Животные живущие в горячих источниках. Термофильные организмы

Экстремофилы - это организмы, которые живут и процветают в местах обитания, где жизнь невозможна для большинства других организмов. Суффикс (-фил) в переводе с греческого означает любовь. Экстремофилы «любят» обитать в экстремальных условиях. Они обладают способностью выдерживать такие состояния, как высокая радиация, высокое или низкое давление, высокий или низкий уровень pH, отсутствие света, сильная жара или холод и экстремальная засуха.

Большинство экстремофилов - это микроорганизмы, такие как , и . Более крупные организмы, такие как черви, лягушки, насекомые и , также могут жить в экстремальных местах обитания. Существуют различные классы экстремофилов, основанные на типе среды, в которой они процветают. Вот некоторые из них:

  • Ацидофил - организм, который процветает в кислой среде с уровнем pH3 и ниже.
  • Алкалифил - организм, который процветает в щелочных средах с уровнем pH9 и выше.
  • Барофил - организм, который живет в условиях высокого давления, таких как глубоководные места обитания.
  • Галофил - организм, который живет в местах обитания с чрезвычайно высокой концентрацией соли.
  • Гипертермофил - организм, который процветает в средах с чрезвычайно высокими температурами (от 80° до 122° C).
  • Психрофил/криофил - организм, который живет в экстремально холодных условиях и низких температурах (от -20° до +10° C).
  • Радиорезистентные организмы - организм, который процветает в условиях с высоким уровнем радиации, включая ультрафиолетовое и ядерное излучение.
  • Ксерофил - организм, который живет в экстремально сухих условиях.

Тихоходки

Тихоходки или водные медведи могут переносить несколько типов экстремальных условий. Они живут в горячих источниках, антарктическом льду, а также в глубоких средах, на горных вершинах и даже в . Тихоходки обычно встречаются в лишайниках и мхах. Они питаются растительными клетками и крошечными беспозвоночными, такими как нематоды и коловратки. Водные медведи размножаются , хотя некоторые размножатся через партеногенез.

Тихоходки могут выживать в различных экстремальных условиях, потому что они способны временно приостанавливать обмен веществ, когда условия не пригодны для выживания. Этот процесс называется криптобиозом и позволяет водным медведям войти в состояние, которое позволит им выжить в условиях экстремальной засушливости, нехватки кислорода, сильного холода, низкого давления и высокой токсичности или радиации. Тихоходки могут оставаться в этом состоянии в течение нескольких лет и выходить из него, когда окружающая среда становится пригодной для жизни.

Артемия (Artemia salina )

Артемия - вид небольших ракообразных, которые способны жить в условиях с чрезвычайно высокой концентрацией соли. Эти экстремофилы обитают в соленых озерах, соляных болотах, морях и скалистых берегах. Их основным источником пищи являются зеленые водоросли. Артемии имеют жабры, которые помогают им выжить в соленой среде, поглощая и выделяя ионы, а также продуцируя концентрированную мочу. Как тихоходки, артемии размножаются половым и бесполым путем (через партеногенез).

Бактерии хеликобактер пилори (Helicobacter pylori )

Helicobacter pylori - бактерия, живущая в крайне кислой среде желудка. Эти бактерии выделяют ферментную уреазу, нейтрализующую соляную кислоту. Известно, что другие бактерии не способны выдержать кислотность желудка. Helicobacter pylori являются спиральными бактериями, которые могут зарываться в стенку желудка и вызывать язвы или даже рак желудка у людей. По данным Центра по контролю и профилактике заболеваний (CDC), у большинства людей мира есть эти бактерии в желудке, но они, как правило, редко вызывают заболевания.

