании отделяют. Полученный карналлит имеет примерно следующий состав: 32% MgCl 2 ; 26% KCl, 5% NaCl и 37% H 2 O.

Обезвоживание карналлита осуществляют в две стадии. Первая стадия процесса – в кипящем слое печи. Процесс осуществляют в наклонной печи шахтного типа. Обезвоживание карналлита происходит горячим газом, поступающим в печь через большое количество отверстий в подине. Давлением газа порошкообразный карналлит интенсивно перемешивается и переносится вдоль пода вплоть до выходного окна. Такое движение создает впечатление кипения. Карналлит при этом нагревается до температуры 200 … 210 °С, обезвоживается до 3 … 4% остаточной влаги, а затем направляется на вторую стадию обезвоживания.

На этой стадии получение безводного карналлита осуществляют расплавлением его в камерной электрической плавильной печи, а затем и в подогреваемом миксере. Камерная электрическая печь и миксер представляют собой электрические печи сопротивления, в которых нагревательными элементами служит расплавленный карналлит. В плавильной печи температура карналлита достигает 520 … 550 °С. В миксере температуру расплава поднимают до 840 … 860 °С. В результате происходит полное обезвоживание карналлита, при этом часть примесей выпадает в осадок.

Электролитическое получение магния осуществляют в электролизере. Он представляет собой стальную ванну, футерованную огнеупорным кирпичом. Ванну электролизёра заполняют расплавленным электролитом (расплав обезвоженного карналлита и возвратный хлористый магний). Температуру электролита поддерживают в пределах 720 °С. Электролизёр оснащен графитовым анодом, установленным между двумя стальными катодами. Сверху ванна закрыта хлороулавливателем и полностью изолирована от сообщения с атмосферой. Так как электролит содержит соли MgCl 2 , KCl, NaCl и примеси других солей и окислов, то электролитическое разложение хлористого магния обеспечивается пропусканием через электролит электрического ток требуемого напряжения (2,7 … 2,8 В), ток 30 … 70 кА. Напряжение, при котором происходит разложение других соединений, содержащихся в электролите, выше, чем для хлористого магния.

В результате работы установки на аноде образуются пузырьки хлора, которые выделяются из электролита и тут же отсасываются из электролизёра. На рабочей поверхности катодов выделяются капельки металлического магния. Магний легче электролита, поэтому он всплывает на поверхность, откуда периодически удаляется вакуумными ковшами. На дно ванны осаждается шлам, содержащий окись магния и частично восстановленное железо. Шлам и отработанный электролит удаляют вакуумными насосами. В результате электролиза получают магний-сырец, содержащий до 2 … 3% примесей (окись магния, нитрид и силицид магния и т.п.)

Рафинирование магния-сырца, извлечённого из электролизёра, проводят с целью удаления примесей электролита. Рафинирование заключается в переплавке полученного магния с флюсом. Для этого магний заливают в стальной тигель и перемешивают с флюсом (борной кислотой и др.). Тигель устанавливают в электропечь и нагревают до 710 … 720 °С в течение 0,5 … 1 ч. В процессе отстаивания примеси растворяются во флюсе, всплывают и образуют шлак. После этого магний разливают в изложницы и получают слитки, чистотой 99,9%. Более глубокую очистку магния можно осуществить путем его сублимации (возгонки) в вакууме.

ПРОИЗВОДСТВО ТИТАНА

Титан считается широко распространенным в природе металлом, так как содержание его в земной коре составляет 0,6%. Уникальное сочетание свойств титана и его сплавов, таких как высокая прочность, коррозионная и химическая стойкость, малый удельный вес, высокая температура плавления используется в авиа- и судостроении, космической технике, химической промышленности и т.д.

Рудами, служащими сырьем для получения титана, в настоящее время являются ильменит FeO × TiO 2 и рутил TiO 2 .

Известно несколько способов получения титана из руд. Схема одного из наиболее распространенных технологических процессов, исходным продуктом в которой является ильменит, приведена на рис. 1.19. Технологическая схема процесса включает следующие этапы: выделение концентрата из руды, получение двуокиси титана, получение четыреххлористого титана, восстановление титана с получением губчатого металла, рафинирование его и переплавка титановой губки в слитки.

Перед выделением концентрата из руд их дробят, и в связи с низким содержанием нужного компонента, обогащают. Титановые руды легко обогащаются флотацией, гравитацией и т.д. В результате получают ильменитовый концентрат, с содержанием двуокиси титана до 40 … 45%.

Получение концентрированной двуокиси титана достигается отделением окислов железа и пустой породы, содержание которых в ильменитовом концентрате составляет более 40%. Для этого концентрат смешивают с углем, загружают в пламенные отражательные или электрические печи и нагревают до температуры плавления чугуна (~1200 °С). В результате железо из оксидов восстанавливается, а после его науглероживания углем на подине печи образуется чугун.

FeO×TiO 2 + С = Fe + TiO 2 + СО.

Оксиды титана переходят в шлак, всплывающий на поверхность ванны расплавленного чугуна. Чугун и шлак выпускают из печи и раздельно разливают в изложницы. Титановый шлак, имеющий характерный белый цвет, содержит до 90% двуокиси титана, а также примеси- окислы железа, кремния, алюминия и др. Побочным продуктом процесса является чугун.