Цианобактерии Gloeocapsa

Gloeocapsa - род цианобактерий, которые обычно живут на мокрых породах скалистых берегов. Эти бактерии содержат хлорофилл и способны к . Клетки Gloeocapsa окружены студенистыми оболочками, которые могут быть ярко окрашенными или бесцветными. Ученые обнаружили, что они способны выжить в космосе в течение полутора лет. Образцы горных пород, содержащие Gloeocapsa , были размещены снаружи Международной космической станции, и эти микроорганизмы смогли выдержать экстремальные условия космоса, такие как колебания температур, вакуумное воздействие и радиационное облучение.

Высокие температуры вредны почти для всего живого. Повышения температуры среды до +50 °С оказывается вполне достаточно, чтобы вызвать угнетение и гибель самых разнообразных организмов. Не приходится говорить о более высоких температурах.

Пределом распространения жизни считается температурная отметка +100 °С, при которой происходит денатурация белка, то есть разрушение структуры белковых молекул. В течение длительного периода считалось, что в природе нет таких существ, которые бы спокойно переносили температуры в интервале от 50 до 100 °С. Однако последние открытия ученых говорят об обратном.

Сначала были открыты бактерии, приспособленные к жизни в горячих источниках с температурой воды до +90 ºС. В 1983 году произошло другое крупное научное открытие. Группа американских биологов проводила изучение находящихся на дне Тихого океана источников термальных вод, насыщенных металлами.

Похожие на усеченные конусы черные курильщики находятся на глубине 2000 м. Их высота равна 70 м, а диаметр основания равен 200 м. Впервые курильщики были открыты у Галапагосских островов.

Расположенные на большой глубине, эти «черные курильщики», как их называют геологи, активно вбирают в себя воду. Здесь она разогревается за счет тепла, идущего от глубинного раскаленного вещества Земли, и принимает температуру более +200 °С.

Вода в источниках не кипит только потому, что находится под большим давлением и обогащается металлами из недр планеты. Над «черными курильщиками » возвышается столб воды. Создаваемое здесь, на глубине порядка 2000 м (и даже много большей) давление равно 265 атм. При столь высоком давлении не закипают даже минерализованные воды некоторых источников, имеющие температуру до +350 °С.

В результате смешения с океанской водой термальные воды сравнительно быстро остывают, но обнаруженные американцами на этих глубинах бактерии стараются держаться от остывшей воды подальше. Удивительные микроорганизмы приспособились питаться минеральными веществами в тех водах, которые нагреты до +250 °С. Более низкие температуры действуют на микробов угнетающе. Уже в воде с температурой порядка +80 °С бактерии, хотя и сохраняют жизнеспособность, но перестают размножаться.

Ученые не знают точно, в чем секрет фантастической выносливости этих крохотных живых существ, которые легко переносят нагрев до температуры плавления олова.

Форма тела бактерий, населяющих черных курильщиков, неправильная. Часто организмы снабжены длинными выростами. Бактерии поглощают серу, превращая ее в органику. Погонофоры и вестиментиферы образовали симбиоз с ними, чтобы поедать эту органику.

Тщательные биохимические исследования позволили выявить наличие защитного механизма в бактериальных клетках. Молекула вещества наследственности ДНК, на которой хранится генетическая информация, у ряда видов обволакивается слоем белка, поглощающего избыточную теплоту.

Сама ДНК включает в себя аномально высокое содержание пар гуанин-цитозин. У всех прочих живых существ на нашей планете число этих объединений внутри ДНК гораздо меньше. Оказывается, связь между гуанином и цитозином очень сложно разрушить путем нагревания.

Поэтому большинство таких соединений просто служит цели упрочнения молекулы и только потом цели кодирования генетической информации.

Аминокислоты служат составными частями молекул белка, в которых удерживаются благодаря особым химическим связям. Если сравнить белки глубоководных бактерий с аналогичными по перечисленным выше параметрам белками других живых организмов, то выяснится, что за счет дополнительных аминокислот в белках высокотемпературных микробов имеются дополнительные связи.