Четыреххлористый титан получают хлорированием титанового шлака. Для этого его измельчают, смешивают с углем, каменноугольной смолой (связующее) и прессуют в брикеты. Брикеты прокаливают при температуре 800 °С без доступа воздуха, а затем подвергают хлорированию в специальных печах – шахтных хлораторах. Процесс осуществляют при высокой температуре (800 … 1250 °С). В присутствии углерода хлор вступает в реакцию с двуокисью титана по реакции:

TiO 2 + 2Cl 2 + C = TiCl 4 + CO 2 .

Четыреххлористый титан, представляет собой бурую жидкость с температурой кипения 1300 °С. Вместе с ним образуются хлористые соединения элементов, входящих в состав шлака в виде примесей (FeCl 4 , AlCl 3 и др.). Разделение хлоридов осуществляют по принципу ректификации. Для этого пары смеси хлоридов пропускают через систему конденсационных установок, в которых поддерживается температура более низкая, чем температура кипения соответствующего хлорида.

Восстановление титана из хлористого соединения осуществляется чаще всего магнийтермическим методом. Процесс осуществляют в реакторах при температуре 950 … 1000 °С в атмосфере аргона. Реактор представляет собой стальную реторту диаметром и высотой несколько метров. В реактор загружают магний и подают четыреххлористый титан. В результате их взаимодействия образуется металлический титан, твердые частицы которого спекаются в пористую массу- губку.

TiCl 4 + 2Mg = Ti + 2MgCl 2 .

Побочный продукт процесса – хлористый магний периодически сливается из реактора через летку и направляется на переработку (электролиз). Полученная губка титана в своих порах содержит в качестве примесей до 35 … 40% магния и хлористого магния.

Рафинирование титана с целью очистки его от примесей осуществляют методом вакуумной дистиляции – выдержкой при температуре 900 … 950 °С в вакууме (при остаточном давлении воздуха 0,1 Па). При этом примеси либо расплавляются, либо испаряются.

Переплавка титановой губки в слитки осуществляется методом вакуумно-дугового переплава. Для этого из губки прессованием изготавливают расходуемый электрод и осуществляют переплав его в вакууме на установке, аналогичной рассмотренной ранее в разделе рафинирования стали. Чистота полученных слитков титана составляет 99,6 … 99,7%.

Вопросы для текущего контроля знаний по разделу

1. Какие материалы, применяемые в машино- и приборостроении вы знаете?

2. Что представляют собой черные сплавы, какие черные сплавы вы знаете?

3. Что такое цветные сплавы, какие цветные сплавы вы знаете?

4. Какие неметаллические материалы вы знаете?

5. Что такое металлургическое производство, каковы его задачи?

6. Какие виды продукции выпускает черная металлургия?

7. Какие материалы являются исходными при производстве чугуна?

8. Что в металлургии называют шихтой?

9. Как устроена и работает доменная печь?

10. Какие недостатки способа получения железоуглеродистых сплавов в доменной печи вы знаете?

11. Что является сырьем при производстве стали?

12. Какова последовательность протекания физико-химических реакций в сталеплавильной печи?

13. Какие этапы технологического процесса выплавки стали в металлургической печи вы знаете?

14. Какова сущность способа производства стали в кислородном конвертере, как устроен и работает кислородный конвертер?

15. Перечислите достоинства и недостатки способа производства стали в кислородном конвертере?

16. Как осуществляют выплавку стали в мартеновской печи?

17. Расскажите, как устроена и работает мартеновская печь?

18. На какие периоды делится процесса плавки в мартеновской печи?

19. Каковы достоинства и недостатки мартеновской печи?

20. Какие электропечи, предназначенные для выплавки стали вы знаете?

21. Что является источником тепла в дуговой электрической печи?

22. Как устроена и работает дуговая электропечь для выплавки стали?

23. Каковы достоинства и недостатки дуговой электрической печи?

24. Что является источником тепла в индукционной электрической печи?

25. На каком принципе построена работа индукционных электрических печей для выплавки стали?

26. Как устроена и работает индукционная электрическая печь?

27. Назовите преимущества и недостатки индукционной печи?

28. Какие способы прямого восстановления железа из руд вы знаете?

29. Расскажите о методе внедоменного получения железа, реализованном на Оскольском металлургическом комбинате?

30. Каким образом в сталь попадают примеси?

31. Какие методы повышения качества стали вы знаете?

32. В чем заключается метод рафинирующей обработки стали синтетическими шлаками?

33. В чем заключается метод вакуумной дегазации стали при рафинирующей ее обработке?

34. Как осуществляется электрошлаковый переплав при рафинировании стали?

35. В чем состоит сущность способа вакуумно-дугового переплава и как он влияет на качество стали?

36. Какие методы разливки стали вы знаете?

37. Какая оснастка используется для разливки стали?

38. Как осуществляется разливка стали при заполнении изложниц сверху, какие преимущества и недостатки имеет этот метод?

39. Что представляет собой метод разливки стали сифоном, какие преимущества и недостатки он имеет?

40. Каким образом разливают сталь на машинах для непрерывной разливки, какие преимущества и недостатки он имеет?

41. Какие основные виды продукции цветной металлургии вы знаете?

42. Как в настоящее время осуществляют производство меди?

43. Расскажите о технологическом процессе производства алюминия?

44. В какой последовательности выполняют операции при производстве магния?

45. Как выглядит наиболее распространная в настоящее время схема технологического процесса производства титана?

ПРОИЗВОДСТВО МЕТАЛЛОВ

Металлургией называют отрасль промышленности, производя­щую металлы из руд и другого сырья.

Все металлы делят на черные и цветные. К черным металлам относятся железо, марганец, хром и сплавы на их основе; к цвет­ным - все остальные. Цветные металлы делятся на четыре группы: 1) тяжелые: медь, свинец, олово, цинк и никель; 2) легкие: алю­миний, магний, кальций, щелочные и щелочноземельные; 3) дра­гоценные, или благородные: платина, иридий, осмий, палладий, рутений, родий, золото и серебро; 4) редкие (все остальные): а) тугоплавкие: вольфрам, молибден, ванадий, титан, кобальт, цирконий иниобий; б) рассеянные: германий, галлий, таллий, индий и рений; в) редкоземельные: лантаноиды; г) радиоактивные: торий, радий, актиний, протактиний и уран; д) искусственные полоний, астат, нептуний, плутоний и др.

Сырье цветной и черной металлургии . По извлекаемому металлу руды называют железными, медными, марганцовыми, свинцовыми, медноникелевыми, урановыми и т. п. По составу их делят насульфидные, окисленные и самородные. Сульфидными рудами называются породы, в которых получаемый металл находится ввиде сульфидов. Это медные, цинковые, свинцовые и полиметаллические руды (халькопирит CuFeS 2 , галенит PbS, сфалерит ZnS и др.) Если извлекаемый металл находится в виде оксидов или другихкислородсодержащих минералов (силикаты, карбонаты), то такие руды относят к окисленным. Железные, марганцовые, алюминиевые руды чаще бывают окисленными. Руды, содержащие природные сплавы металлов, называют самородными.

На современном уровне развития технологии считается рентабельной переработка железных руд с содержанием не менее 30 % Fe, цинковых - 3% Zn имедных - 0,5 % Си.

Для получения металла из руды, кроме отделения пустой поро­ды, необходимо отделить металл от химически связанных с ним элементов. Эта стадия называется металлургическим процессом. Металлургический процесс, осуществляемый с применением высо­ких температур, называется пирометаллургическим, с использо­ванием водных растворов - гидрометаллургическим. В отдельную группу выделяют электрометаллургические процессы.

Первая стадия производства - обогащение сырья. Следующая стадия заключается в разложении концентрата обжигом, в обра­ботке его хлором, а также оксидом серы (IV) или жидкими реа­гентами(кислотами, щелочами, комплексообразователями). По­следними двумя способами извлекаемый металл переводят в раст­вор, из которого выделяется оксид или соль редкого металла осаж­дением в виде малорастворимого соединения или кристаллизацией. Завершающая стадия - получение чистого металла или сплававосстановлением углеродом или водородом, термическим разложением, вытеснением (цементация), электролизом растворов или расплавов.

В производстве тугоплавких металлов (вольфрам, молибден – завод «Победит») применяется метод порошковой металлур­гии, заключающийся в восстановлении оксидов порошкообразных металлов. Затем металлический порошок прессуют под большим давлением испекают в электрических печах, получая металл безперевода его в жидкое состояние. Температура спекания металли­ческого порошка обычно на 1/3 ниже температуры плавления ме­талла.

ПРОИЗВОДСТВО ЖЕЛЕЗА И ЕГО СПЛАВОВ

Среди используемых человеком металлов железо и его сплавы по объему и сферам применения занимают первое место. В практике обычно используют не чистое железо, а его сплавы, и в первую очередь с углеродом. В технике железом называют черный металл с содержанием углерода менее 0,2%. По количеству углерода все сплавы делят на стали и чугуны. К сталям относятся железные сплавы с содержанием углерода от 0,2 до 2%, к чугунам - с содержанием углерода выше 2% (обычно от 3,5 до 4,5%).

На рисунке 1 приведена диаграмма фазового состояния системы железо - углерод.

Как следует из диаграммы, температура начала плавления сталей снижается с ростом содер­жания углерода до точки Е. Эта точка соответствует предельной растворимости углерода в твердом железе (2% С). Для чугуна не­зависимо от количества углерода температура плавления остается постоянной.

Если в чугуне значительная часть углерода находится в виде цементита Fe 3 C, то такой чугун называется белым. Из-за высокой твердости и хрупкости его трудно обрабатывать на станках, поэтому белый чугун перерабатывается в сталь. По этому признаку он получил еще название передельного чугуна. При медленном охлаждении расплавленного чугуна часть Fe 3 C распадается с выделением свободного углерода в виде графита. Такой чугун называется серым или литейным. Он более мягок, менее хрупок и хорошо обрабатывается на станках.