Но специалисты уверены, что секрет бактерий вовсе не в этом. Нагрева клеток в пределах +100 - 120º С вполне достаточно, чтобы повредить ДНК, защищенную перечисленными химическими приспособлениями. Это означает, что внутри бактерий должны иметься и другие способы избежать разрушения их клеток. Белок, из которого состоят микроскопические жители термальных источников, включает в себя особые частицы - аминокислоты такого вида, которые не встречаются больше ни у одного другого существа, обитающего на Земле.

Особую защиту имеют молекулы белков бактериальных клеток, обладающие специальными защитными (укрепляющими) компонентами. Необычно устроены липиды, то есть жиры и жироподобные вещества. Их молекулы представляют собой объединенные цепочки атомов. Химический анализ липидов высокотемпературных бактерий показал, что в этих организмах липидные цепочки переплетаются между собой, что служит дополнительному укреплению молекул.

Впрочем, данные анализов можно понимать и по-другому, поэтому гипотеза о переплетенных цепочках пока остается недоказанной. Но и даже в том случае, если принять ее за аксиому, этим невозможно полностью объяснить механизмы адаптации к температурам порядка +200 °С.

Более высокоразвитые живые существа не смогли достичь успехов микроорганизмов, однако зоологам известно немало беспозвоночных и даже рыб, адаптировавшихся к жизни в термальных водах.

Среди беспозвоночных необходимо назвать в первую очередь разнообразных пещерных жителей, населяющих водоемы, подпитываемые грунтовыми водами, которые нагреваются подземным теплом. Это в большинстве случаев мельчайшие одноклеточные водоросли и всевозможные ракообразные.

Представитель равноногих ракообразных термосферома термальная относится к семейству сфероматид. Он обитает в одном горячем источнике в Соккоро (штат Нью-Мексико, США). Длина рачка составляет всего лишь 0,5-1 см. Передвигается он по дну источника и имеет одну пару антенн, предназначенных для ориентации в пространстве.

Пещерные рыбы, приспособленные к жизни в термальных источниках, переносят температуру до +40 °С. Среди этих существ наиболее примечательны некоторые карпозубообразные, населяющие подземные воды Северной Америки. Среди видов этой обширной группы выделяется кипринодон макулярис.

Это один из редчайших животных Земли. Небольшая популяция этих крохотных рыбок живет в горячем источнике, имеющем глубину всего 50 см. Данный источник находится внутри Дьявольской пещеры в Долине смерти (Калифорния), одном из наиболее засушливых и знойных мест на планете.

Близкая родственница кипринодонов слепоглазка не приспособилась к жизни в термальных источниках, хотя и населяет подземные воды карстовых пещер в том же географическом районе в пределах Соединенных Штатов. Слепоглазка и родственные ей виды выделены в семейство слепоглазковых, тогда как кипринодоны причислены к обособленному семейству карпозубых.

В отличие от прочих полупрозрачных или молочно-кремовых по расцветке пещерных обитателей, в том числе и прочих карпозубообразных, кипринодоны окрашены в ярко-синий цвет. В прежние времена эти рыбки водились в нескольких источниках и могли свободно перемещаться по грунтовым водам из одного водоема в другой.

Местные жители в XIX веке не раз наблюдали, как в лужах, возникавших в результате заполнения подземными водами колеи от колеса повозки, поселялись кипринодоны. Кстати, и по сей день остается неясным, как и зачем эти красивые рыбки пробирались вместе с подземной влагой сквозь слой рыхлой почвы.

Однако эта загадка не главная. Непонятно, как рыбы могут выдерживать температуру воды до +50 °С. Как бы то ни было, именно странное и необъяснимое приспособление помогло кипринодонам выжить. Эти существа появились в Северной Америке более 1 млн лет назад. С началом оледенения вымерли все карпозубообразные, кроме тех, кто освоил подземные воды, включая и термальные.

Почти все виды семейства стеназеллид, представленного мелкими (не более 2 см) равноногими ракообразными, живут в термальных водах с температурой не ниже +20 С.

Когда ледник ушел, а климат в Калифорнии стал более засушливым, в пещерных источниках на протяжении 50 тыс. лет сохранялись почти неизменными температура, соленость и даже количество корма - водорослей. Поэтому рыбки, не меняясь, спокойно пережили здесь доисторические катаклизмы. Сегодня все виды пещерных кипринодонов охраняются законом в интересах науки.

Для тех, кто не интересуется животными, а ищет где бы купить подарок к Новому году подешевле промокод Групон обязательно придется очень кстати.

Некоторые организмы, если сравнивать их с другими, обладают рядом неоспоримых преимуществ, например, способностью выдерживать крайне высокие или низкие температуры. Таких выносливых живых существ в мире есть очень много. В статье ниже вы познакомитесь с самыми удивительными из них. Они, без преувеличения, способны выживать даже в экстремальных условиях.

1. Гималайские пауки-скакуны

Горные гуси, как известно, являются одними из самых высоко летающих птиц в мире. Они способны летать на высоте более 6 тысяч метров над землёй.

А знаете ли Вы, где находится высочайший населённый пункт на Земле? В Перу. Это город Ла-Ринконада, расположенный в Андах недалеко от границы с Боливией на высоте около 5100 метров над уровнем моря.

Между тем, рекорд самых высоко живущих существ на планете Земля достался Гималайским паукам-скакунам Эуофрис омнисуперстес (Euophrys omnisuperstes – «стоящие надо всем»), которые обитают в укромных уголках и трещинах на склонах горы Эверест. Альпинисты находили их даже на высоте 6700 метров. Эти крошечные пауки питаются насекомыми, которых заносит на горную вершину сильным ветром. Они являются единственными живыми существами, постоянно обитающими на такой огромной высоте, не считая, конечно, некоторые виды птиц. Известно также, что Гималайские пауки-скакуны способны выжить даже в условиях недостатка кислорода.

2. Гигантский кенгуровый прыгун

Когда нас просят назвать животное, которое способно обходиться без питьевой воды длительные периоды времени, первое, что приходит на ум – это верблюд. Однако в пустыне без воды он может продержаться не более 15 дней. И нет – верблюды не хранят запасы воды в своих горбах, как многие ошибочно полагают. Меж тем, на Земле всё же есть такие животные, которые живут в пустыне и способны прожить без единой капли воды в течение всей жизни!

Гигантские кенгуровые прыгуны являются родственниками бобров. Продолжительность их жизни составляет от трёх до пяти лет. Воду гигантские кенгуровые прыгуны получают вместе с пищей, а питаются они преимущественно семенами.

Гигантские кенгуровые прыгуны, как отмечают учёные, не потеют вовсе, поэтому они не теряют, а, наоборот, накапливают воду в организме. Найти их можно в Долине Смерти (штат Калифорния). Гигантские кенгуровые прыгуны в данный момент находятся под угрозой исчезновения.

3. Черви, устойчивые к высоким температурам

Поскольку вода проводит тепло от тела человека примерно в 25 раз более эффективно, чем воздух, то температура, равная 50 градусам Цельсия, в глубинах моря будет намного опаснее, нежели на суше. Именно поэтому под водой процветают бактерии, а не многоклеточные организмы, которые не выдерживают слишком высоких температур. Но есть и исключения…

Морские глубоководные кольчатые черви Паральвинелла сульфинкола (Paralvinella sulfincola), которые обитают рядом с гидротермальными источниками на дне Тихого океана, возможно, являются самыми теплолюбивыми живыми существами на планете. Результаты проведённого учёными эксперимента с нагреванием аквариума показали, что эти черви предпочитают селиться там, где температура достигает 45-55 градусов Цельсия.

4. Гренландская полярная акула

Гренландские полярные акулы являются одними из крупнейших живых существ на планете Земля, однако учёные практически ничего о них знают. Они плавают очень медленно, наравне с обычным пловцом-любителем. Тем не менее, увидеть гренландских полярных акул в океанских водах почти не представляется возможным, поскольку они, как правило, обитают на глубине, равной 1200 метрам.