По составу стали могут быть углеродистыми и легированными. Углеродистыми называют стали, свойства которых определяются углеродом, а другие примеси существенного влияния не оказы­вают. По содержанию углерода эти стали делят на: малоуглеродистые (до 0,3% С), среднеуглеродистые (от 0,3 до 0,65%) и высоко­углеродистые (от 0,65 до 2% С). Из иизкоуглеродистой стали из­готовляют кровельное железо, стальной лист, черную и белую жесть (широко используемую для изготовления тары), мягкую проволоку и т. д.; среднеуглеродистые стали используют для про­изводства рельсов, труб, проволоки, деталей машин; высокоугле­родистая служит в основном для изготовления разнообразного ин­струмента.

Легированными называют стали, содержащие, кроме углерода, другие специально введенные для изменения свойств добавки (Cr, Mn, Ni, V, W, Мо и др.). Сталь, содержащую до 3-5% леги­рующих элементов, считают низколегированной, 5-10%-среднелегированной, 10% и более - высоколегированной. Никель придает стали повышенную пластичность и вязкость, марганец - прочность, хром - твердость и коррозионностойкость, молибден и ванадий - прочность при высоких температурах и т. д. Напри­мер, марганцовистые стали (8-14% Мп) обладают высокой ударо­стойкостью, их используют для изготовления дробилок, шаровых мельниц, рельсов и других ударонапряженных изделий. Хромомолибденовые и хромованадиевые стали идут на изготовление колонн синтеза, работающих под высоким давлением и при повышенной температуре. Из хромоникелевой или нержавеющей стали изго­тавливают химические реакторы, трубопроводы, кухонную посуду, вилки, ножи и т. д. Стали также классифицируют по назначению: строительная (конструкционная), машиностроительная, инстру­ментальная и стали с особыми (специальными) свойствами. Некоторые примеси заметно ухудшают свойства стали. Так, сера придает стали красноломкость - хрупкость при красном калении, фосфор - хладноломкость, т. е. хрупкость при обычной и низкой темпера­туре, азот и водород - газопористость, хрупкость.



ПРОИЗВОДСТВО ЧУГУНА

В настоящее время главный процесс металлургического про­изводства черных металлов осуществляется по двухступенчатой схеме: получение чугуна в доменной печи и его передел в сталь. Чугун используют также для отливки станин, машин, тяжелых колес, труб и т. д. Основными исходными материалами для произ­водства чугуна являются железные руды, флюсы и топливо.

Промышленные типы железных руд классифицируюг по виду преобладающего рудного минерала: 1) магнитные железняки со­стоят в основном из минерала магнетита Fe 3 O 4 (с наиболее высоким содержанием железа - 50-70% и низким содержанием серы), который трудновосстановим; 2) красные железняки содержат 50-70% железа в виде минерала гематита - Fe 2 O 3 , небольшие примеси серы, фосфора и восстанавливаются легче, чем магнетит; 3) бурые железняки представляют собой гидроксиды железа со­става Fe 2 O 3 × пН 2 О с переменным количеством адсорбированной воды. Эти руды в основном бедные по содержанию железа (от 25 до 53%), часто загрязнены вредными примесями - серой, фосфо­ром, мышьяком. Встречаются хромоникелевые бурые железняки (2% Cr и 1% Ni), используемые для выплавки природнолегированных чугуна и стали; 4) шпатовые железняки содержат 30-37% Fe, а также FeCO 3 и незначительные примеси серы и фосфора. После обжига содержание железа возрастает до 50-60%. Для сидеритов часто характерна примесь марганца от 1 до 10%.

Сырьем служат также отходы производства черных и цветных металлов, но их доля в общем потреблении руд невелика. Для перевода тугоплавких оксидов в легкоплавкий шлак, не смешиваю­щийся с чугуном, в процессе доменной плавки используют флюсы - породы основного характера: известняк или доломит (СаСО 3 , MgCO 3). Обычно на выплавку 1 т чугуна расходуется 0,4-0,8 т флюсов.

В качестве топлива в производстве чугуна применяют кокс с содержанием 80-86% С, 2-7% Н 2 О, 1,2-1,7% S, до 15% золы и природный газ.

Подготовка железной руды к доменной плавке заключается в
дроблении, грохочении, усреднении и обогащении. Обо­гащение ведут в зависимости от типа руды восстановительным обжигом, электромагнитной сепарацией, флотацией. В нашей стране практически всю добываемую руду на последнем этапе подготовки подвергают агломерации. Это процесс спекания измельченной руды с коксовой мелочью (5-8%) и обожженным известняком (3-6%) в агломерационной машине транспортерного типа. Наряду с агломерацией применяют и окомковывание пылевидной руды со связующим веществом во вращающихся обжиговых печах с получением окатышей.

Процесс доменной плавки . Чугун выплавляют в металлур­гических реакторах шахтного типа, называемых до­менными печами или домнами. Описание доменной печи дано в лекции 4.

В зоне горна за счет интенсивной подачи воздуха поддерживается окислительная среда и углерод кокса сгорает:

С + О 2 = СО 2 + 401 кДж

Воздух, подаваемый в доменную печь, нагревается в регенерагивных воздухоподогревателях (кауперах) до 900-1200 °С (рис. 2).

Оксид углерода (IV) на поверхности раскаленного кокса восстанавливается до оксида углерода (II):

2С + СО 2 = 2СО - 166 кДж

Образовавшийся в горне восстановительный газ поднимается в верхнюю часть печи, нагревает и восстанавливает компоненты шихты. Наивысшая температура в горне доменной печи 1800 °С, низшая в колошнике 250 °С. Давление газа в горне 0,2-0,35 МПа.