Гренландские полярные акулы также считаются самыми холодолюбивыми существами в мире. Они предпочитают обитать в местах, где температура достигает 1-12 градусов Цельсия.

Гренландские полярные акулы живут в холодных водах, следовательно, им приходится экономить энергию; это объясняет тот факт, что плавают они весьма медленно – со скоростью не более двух километров в час. Гренландских полярных акул ещё называют «спящими акулами». В еде они не разборчивы: питаются всем, что удастся поймать.

По мнению некоторых учёных, продолжительность жизни Гренландских полярных акул может достигать 200 лет, однако пока это не было доказано.

5. Дьявольские черви

На протяжении нескольких десятилетий учёные думали, что только одноклеточные организмы способны выживать на очень больших глубинах. Считалось, что многоклеточные формы жизни там не могут обитать из-за недостатка кислорода, давления и высоких температур. Тем не менее, совсем недавно исследователи обнаружили на глубине нескольких тысяч метров от поверхности земли микроскопических червей.

Нематоды Halicephalobus mephisto, названные в честь демона из немецкого фольклора, были обнаружены Гаэтаном Боргони и Таллисом Онстоттом в 2011 году в пробах воды, взятой на глубине 3,5 километра в одной из пещер Южной Африки. Учёные выяснили, что они проявляют высокую стойкость в различных экстремальных условиях, как и те круглые черви, которые пережили катастрофу шаттла «Колумбия», произошедшую 1 февраля 2003 года. Обнаружение дьявольских червей может способствовать расширению области поиска жизни на Марсе и любой другой планете нашей Галактики.

6. Лягушки

Учёные заметили, что некоторые виды лягушек в буквальном смысле замерзают с наступлением зимы и, оттаивая весной, возвращаются к полноценной жизни. В Северной Америке насчитывается пять видов таких лягушек, наиболее распространённым из них является Rana sylvatica, или Лесная лягушка.

Лесные лягушки не умеют зарываться в землю, поэтому с наступлением холодов они просто прячутся под опавшие листья и замерзают, как и всё вокруг. Внутри организма у них срабатывает естественный «антифризовый» защитный механизм, и они, как компьютер, переходят в «спящий режим». Пережить зиму им во многом позволяют запасы глюкозы в печени. Но самым удивительным является то, что Лесные лягушки проявляют свою удивительную способность как в дикой природе, так и в лабораторных условиях.

7. Глубоководные бактерии

Все мы знаем, что глубочайшей точкой Мирового океана является Марианская впадина, которая находится на глубине более 11 тысяч метров. У её дна давление воды достигает 108,6 МПа, что примерно в 1072 раза больше нормального атмосферного давления на уровне Мирового океана. Несколько лет назад учёные при помощи камер высокого разрешения, помещённых в стеклянные сферы, обнаружили в Марианской впадине гигантских амёб. По мнению Джеймса Кэмерона, возглавлявшего экспедицию, в ней также процветают и другие формы жизни.

Изучив пробы воды со дна Марианской впадины, учёные обнаружили в ней огромное количество бактерий, которые, на удивление, активно размножались, несмотря на большую глубину и экстремальное давление.

8. Bdelloidea

Коловратки Bdelloidea – небольшие беспозвоночные животные, которые обычно встречаются в пресной воде.

У представителей коловраток Bdelloidea самцы отсутствуют, популяции представлены лишь партеногенетическими самками. Bdelloidea размножаются бесполым способом, что, по мнению учёных, негативно влияет на их ДНК. А какой самый лучший способ побороть эти вредные последствия? Ответ: съесть ДНК других форм жизни. Благодаря такому подходу, у Bdelloidea развилась удивительная способность выдерживать экстремальное обезвоживание. Более того, они могут выжить даже после получения смертельной для большинства живых организмов дозы радиации.

Учёные считают, что способность Bdelloidea к репарации ДНК была изначально дана им для выживания в условиях высоких температур.