По мере опускания шихты последовательно протекают следую­щие процессы: разложение нестойких компонентов шихты, вос­становление оксидов железа и других соединений, науглероживание железа (растворение углерода), шлакообразование и плавле­ние. Разложение компонентов шихты начинается в колошнике, одновременно (до 200 °С) удаляется влага. При нагревании шихты от 400 до 600 °С идет интенсивное разложение карбонатов железа, марганца, магния, а при 800-900 °С - известняка. Оксиды каль­ция и магния взаимодействуют с ингредиентами пустой породы, образуя силикаты и алюминаты. Из кокса удаляются остатки ле­тучих компонентов.

Восстановление железа представляет собой процесс последова­тельного перехода от высших оксидов к низшим до элементарного железа по схеме:

Fe 2 O 3 ® Fe 3 O 4 ® FeO ® Fe

В основу восстановительного процесса заложены реакции окси­да углерода с оксидами железа:

2Fe 2 O 3 + CO = 2Fe 3 O 4 + CO 2 + 63 кДж

Fe 3 O 4 + CO = 3FeO + CO 2 - 22 кДж

FeO + CO = Fe + CO 2 + 13 кДж

Восстановление железа оксидом углерода (II) принято назы­вать косвенным (непрямым), а при помощи твердого углерода – прямым.

Прямое восстановление железа протекает не только за счет углерода кокса, но и углерода, образующегося при термической диссоциации оксида углерода (II) на поверхности руды:

2СО = СО 2 + С

Применение природного газа в качестве дополнительного топли­ва способствует повышению температуры процесса и косвенному восстановлению руды водородом:

СН 4 + 2О 2 = СО 2 + 2Н 2 + 803 кДж

Н 2 О + С = Н 2 + СО - 126 кДж

Кроме железа, в условиях доменного процесса восстанавлива­ются и другие элементы, входящие в состав шихты. Однако зна­чительная часть марганца не восстанавливается и переходит в шлак.

Гетерогенное восстановление руды заканчивается получением губчатого железа, в порах которого оксид углерода (II) разлагает­ся. Образовавшийся при этом сажистый углерод с железом дает цементит:

3Fе + С = Fe 3 C

Одновременно идет науглероживание железа и за счет растворе­ния углерода. Повышение содержания углерода в железе приводит к снижению температуры его плавления. Примерно при 1200 °С науглероженное железо плавится, стекает по кускам кокса и флюсов, дополнительно растворяя углерод, кремний, марганец, фосфор и другие элементы. Расплавленный чугун накапливается в горне. Шлакообразование начинается при температуре около 1000 °С за счет взаимодействия оксида кальция с оксидом кремния (IV), оксидом алюминия, марганца. При 1250-1350 °С шлаки плавятся и накапливаются в горне над расплавленным чугуном. Для преду­преждения перехода FeO в шлак и выведения серы необходимо повышать основность шлака (избыток СаО):

FeO × SiO 2 + СаО = CaSiO 3 + FeO

FeO + CO = Fe + CO 2

FeS + CaO = FeO + CaS

MnS + CaO = MnO + CaS

Образовавшийся сульфид кальция растворим в шлаке, но нерастворим в чугуне.

Для обеспечения непрерывности процесса доменную печь об­служивают несколько воздухонагревателей. Применение в домен­ном процессе нагретого воздуха в пределах 1000-1350 °С дает возможность на каждые 100° увеличивать производительность на 2% и на столько же снизить расход кокса.

В результате доменной плавки получают литейный чугун, на­правляемый на изготовление изделий методом литья; передельный и специальный чугуны (ферросилиций - 10-12% Si, зеркальный - 12 - 20% Мn и ферромарганец - 60-80% Мn), перерабатывае­мые в сталь; доменный шлак, из которого производят различные строительные материалы: шлакопортландцемент, шлакобетон, шла­ковату, ситаллы для дорожного строительства; доменный газ (до 30% СО) отделяют от колошниковой пыли и используют как топли­во в воздухонагревателях, коксовых печах, для нагрева металла перед прокатом.

ПРЯМОЕ ПРОИЗВОДСТВО ЖЕЛЕЗА ИЗ РУД

Это такой металлургический процесс, когда восстановление руды идет в твердом состоянии, минуя стадию получения чугуна. Полученное методом прямого восстановления губчатое железо перерабатывается в сталь в электродуговых печах. Прямое вос­становление железа осуществляется в шахтных и вращающихся печах, в реакторах с кипящим слоем. Сырьем служат окатыши с высоким содержанием железа, рудная мелочь, восстановителем - природный газ, жидкое и пылевидное твердое топливо. В России на базе Лебединского месторождения действует Оскольский электрометаллургический комбинат с прямым получением железа из руды по следующей схеме. Из рудника мелкораздроб­ленную и обогащенную руду по трубопроводу с водой подают на комбинат. Здесь руда отделяется от воды, смешивается со связую­щими веществами и небольшим количеством извести, во вращаю­щихся барабанах окусковывается в окатыши определенного раз­мера. Окатыши непрерывно загружают в верхнюю часть шахтного реактора (высота - 50 м, диаметр -8 м), в котором при 1000 - 1100 °С осуществляется противотоком восстановление предварительно нагретым и конвертированным природным газом (сме­сью водорода и оксида углерода). Из нижней части реактора не­прерывно отводятся восстановленные окатыши с 90-95% содер­жанием железа. Они поступают в дуговую электропечь для выплавки стали.