9. Тараканы

Существует популярный миф о том, что после ядерной войны на Земле в живых останутся только тараканы. Эти насекомые способны неделями обходиться без еды и воды, однако ещё больше поражает тот факт, что они могут жить много дней спустя после того, как лишатся своей головы. Тараканы появились на Земле 300 миллионов лет назад, даже раньше, чем динозавры.

Ведущие «Разрушителей легенд» в одной из передач решили проверить тараканов на живучесть в ходе нескольких экспериментов. Сначала они подвергли определённое количество насекомых излучению в 1000 рад – дозе, способной убить здорового человека за считанные минуты. Из них выжить удалось почти половине. После Разрушители легенд увеличили мощность излучения до 10 тысяч рад (как при атомной бомбардировке Хиросимы). На этот раз выжило всего 10 процентов тараканов. Когда мощность излучения достигла 100 тысяч рад, ни одному таракану, к сожалению, остаться в живых не удалось.

На первый взгляд, может показаться, что бактерии в горячих источниках не живут. Однако, природа убедительно доказывает, что это не так.

Всем известно, что при температуре 100 градусов по Цельсию кипит вода . Еще совсем недавно люди считали, что при этой температуре не выживает абсолютно ничего. Ученые так думали до тех пор, как на дне Тихого океана, в горячих источниках, не нашли неизведанных наукой бактерий. Они чувствуют себя великолепно при температуре 250 градусов!

На большой глубине вода не превращается в пар, а остается просто водой, потому, что там большая глубина и большое давление. В воде такой температуры находится много химических веществ, которыми и питаются упомянутые выше бактерии. Непонятно, как живые существа прижились при такой температуре, но они там привыкли жить так, что если их вывести на температуру, которая ниже 80 градусов по Цельсию, для них она будет холодной.

Как оказалось – не предел для жизни бактерий - температура 250 градусов. В том же Тихом океане обнаружили очень горячий источник, вода в котором достигает 400 градусов. Даже в таких условиях проживают не только множество бактерий, но и некоторые черви, а также несколько видов моллюсков.

Всем известно, что когда появилась Земля (это было очень много миллионов лет назад), то она была обычным раскаленным шаром. На протяжении веков люди считали, что на нашей планете жизнь появилась, когда Земля остыла. И также считалось, что на иных планетах, на которых большая температура, не может существовать жизнь. Наверное, ученым теперь придется пересмотреть свои взгляды по отношению к этому факту.

Горячие источники, встречающиеся обычно в вулканических местностях, имеют довольно богатое живое население.

Уже давно, когда о бактериях и других низших существах было самое поверхностное представление, было установлено существование в термах своеобразной флоры и фауны. Так, например, в 1774 г. Зоннерат сообщил о наличии рыб в горячих источниках Исландии, имеющих температуру 69°. Данный вывод не был позднее подтвержден другими исследователями в отношении терм Исландии, но в других местах аналогичные наблюдения все же были сделаны. На острове Ишиа (Ischia) в источниках с температурой выше 55° Эренберг (1858) отметил нахождение рыб. Гоппе-Зейлер (1875) также видел рыб в воде с температурой тоже около 55°. Если даже предположить, что во всех отмеченных случаях было неточно произведено термометрирование, то все же моясно дать заключение о способности некоторых рыб жить при довольно повышенной температуре. Наряду с рыбами, в термах подчас отмечали наличие лягушек, червей и моллюсков. В более позднее время здесь были обнаружены и простейшие животные.

В 1908 г. вышла в свет работа Исселя (Issel), более подробно установившего предельные температуры для животного мира, обитающего в горячих источниках.

Наряду с животным миром, в термах чрезвычайно легко устанавливается наличие водорослей, образующих подчас мощные обрастания. По указаниям Родиной (1945), толща накопившихся в горячих источниках водорослей нередко достигает нескольких метров.