ПРОИЗВОДСТВО СТАЛИ

Передел чугуна в сталь заключается в уменьшении в нем угле­рода (окислением), в понижении в металле содержания крем­ния, марганца и других элементов, в возможно полном удалении серы и фосфора. В качестве окислителей используют кислород и оксиды железа. В настоящее время сталь выплавляют в марте­новских печах, кислородных конвертерах и электрических печах периодического действия.


Выплавка стали в мартеновских печах . Мартеновская печь (рис. 3) представляет собой ванную отражательную печь, в ко­торой используют регенерацию теплоты отходящих газов. Она состоит из свода 3, передних, задних и боковых стен, пода 4 и ре­генераторов 5 -8. В передней стенке расположены окна для за­грузки шихты, в задней - отверстие для выпуска стали и шла­ков, боковые отверстия служат для ввода газового топлива и воздуха и вывода продуктов горения с температурой 1600 °С. Для регенерации теплоты печь снабжена четырьмя камерами с насад­кой из огнеупорного кирпича. Через одну пару нагретых насадок 7, 8 в печь направляют газ и воздух, а через вторую проходят продукты горения, нагревающие насадку 5, 6. Затем потоки ме­няются. Исходными материалами для мартеновского процесса служат жидкий или твердый передельный чугун, металлолом (скрап), высококачественная железная руда и флюсы. Отапливается печь газообразным топливом. По окончании плавки в сильно разогретую печь загружают жидкий чугун, скрап, флюсы и руды. При высокой температуре металлолом плавится, кислород воздуха окисляет железо до оксида железа, одновременно высшие оксиды железа восстанавливаются железом:

2Fe + O 2 = 2FeO + 556 кДж

Fe 2 O 3 + Fe = 3FeO

Оксид железа (II), хорошо растворяясь в чугуне, окисляет растворенные в нем другие компоненты:

Si + 2FeO = SiO 2 + 2Fe + 264 кДж

Mn + FeO = MnO + Fe + 100 кДж

2P + 5FeO = P 2 O 5 + 5Fe + 199 кДж

Частично эти элементы окисляются и кислородом воздуха. Образующиеся оксиды SiO 2 , MnO, P 2 O 6 взаимодействуют с флюсами и превращаются в шлак. В шлак частично переходит сера, так как сульфид кальция нерастворим в металле:

СаО + FeS = FeO + CaS

С появлением над поверхностью металла шлака жидкий ме­талл изолируется от непосредственного действия кислорода, но процесс окисления не прекращается, а лишь замедляется. Со­держащийся в шлаке оксид FeO на поверхности окисляется в Fe 2 O 3 , который диффундирует через шлак к металлу, окисляя его. С рос­том температуры до 1600 °С и выше начинает интенсивно окислять­ся углерод:

FeO + С =± Fe + СО - 153 кДж

Процесс выделения из жидкого металла оксида углерода (II) называют «кипением» стали. После достижения в расплаве ус­тановленного содержания углерода шлак удаляют и вводят в сталь раскислители - ферросилиций или ферромарганец для восста­новления растворенной в стали FeO:

2FeO + Si = 2Fe + SiO 2

FeO + Mn = Fe + MnO

При необходимости в конце плавки вводят легирующие элементы. В связи с высокими технико-экономическими показателями переделки чугуна в сталь кислородно-конверторным способом, строительство новых мартеновских печей прекращено.

Выплавка стали в кислородных конвертерах . Применяемый ранее бессемеровский и томассовский конверторные способы пере­делки чугуна в сталь имели существенные недостатки - невоз­можность использования металлолома и низкое качество стали вследствие растворения в ней азота воздуха по сравнению с марте­новским методом. Замена воздуха на кислород дала возможность устранить эти недостатки, и в настоящее время прирост производ­ства стали происходит преимущественно за счет строительства высокопроизводительных и экономичных кислородных конвер­теров с основной футеровкой.

В России действуют глуходонные конвертеры с вве­дением технически чистого кислорода (99,5%) вертикально сверху через водоохлаждаемые фурмы. Кислородные струи под давлением 0,9-1,4 МПа пронизывают металл, вызывая его цир­куляцию и перемешивание со шлаком. При кислородно-конвер­торном способе передела чугуна в сталь протекают те же реакции, что и при мартеновском, но более интенсивно, что дает возможность вводить в конвертер металлолом, руду, флюсы. Плавка в конвер­тере длится 35-40 мин, а скоростная мартеновская плавка 6-8 ч. При равной производительности капитальные затраты на строи­тельство кислородно-конверторного цеха на 25-35% ниже, а себе­стоимость стали на 5-7% меньше, чем при мартеновском способе.

Выплавка стали в электропечах относится к электротермическим производствам. В электрических печах можно выплавлять стали практически любого состава, с добавлением легирующих элементов, с низким содержанием серы, в восстановительной, окислительной или нейтральной атмосфере, а также в вакууме. Электросталь от­личается низким содержанием газов и неметаллических примесей.

Качество стали, полученной любым из трех рассмотренных методов, может быть улучшено путем внепечного рафинирования. Наиболее широко распространены в производстве все три метода рафинирования: аргонно-кислородная продувка металла для вы­плавки нержавеющих сталей, вакуумная обработка жидкой стали для ее очистки от неметаллических включений и водорода, об­работка стали жидкими синтетическими шлаками (53% СаО, 40% А1 2 О 3 , до 3% SiO и до 1 % FeO).

Основная часть стали перерабатывается в изделия путем меха­нической обработки. Традиционная схема: разлив стали в чугун­ные формы - изложницы, кристаллизация в виде слитка, обрезка и зачистка слитка, превращение слитка в обжимных станах (блю­минг, слябинг) в заготовку, далее заготовка перерабатывается в изделия прокатом, штамповкой или ковкой. В настоящее время в металлургии все шире внедряется непрерывная разливка стали в специальных установках с превращением металла непосредственно в заготовку, а также точное (корковое) литье. Перспективным направлением развития металлургии стала порошковая металлургия, открывающая большие возможности для создания но­вых материалов, экономии металлов, энергии и повышения произ­водительности труда.

К металлургии относятся:
производство металлов из природного сырья и других металлсодержащих продуктов;
получение сплавов;
обработка металлов в горячем и холодном состоянии;
сварка;
нанесение покрытий из металлов.
К металлургии примыкает и эксплуатация машин, аппаратов, агрегатов, используемых в металлургической промышленности.
С металлургией тесно связаны коксохимия, производство огнеупорных материалов.

Металлургия подразделяется на чёрную и цветную.

Чёрная металлургия включает добычу и обогащение руд чёрных металлов (к чёрным металлам относят железо, все остальные - цветные), производство чугуна, стали и ферросплавов. К чёрной металлургии относят также производство проката чёрных металлов, стальных, чугунных и других изделий из чёрных металлов.

К цветной металлургии относят добычу, обогащение руд цветных металлов, производство цветных металлов и их сплавов.

По основному технологическому процессу подразделяется на пирометаллургию (плавка) и гидрометаллургию (извлечение металлов в химических растворах). Разновидностью пирометаллургии является плазменная металлургия.

Добывающая металлургия

Добывающая металлургия заключается в извлечении ценных металлов из руды и переплавке извлечённого сырья в чистый металл. Для того, чтобы превратить оксид или сульфид металла в чистый металл, руда должна быть отделена физическим, химическим или электролитическим способом.

Металлурги работают с тремя основными составляющими: сырьём, концентратом (ценный оксид или сульфид металла) и отходами. После добычи большие куски руды измельчаются до такой степени, когда каждая частица является либо ценным концентратом либо отходом.

Горные работы не обязательны, если руда и окружающая среда позволяют провести выщелачивание. Таким путём можно растворить минерал и получить обогащённый минералом раствор.

Зачастую руда содержит несколько ценных металлов. В таком случае отходы одного процесса могут быть использованы в качестве сырья для другого процесса.


Чёрная металлургия

Чёрная металлургия служит основой развития машиностроения (одна треть отлитого металла из доменной печи идёт в машиностроение) и строительства (1/4 металла идёт в строительство). Основным исходным сырьем для получения черных металлов являются железная руда, марганец, коксующиеся угли и руды легирующих металлов.

В состав чёрной металлургии входят следующие основные подотрасли:

Добыча и обогащение руд чёрных металлов (железная, хромовая и марганцевая руда);
добыча и обогащение нерудного сырья для чёрной металлургии (флюсовых известняков, огнеупорных глин и т. п.);
производство чёрных металлов (чугуна, углеродистой стали, проката, металлических порошков чёрных металлов);
производство стальных и чугунных труб;
коксохимическая промышленность (производство кокса, коксового газа и пр.);
вторичная обработка чёрных металлов (разделка лома и отходов чёрных металлов).

Металлургический цикл

Собственно металлургическим циклом является производство

1) чугунно-доменное производство,

2) стали (мартеновское, кислородноконвертерное и электросталеплавильное), (непрерывная разливка, МНЛЗ),

3) проката (прокатное производство).

Предприятия, выпускающие чугун, углеродистую сталь и прокат, относятся к металлургическим предприятиям полного цикла.

Предприятия без выплавки чугуна относят к так называемой передельной металлургии. «Малая металлургия» представляет собой выпуск стали и проката на машиностроительных заводах. Основным типом предприятий чёрной металлургии являются комбинаты.

В размещении чёрной металлургии полного цикла большую роль играет сырьё и топливо, особенно велика роль сочетаний железных руд и коксующихся углей.


Цветная металлургия

Цветная металлургия - отрасль металлургии, которая включает добычу, обогащение руд цветных металлов и выплавку цветных металлов и их сплавов.

По физическим свойствам и назначению цветные металлы условно можно разделить на тяжёлые (медь, свинец, цинк, олово, никель) и лёгкие (алюминий, титан, магний). На основании этого деления различают металлургию лёгких металлов и металлургию тяжёлых металлов.

Размещение предприятий цветной металлургии зависит от многих экономических и природных условий, особенно от сырьевого фактора. Заметную роль, помимо сырья, играет топливно-энергетический фактор.

На территории России сформировано несколько основных баз цветной металлургии. Различия их в специализации объясняются несхожестью географии лёгких металлов (алюминиевая, титано-магниевая промышленность) и тяжёлых металлов (медная, свинцово-цинковая, оловянная, никель-кобальтовая промышленности).

Тяжёлые металлы

Производство тяжёлых цветных металлов в связи с небольшой потребностью в энергии приурочено к районам добычи сырья.

По запасам, добыче и обогащению медных руд, а также по выплавке меди ведущее место в России занимает Уральский экономический район, на территории которого выделяются Красноуральский, Кировградский, Среднеуральский, Медногорский комбинаты.

Свинцово-цинковая промышленность в целом тяготеет к районам распространения полиметаллических руд. К таким месторождениям относятся Садонское (Северный Кавказ), Салаирское (Западная Сибирь), Нерченское (Восточная Сибирь) и Дальнегорское (Дальний Восток).

Центром никель-кобальтовой промышленности являются города Норильск (Восточная Сибирь) и Мончегорск (Северный экономический район), а также поселок городского типа Никель (Мурманская область).

Лёгкие металлы

Для получения лёгких металлов требуется большое количество энергии. Поэтому сосредоточение предприятий, выплавляющих легкие металлы, у источников дешёвой энергии - важнейший принцип их размещения.

Сырьём для производства алюминия являются бокситы Северо-Западного района (Бокситогорск), Урала (город Североуральск), нефелины

Кольского полуострова (Кировск) и юга Сибири (Горячегорск). Из этого алюминиевого сырья в районах добычи выделяют окись алюминия - глинозём. Получение из него металлического алюминия требует больших затрат электроэнергии. Поэтому алюминиевые заводы строят вблизи крупных электростанций, преимущественно ГЭС (Братской, Красноярской и др.)

Титано-магниевая промышленность размещается преимущественно на Урале, как в районах добычи сырья (Березниковский титано-магниевый завод,), так и в районах дешёвой энергии (Усть-Каменогорский титано-магниевый завод). Заключительная стадия титано-магниевой металлургии - обработка металлов и их сплавов - чаще всего размещается в районах потребления готовой продукции.


Сплавы

Наиболее часто используются сплавы алюминия, хрома, меди, железа, магния, никеля, титана и цинка. Много усилий было уделено изучению сплавов железа и углерода. Обычная углеродистая сталь используется для создания дешёвых, высокопрочных изделий, когда вес и коррозия не критичны.

Нержавеющая или оцинкованная сталь используется, когда важно сопротивление коррозии. Алюминиевые и магниевые сплавы используются, когда требуются прочность и легкость.

Медно-никелевые сплавы (такие, как монель-металл) используются в коррозионно-агрессивных средах и для изготовления ненамагничиваемых изделий. Суперсплавы на основе никеля (например, инконель) используются при высоких температурах (турбонагнетатели, теплообменники и т. п.). При очень высоких температурах используются монокристаллические сплавы.

Виды сплавов

По способу изготовления сплавов различают литые и порошковые сплавы. Литые сплавы получают кристаллизацией расплава смешанных компонентов. Порошковые - прессованием смеси порошков с последующим спеканием при высокой температуре. Компонентами порошкового сплава могут быть не только порошки простых веществ, но и порошки химических соединений. Например, основными компонентами твёрдых сплавов являются карбиды вольфрама или титана.

По способу получения заготовки (изделия) различают литейные (например, чугуны, силумины), деформируемые (например, стали) и порошковые сплавы.

В твердом агрегатном состоянии сплав может быть гомогенным (однородным, однофазным - состоит из кристаллитов одного типа) и гетерогенным (неоднородным, многофазным). Твёрдый раствор является основой сплава (матричная фаза). Фазовый состав гетерогенного сплава зависит от его химического состава. В сплаве могут присутствовать: твердые растворы внедрения, твердые растворы замещения, химических соединений(в том числе карбиды, нитриды, интерметаллиды …) и кристаллиты простых веществ.

Свойства сплавов

Свойства металлов и сплавов полностью определяются их структурой (кристаллической структурой фаз и микроструктурой). Макроскопические свойства сплавов определяются микроструктурой и всегда отличаются от свойств их фаз, которые зависят только от кристаллической структуры. Макроскопическая однородность многофазных (гетерогенных) сплавов достигается за счёт равномерного распределения фаз в металлической матрице. Сплавы проявляют металлические свойства, например: электропроводность и теплопроводность, отражательную способность (металлический блеск) и пластичность. Важнейшей характеристикой сплавов является свариваемость.

Сплавы, используемые в промышленности

Сплавы различают по назначению: конструкционные, инструментальные и специальные.

Конструкционные сплавы:

Стали
чугуны
дюралюминий

Конструкционные со специальными свойствами (например, искробезопасность, антифрикционные свойства):

Бронзы
латуни

Для заливки подшипников:

Баббит

Для измерительной и электронагревательной аппаратуры:

Манганин
нихром

Для изготовления режущих инструментов:

Победит

В промышленности также используются жаропрочные, легкоплавкие и коррозионностойкие сплавы, термоэлектрические и магнитные материалы, а также аморфные сплавы.