Об ассоциациях термофильных водорослей и факторах, определяющих их состав, мы достаточно говорили в разделе «Водоросли, живущие при высокой температуре». Здесь лишь напомним, что наиболее термоустойчивыми из них являются синезеленые водоросли, могущие развиваться до температуры 80-85°. Зеленые водоросли выносят температуру несколько выше 60°, а диатомовые водоросли кончают развиваться приблизительно около 50°.

Как уже отмечалось, водоросли, развивающиеся в термах, играют существенную роль при образовании разного рода накипей, в состав которых входят минеральные соединения.

Термофильные водоросли оказывают большое влияние на развитие в термах бактериального населения. Они прижизненно путем экзосмоза выделяют в воду некоторое количество органических соединений, а отмирая, подавно создают для бактерий достаточно благоприятный субстрат. Неудивительно поэтому, что бактериальное население термальных вод наиболее богато представлено в местах скопления водорослей.

Переходя к термофильным бактериям горячих источников, мы должны указать, что в нашей стране они изучались весьма многими микробиологами. Здесь следует отметить имена Циклинской (1899), Губина (1924-1929), Афанасьевой-Кестер (1929), Егоровой (1936-1940), Волковой (1939), Родиной (1945) и Исаченко (1948).

Большинство исследователей, имевших дело с горячими источниками, ограничилось лишь фактом установления в них бактериальной флоры. Лишь сравнительно немногие микробиологи останавливались на принципиальных сторонах жизни бактерий в термах.

В нашем обзоре мы задержимся лишь на исследованиях последней группы.

Термофильные бактерии были обнаружены в горячих источниках ряда стран - Советского Союза, Франции, Италии, Германии, Словакии, Японии и др. Так как воды горячих источников бывают нередко бедны органическими веществами, то неудивительно, что в них подчас содержится весьма небольшое количество сапрофитных бактерий.

Размножение автотрофно питающихся бактерий, среди которых в термах довольно широко распространены железо — и серобактерии, определяется в основном химическим составом воды, а также и ее температурой.

Некоторые термофильные бактерии, выделенные из горячих вод, были описаны как новые виды. К подобным формам относятся: Bac. thermophilus filiformis. изученный Циклинской (1899), две спороносные палочки - Bac. ludwigi и Bac. ilidzensis capsulatus, выделенные Карлинским (1895), Spirochaeta daxensis, изолированная Кантакузеном (1910), и Thiospirillum pistiense, выделенная Чурда (1935).

Температура воды горячих источников сильно сказывается на видовом составе бактериального населения. В водах, имеющих более низкую температуру, найдены кокки и спирохэтоподобные бактерии (работы Родиной, Кантакузена). Однако и здесь преобладающей формой являются спороносные палочки.

Недавно влияние температуры на видовой состав бактериального населения терм было весьма красочно показано в работе Родиной (1945), которая изучала горячие источники Ходжи-Оби-Гарм в Таджикистане. Температура отдельных источников данной системы колеблется в пределах 50-86°. Соединяясь, эти термы дают ручей, на дне которого в местах с температурой, не превышающей 68°, наблюдалось бурное разрастание синезеленых водорослей. Местами водоросли образовывали толстые пласты разного цвета. У уреза воды, на боковых стенках ниш имелись отложения серы.

В разных источниках, в стоке, а также в толще синезеленых водорослей ставились на три дня стекла обрастания. Помимо этого, собранный материал высевался на питательные среды. Обнаружилось, что вода с наиболее высокой температурой имеет преимущественно палочковидных бактерий. Клиновидные формы, в частности напоминающие азотобактер, встречаются при температуре, не превышающей 60°. Судя по всем данным, можно сказать, что собственно азотобактер не растет выше 52°, а встречающиеся в обрастаниях крупные круглые клетки принадлежат другим видам микробов.

Наиболее термоустойчивыми являются некоторые формы бактерий, развивающиеся на мясо-пептонном агаре, тио-бактерии типа Tkiobacillus thioparus и десульфикаторы. Между прочим, стоит упомянуть, что Егорова и Соколова (1940) находили Microspira в воде, имевшей температуру 50-60°.

В работе Родиной азотфиксирующие бактерии не обнаруживались в воде при 50°. Однако при изучении грунтов анаэробные фиксаторы азота были обнаружены еще при 77°, а азотобактер - при 52°. Это заставляет полагать, что вода является вообще мало подходящим субстратом для азотфиксаторов.

Исследование бактерий в грунтах горячих источников обнаружило там ту же зависимость группового состава от температуры, что и в воде. Однако микронаселение грунтов было значительно богаче в численном отношении. Песчаные, бедные органическими соединениями грунты имели довольно скудное микронаселение, в то время как содержавшие темно-окрашенные органические вещества были обильно населены бактериями. Таким образом, связь состава субстрата с характером содержащихся в ней микроскопических существ здесь была выявлена чрезвычайно наглядно.

Заслуживает внимания то, что ни в воде, ни в илах Родиной не удалось обнаружить термофильных бактерий, разлагающих клетчатку. Данный момент мы склонны объяснить методическими трудностями, так как термофильные целлюлозуразлагающие бактерии довольно требовательны к питательным средам. Как показал Имшенецкий, для их выделения нужны довольно специфические питательные субстраты.

В горячих источниках, помимо сапрофитов, встречаются автотрофы - серо- и железобактерии.

Наиболее старые наблюдения о возможности роста серобактерий в термах были сделаны, очевидно, Мейером и Аренсом, а также Миоши. Развитие нитевидных серобактерий Миоши наблюдал в источниках, температура воды которых доходила до 70°. Егорова (1936), исследовавшая брагунские серные источники, отмечала наличие серобактерий даже при температуре воды 80°.

В главе «Общая характеристика морфологических и физиологических особенностей термофильных бактерий» мы достаточно подробно описали свойства термофильных железо — и серобактерий. Повторно приводить эти сведения не целесообразно, и мы ограничимся здесь лишь напоминанием, что отдельные роды и даже виды автотрофных бактерий оканчивают развитие при разной температуре.

Максимальная температура, таким образом, для серобактерий зарегистрирована около 80°. Для железобактерий типа Streptothrix ochraceae и Spirillum ferrugineum Миоши установил максимум в 41-45°.

Дюфренуа (Dufrencfy, 1921) нашел на отложениях в горячих водах с температурой в 50-63° железобактерий, весьма похожих на Siderocapsa. По его наблюдениям, рост нитчатых железобактерий происходил лишь в холодных водах.

Волкова (1945) наблюдала в минеральных источниках пятигорской группы развитие бактерий из рода Gallionella в том случае, когда температура воды не превышала 27-32°. В термах с более высокой температурой железобактерии отсутствовали совершенно.

Сопоставляя отмеченные нами материалы, невольно приходится сделать вывод, что в отдельных случаях не температура воды, а ее химический состав определяет развитие тех или иных микроорганизмов.

Бактерии, наряду с водорослями, принимают деятельное участие в образовании некоторых минералов биолитов и каустобиолитов. Более детально изучена роль бактерий в осаждении кальция. Данный вопрос подробно освещен в разделе о физиологических процессах, вызываемых термофильными бактериями.

Заслуживает внимания вывод, сделанный Волковой. Она отмечает, что «барежина», мощным покровом откладывающаяся в ручейках истоков серных источников Пятигорска, содержит очень много элементарной серы и в основе своей имеет мицелий плесневого гриба из рода Penicillium. Мицелий составляет строму, в которую включены палочковидные бактерии, относящиеся, повидимому, к серобактериям.

Брусов (Brussoff) полагает, что бактерии терм принимают также участие в образовании отложений кремнекислоты.

В термах обнаружены бактерии, редуцирующие сульфаты. По указаниям Афанасьевой-Кестер, они напоминают Microspira aestuarii van Delden и Vibrio thermodesulfuricans Elion. Ряд соображений о возможной роли этих бактерий в образовании сероводорода в термах высказал Губин (1924-1929).

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .