Возведение числа в квадрат. Возведение в квадрат трехзначных чисел

В книге «Магия чисел» рассказывается о десятках трюков, которые упрощают привычные математические операции. Оказалось, что умножение и деление в столбик - это прошлый век, а есть гораздо более эффективные способы деления в уме.

Вот 10 самых интересных и полезных трюков.

Умножение «3 на 1» в уме

Умножение трёхзначных чисел на однозначные - это очень простая операция. Всё, что нужно сделать, - это разбить большую задачу на несколько маленьких.

Пример : 320 × 7

  1. Разбиваем число 320 на два более простых числа: 300 и 20.
  2. Умножаем 300 на 7 и 20 на 7 по отдельности (2 100 и 140).
  3. Складываем получившиеся числа (2 240).

Возведение в квадрат двузначных чисел

Возводить в квадрат двузначные числа не намного сложнее. Нужно разбить число на два и получить приближенный ответ.

Пример : 41^2

  1. Вычтем 1 из 41, чтобы получить 40, и добавим 1 к 41, чтобы получить 42.
  2. Умножаем два получившихся числа, воспользовавшись предыдущим советом (40 × 42 = 1 680).
  3. Прибавляем квадрат числа, на величину которого мы уменьшали и увеличивали 41 (1 680 + 1^2 = 1 681).

Ключевое правило здесь - превратить искомое число в пару других чисел, которые перемножить гораздо проще. К примеру, для числа 41 это числа 42 и 40, для числа 77 - 84 и 70. То есть мы вычитаем и прибавляем одно и то же число.

Мгновенное возведение в квадрат числа, оканчивающегося на 5

С квадратами чисел, оканчивающихся на 5, вообще не нужно напрягаться. Всё, что нужно сделать, - это умножить первую цифру на число, которое на единицу больше, и добавить в конец числа 25.

Пример : 75^2

  • Умножаем 7 на 8 и получаем 56.
  • Добавляем к числу 25 и получаем 5 625.
  • Деление на однозначное число

    Деление в уме - это достаточно полезный навык. Задумайтесь о том, как часто мы делим числа каждый день. К примеру, счёт в ресторане.

    Пример : 675: 8

    1. Найдём приближенные ответы, умножив 8 на удобные числа, которые дают крайние результаты (8 × 80 = 640, 8 × 90 = 720). Наш ответ - 80 с хвостиком.
    2. Вычтем 640 из 675. Получив число 35, нужно разделить его на 8 и получить 4 с остатком 3.
    3. Наш финальный ответ - 84,3.

    Мы получаем не максимально точный ответ (правильный ответ - 84,375), но согласитесь, что даже такого ответа будет более чем достаточно.

    Простое получение 15%

    Чтобы быстро узнать 15% от любого числа, нужно сначала посчитать 10% от него (перенеся запятую на один знак влево), затем поделить получившееся число на 2 и прибавить его к 10%.

    Пример : 15% от 650

    1. Находим 10% - 65.
    2. Находим половину от 65 - это 32,5.
    3. Прибавляем 32,5 к 65 и получаем 97,5.

    Банальный трюк

    Пожалуй, все мы натыкались на такой трюк:

    Задумайте любое число. Умножьте его на 2. Прибавьте 12. Разделите сумму на 2. Вычтите из неё исходное число.

    Вы получили 6, верно? Что бы вы ни загадали, вы всё равно получите 6. И вот почему:

    1. 2x (удвоить число).
    2. 2x + 12 (прибавить 12).
    3. (2x + 12) : 2 = x + 6 (разделить на 2).
    4. x + 6 − x (вычесть исходное число).

    Этот трюк построен на элементарных правилах алгебры. Поэтому, если вы когда-нибудь услышите, что кто-то его загадывает, натяните свою самую надменную усмешку, сделайте презрительный взгляд и расскажите всем разгадку. 🙂

    Магия числа 1 089

    Этот трюк существует не одно столетие.

    Запишите любое трёхзначное число, цифры которого идут в порядке уменьшения (к примеру, 765 или 974). Теперь запишите его в обратном порядке и вычтите его из исходного числа. К полученному ответу добавьте его же, только в обратном порядке.

    Какое бы число вы ни выбрали, в результате получите 1 089.

    Быстрые кубические корни

    1 2 3 4 5 6 7 8 9 10
    1 8 27 64 125 216 343 512 729 1 000

    Как только вы запомните эти значения, находить кубический корень из любого числа будет элементарно просто.

    Пример : кубический корень из 19 683

    1. Берём величину тысяч (19) и смотрим, между какими числами она находится (8 и 27). Соответственно, первой цифрой в ответе будет 2, а ответ лежит в диапазоне 20+.
    2. Каждая цифра от 0 до 9 появляется в таблице по одному разу в виде последней цифры куба.
    3. Так как последняя цифра в задаче - 3 (19 683), это соответствует 343 = 7^3. Следовательно, последняя цифра ответа - 7.
    4. Ответ - 27.

    Примечание: трюк работает только тогда, когда исходное число является кубом целого числа.

    Правило 70

    Чтобы найти число лет, необходимых для удвоения ваших денег, нужно разделить число 70 на годовую процентную ставку.

    Пример : число лет, необходимое для удвоения денег с годовой процентной ставкой 20%.

    70: 20 = 3,5 года

    Правило 110

    Чтобы найти число лет, необходимых для утроения денег, нужно разделить число 110 на годовую процентную ставку.

    Пример : число лет, необходимое для утроения денег с годовой процентной ставкой 12%.

    110: 12 = 9 лет

    Математика - волшебная наука. Если даже такие простые трюки удивляют, то какие ещё фокусы можно придумать?


    Возведение в квадрат трехзначных чисел - впечатляющее проявление искусности в ментальном фокусничестве. Так же как при возведении в квадрат двузначного числа выполняется его округление в большую или меньшую сторону для получения кратного 10, для возведения трехзначного числа в квадрат его нужно округлить в большую или меньшую сторону для получения кратного 100. Возведем в квадрат число 193.

    Путем ок ругления 193 до 200 (второй сомножитель стал равным 186) задача типа «3 на 3» преобразовалась в более простую типа «3 на 1», так как 200 х 186 - это всего лишь 2 х 186 = 372 с двумя нулями в конце. Почти готово! Теперь все, что нужно сделать, это прибавить 7 2 = 49 и получить ответ - 37 249.

    Попробуем возвести в квадрат 706.




    При округлении числа 706 до 700 необходимо еще и изменить это же число на 6 в большую сторону для получения 712.

    Так как 712 х 7 = 4984 (простая задача типа «3 на 1»), 712 х 700 = = 498 400. Прибавив 6 2 = 36, получаем 498 436.

    Последние примеры не так уж страшны, потому что не включают в себя сложения как такового. Кроме того, вы наизусть знаете, чему равняются 6 2 и 7 2 . Возводить в квадрат число, которое отстоит от кратного 100 больше чем на 10 единиц, значительно труднее. Попробуйте свои силы с 314 2 .


    В этом примере число 314 уменьшилось на 14 ради округления до 300 и увеличилось на 14 до 328. Умножаем 328 х 3 = 984 и добавляем два нуля в конце, чтобы получить 98 400. Затем прибавляем квадрат 14. Если вам мгновенно приходит на ум (благодаря памяти или быстрым вычислениям), что 14 2 = 196, то вы в хорошей форме. Далее просто сложите 98 400 + 196 для получения окончательного ответа 98 596.

    Если вам нужно время для подсчета 14 2 , повторите «98 400» несколько раз, прежде чем продолжить. Иначе можно вычислить 14 2 = 196 и забыть, к какому числу нужно прибавить произведение.




    Если у вас есть аудитория, которую вы хотели бы впечатлить, можете произнести вслух «279 000», прежде чем найдете 292. Но такое не пройдет в случае каждой решаемой задачи.

    Например, попытайтесь возвести в квадрат 636.




    Теперь ваш мозг по-настоящему заработал, не правда ли?

    Не забывайте повторять «403 200» самому себе несколько раз, пока будете возводить в квадрат привычным способом 36, чтобы получить 1296. Самое сложное - суммировать 1296 + 403 200. Делайте это по одной цифре за раз, слева направо, и получите ответ 404 496. Даю слово, что, как только вы лучше ознакомитесь с возведением в квадрат двузначных чисел, задачки с трехзначными значительно упростятся.

    Вот еще более сложный пример: 863 2 .



    Первая проблема - надо решить, какие числа перемножать. Несомненно, одно из них будет 900, а другое - больше 800. Но какое именно? Это можно рассчитать двумя способами.

    1. Сложный способ: разность между 863 и 900 составляет 37 (дополнение для 63), вычитаем 37 из 863 и получаем 826.

    2. Легкий способ: удваиваем число 63, получаем 126, теперь последние две цифры этого числа прибавляем к числу 800, что в итоге даст 826.

    Вот как работает легкий способ. Поскольку оба числа имеют одинаковую разность с числом 863, их сумма должна равняться удвоенному числу 863, то есть 1726. Одно из чисел 900, значит, другое будет равно 826.

    Затем проводим следующие вычисления.




    Если вам трудно вспомнить число 743 400 после возведения в квадрат числа 37, не расстраивайтесь. В следующих главах вы узнаете систему мнемотехники и научитесь запоминать такие числа.

    Попробуйте свои силы на самой трудной пока задаче - на возведении в квадрат числа 359.




    Для получения 318 либо отнимите 41 (дополнение для 59) от 359, либо умножьте 2 х 59 = 118 и используйте последние две цифры. Далее умножьте 400 х 318 = 127 200. Прибавление к этому числу 412 = 1681 даст в сумме 128 881. Вот и все! Если вы сделали все правильно с первого раза, вы молодец!

    Завершим этот раздел большой, но легкой задачей: вычислим 987 2 .




    УПРАЖНЕНИЕ: ВОЗВЕДЕНИЕ В КВАДРАТ ТРЕХЗНАЧНЫХ ЧИСЕЛ

    1. 409 2 2. 805 2 3. 217 2 4. 896 2

    5. 345 2 6. 346 2 6. 276 2 8. 682 2

    9. 413 2 10. 781 2 11. 975 2

    Что за дверью номер 1?

    Математической банальностью 1991 года, которая поставила всех в тупик, оказалась статья Мэрилин Савант - женщины с самым высоким в мире IQ (что зарегистрировано в Книге рекордов Гиннесса) - в журнале Parade. Этот парадокс стал известен как «проблема Монти Холла», и заключается он в следующем.

    Вы участник шоу Монти Холла «Давайте совершать сделки» (Let’s Make a Deal). Ведущий дает вам возможность выбрать одну из трех дверей, за одной из которых находится большой приз, за двумя другими - козы. Допустим, вы выбираете дверь № 2. Но прежде чем показать, что скрывается за этой дверью, Монти открывает дверь № 3. Там коза. Теперь в своей дразнящей манере Монти спрашивает вас: вы хотите открыть дверь № 2 или рискнете посмотреть, что находится за дверью № 1? Что вам следует сделать? Если предположить, что Монти собирается подсказать вам, где нет главного приза, то он всегда будет открывать одну из «утешительных» дверей. Это оставляет вас перед выбором: одна дверь с большим призом, а вторая - с утешительным. Сейчас ваши шансы составляют 50 на 50, не так ли?

    А вот и нет! Шанс, что вы правильно выбрали в первый раз, по-прежнему 1 к 3. Вероятность того, что большой приз окажется за другой дверью, увеличивается до 2/3, потому что вероятности в сумме должны давать 1.

    Таким образом, изменив свой выбор, вы удвоите шансы на выигрыш! (В задаче предполагается, что Монти всегда будет давать игроку возможность сделать новый выбор, показывая «невыигрышную» дверь, и, когда ваш первый выбор окажется правильным, откроет «невыигрышную» дверь наугад.) Поразмышляйте об игре с десятью дверями. Пусть после вашего первого выбора ведущий откроет восемь «невыигрышных» дверей. Здесь ваши инстинкты, скорее всего, потребуют поменять дверь. Люди обычно ошибаются, думая, что если Монти Холл не знает, где главный приз, и открывает дверь № 3, за которой оказывается коза (хотя мог бы быть и приз), то дверь № 1 с вероятностью в 50 процентов будет нужной. Такое рассуждение противоречит здравому смыслу, тем не менее Мэрилин Савант получила груды писем (многие от ученых, и даже математиков), в которых говорилось, что ей не следовало писать о математике. Конечно, все эти люди были неправы.

    Рассмотрим теперь возведение в квадрат двучлена и, применяясь к арифметической точке зрения, будем говорить о квадрате суммы, т. е. (a + b)² и о квадрате разности двух чисел, т. е. (a – b)².

    Так как (a + b)² = (a + b) ∙ (a + b),

    то найдем: (a + b) ∙ (a + b) = a² + ab + ab + b² = a² + 2ab + b², т. е.

    (a + b)² = a² + 2ab + b²

    Этот результат полезно запомнить и в виде вышеописанного равенства и словами: квадрат суммы двух чисел равен квадрату первого числа плюс произведение двойки на первое число и на второе число, плюс квадрат второго числа.

    Зная этот результат, мы можем сразу написать, напр.:

    (x + y)² = x² + 2xy + y²
    (3ab + 1)² = 9a² b² + 6ab + 1

    (x n + 4x)² = x 2n + 8x n+1 + 16x 2

    Разберем второй из этих примеров. Нам требуется возвести в квадрат сумму двух чисел: первое число есть 3ab, второе 1. Должно получиться: 1) квадрат первого числа, т. е. (3ab)², что равно 9a²b²; 2) произведение двойки на первое число и на второе, т. е. 2 ∙ 3ab ∙ 1 = 6ab; 3) квадрат 2-го числа, т. е. 1² = 1 – все эти три члена должно сложить между собою.

    Совершенно также получим формулу для возведения в квадрат разности двух чисел, т. е. для (a – b)²:

    (a – b)² = (a – b) (a – b) = a² – ab – ab + b² = a² – 2ab + b².

    (a – b)² = a² – 2ab + b² ,

    т. е. квадрат разности двух чисел равен квадрату первого числа, минус произведение двойки на первое число и на второе, плюс квадрат второго числа .

    Зная этот результат, мы можем сразу выполнять возведение в квадрат двучленов, представляющих с точки зрения арифметики разность двух чисел.

    (m – n)² = m² – 2mn + n²
    (5ab 3 – 3a 2 b) 2 = 25a 2 b 6 – 30a 3 b 4 + 9a 4 b 2

    (a n-1 – a) 2 = a 2n-2 – 2a n + a 2 и т. п.

    Поясним 2-ой пример. Здесь мы имеем в скобках разность двух чисел: первое число 5ab 3 и второе число 3a 2 b. В результате должно получиться: 1) квадрат первого числа, т. е. (5ab 3) 2 = 25a 2 b 6 , 2) произведение двойки на 1-ое и на 2-ое число, т. е. 2 ∙ 5ab 3 ∙ 3a 2 b = 30a 3 b 4 и 3) квадрат второго числа, т. е. (3a 2 b) 2 = 9a 4 b 2 ; первый и третий члены надо взять с плюсом, а 2-ой с минусом, получим 25a 2 b 6 – 30a 3 b 4 + 9a 4 b 2 . В пояснение 4-го примера заметим лишь, что 1) (a n-1)2 = a 2n-2 … надо показателя степени умножить на 2 и 2) произведение двойки на 1-ое число и на 2-ое = 2 ∙ a n-1 ∙ a = 2a n .

    Если встать на точку зрения алгебры, то оба равенства: 1) (a + b)² = a² + 2ab + b² и 2) (a – b)² = a² – 2ab + b² выражают одно и тоже, а именно: квадрат двучлена равен квадрату первого члена, плюс произведение числа (+2) на первый член и на второй, плюс квадрат второго члена. Это ясно, потому что наши равенства можно переписать в виде:

    1) (a + b)² = (+a)² + (+2) ∙ (+a) (+b) + (+b)²
    2) (a – b)² = (+a)² + (+2) ∙ (+a) (–b) + (–b)²

    В некоторых случаях так именно и удобно толковать полученные равенства:

    (–4a – 3b)² = (–4a)² + (+2) (–4a) (–3b) + (–3b)²

    Здесь возводится в квадрат двучлен, первый член которого = –4a и второй = –3b. Далее мы получим (–4a)² = 16a², (+2) (–4a) (–3b) = +24ab, (–3b)² = 9b² и окончательно:

    (–4a – 3b)² = 6a² + 24ab + 9b²

    Возможно было бы также получить и запомнить формулу для возведения в квадрат трехчлена, четырехчлена и вообще любого многочлена. Однако, мы этого делать не будем, ибо применять эти формулы приходится редко, а если понадобится какой-либо многочлен (кроме двучлена) возвести в квадрат, то станем сводить дело к умножению. Например:

    31. Применим полученные 3 равенства, а именно:

    (a + b) (a – b) = a² – b²
    (a + b)² = a² + 2ab + b²
    (a – b)² = a² – 2ab + b²

    к арифметике.

    Пусть надо 41 ∙ 39. Тогда мы можем это представить в виде (40 + 1) (40 – 1) и свести дело к первому равенству – получим 40² – 1 или 1600 – 1 = 1599. Благодаря этому, легко выполнять в уме умножения вроде 21 ∙ 19; 22 ∙ 18; 31 ∙ 29; 32 ∙ 28; 71 ∙ 69 и т. д.

    Пусть надо 41 ∙ 41; это все равно, что 41² или (40 + 1)² = 1600 + 80 + 1 = 1681. Также 35 ∙ 35 = 35² = (30 + 5)² = 900 + 300 + 25 = 1225. Если надо 37 ∙ 37, то это равно (40 – 3)² = 1600 – 240 + 9 = 1369. Подобные умножения (или возведение в квадрат двузначных чисел) легко выполнять, при некотором навыке, в уме.

    *квадраты до сотни

    Для того, чтобы бездумно не возводить в квадрат по формуле все числа, нужно максимально упростить себе задачу следующими правилами.

    Правило 1 (отсекает 10 чисел)
    Для чисел, оканчивающихся на 0.
    Если число заканчивается на 0, умножить его не сложнее, чем однозначное число. Стоит лишь дописать пару нулей.
    70 * 70 = 4900.
    В таблице отмечены красным.
    Правило 2 (отсекает 10 чисел)
    Для чисел, оканчивающихся на 5.
    Чтобы возвести в квадрат двузначное число, оканчивающееся на 5, нужно умножить первую цифру (x) на (x+1) и дописать к результату “25”.
    75 * 75 = 7 * 8 = 56 … 25 = 5625.
    В таблице отмечены зеленым.
    Правило 3 (отсекает 8 чисел)
    Для чисел от 40 до 50.
    XX * XX = 1500 + 100 * вторую цифру + (10 - вторая цифра)^2
    Достаточно трудно, верно? Давайте разберем пример:
    43 * 43 = 1500 + 100 * 3 + (10 - 3)^2 = 1500 + 300 + 49 = 1849.
    В таблице отмечены светло-оранжевым.
    Правило 4 (отсекает 8 чисел)
    Для чисел от 50 до 60.
    XX * XX = 2500 + 100 * вторую цифру + (вторая цифра)^2
    Тоже достаточно трудно для восприятия. Давайте разберем пример:
    53 * 53 = 2500 + 100 * 3 + 3^2 = 2500 + 300 + 9 = 2809.
    В таблице отмечены темно-оранжевым.
    Правило 5 (отсекает 8 чисел)
    Для чисел от 90 до 100.
    XX * XX = 8000+ 200 * вторую цифру + (10 - вторая цифра)^2
    Похоже на правило 3, но с другими коэффициентами. Давайте разберем пример:
    93 * 93 = 8000 + 200 * 3 + (10 - 3)^2 = 8000 + 600 + 49 = 8649.
    В таблице отмечены темно-темно-оранжевым.
    Правило №6 (отсекает 32 числа)
    Необходимо запомнить квадраты чисел до 40. Звучит дико и трудно, но на самом деле до 20 большинство людей знают квадраты. 25, 30, 35 и 40 поддаются формулам. И остается лишь 16 пар чисел. Их уже можно запомнить при помощи мнемоники (о которой я также хочу рассказать позднее) или любыми другими способами. Как таблицу умножения:)
    В таблице отмечены синим.

    Вы можете запомнить все правила, а можете запомнить выборочно, в любом случае все числа от 1 до 100 подчиняются двум формулам. Правила же помогут, не используя эти формулы, быстрее посчитать больше 70% вариантов. Вот эти две формулы:

    Формулы (осталось 24 числа)
    Для чисел от 25 до 50
    XX * XX = 100(XX - 25) + (50 - XX)^2
    Например:
    37 * 37 = 100(37 - 25) + (50 - 37)^2 = 1200 + 169 = 1369

    Для чисел от 50 до 100
    XX * XX = 200(XX - 50) + (100 - XX)^2
    Например:
    67 * 67 = 200(67 - 50) + (100 - 67)^2 = 3400 + 1089 = 4489

    Конечно не стоит забывать про обычную формулу разложения квадрата суммы (частный случай бинома Ньютона):
    (a+b)^2 = a^2 + 2ab + b^2. 56^2 = 50^2 + 2*50*6 + 6*2 = 2500 + 600 + 36 = 3136.

    UPDATE
    Произведения чисел, близких к 100, и, в частности, их квадраты, также можно вычислять по принципу «недостатков до 100»:

    Словами: из первого числа вычитаем «недостаток» второго до сотни и приписываем двузначное произведение «недостатков».

    Для квадратов, соответственно, еще проще.
    92*92 = (92-8)*100+8*8 = 8464
    (от sielover)

    Возведение в квадрат, возможно, не самая полезная в хозяйстве вещь. Не сразу вспомнишь случай, когда может понадобиться квадрат числа. Но умение быстро оперировать числами, применять подходящие правила под каждое из чисел отлично развивает память и «вычислительные способности» вашего мозга.

    Кстати, думаю, все читатели хабры знают, что 64^2 = 4096, а 32^2 = 1024.
    Многие квадраты чисел запоминаются на ассоциативном уровне. Например, я легко запомнил 88^2 = 7744, из-за одинаковых чисел. У каждого наверняка найдутся свои особенности.

    Две уникальные формулы я впервые нашел в книге «13 steps to mentalism», которая мало связана с математикой. Дело в том, что раньше (возможно, и сейчас) уникальные вычислительные способности были одним из номеров в сценической магии: фокусник рассказывал байку о том, как он получил сверхспособности и в доказательство этого моментально возводит числа до сотни в квадрат. В книге так же указаны способы возведения в куб, способы вычитания корней и кубических корней.

    Если тема быстрого счета интересна - буду писать еще.
    Замечания об ошибках и правки прошу писать в лс, заранее спасибо.

    Если умножить число само на себя, получится возведение в квадрат . Даже первоклассник знает, что «дважды два - четыре». Трехзначные, четырехзначные и т.д. числа лучше перемножать в столбик или на калькуляторе, а вот с двузначными справляйтесь без электронного помощника, умножая в уме.

    Инструкция

    Разложите любое двузначное число на составляющие, выделив количество единиц. В числе 96 количество единиц - 6. Поэтому можно записать: 96 = 90 + 6.

    Возведите в квадрат первое из чисел: 90 * 90 = 8100.

    Аналогично сделайте со вторым число м: 6 * 6 = 36

    Перемножьте числа между собой и удвойте результат: 90 * 6 * 2 = 540 * 2 = 1080.

    Сложите результаты второго, третьего и четвертого шагов: 8100 + 36 + 1080 = 9216. Это и есть результат возведения в квадрат числа 96. После некоторой тренировки сможете быстро делать шаги в уме, удивляя родителей и одноклассников. Пока не освоились, записывайте результаты каждого шага, чтобы не запутаться.

    Для тренировки возведите в квадрат число 74 и проверьте себя на калькуляторе. Последовательность действий: 74 = 70 + 4, 70 * 70 = 4900, 4 * 4 = 16, 70 * 4 * 2 = 560, 4900 + 16 + 560 = 5476.

    Возведите во вторую степень число 81. Ваши действия: 81 = 80 + 1, 80 * 80 = 6400, 1 * 1 = 1, 80 * 1 * 2 = 160, 6400 + 1 + 160 = 6561.

    Запомните особый способ возведения в квадрат двузначных чисел, которые оканчиваются на цифру 5. Выделите количество десятков: в числе 75 их 7 штук.

    Умножьте количество десятков на следующую цифру в число вом ряду: 7 * 8 = 56.

    Припишите справа число 25: 5625 - результат возведения в квадрат числа 75.

    Для тренировки возведите во вторую степень число 95. Оно оканчивается на цифру 5, поэтому последовательность действий: 9 * 10 = 90, 9025 - результат.

    Научитесь возводить в квадрат отрицательные числа: -95 в квадрат е равно 9025, как в одиннадцатом шаге. Аналогично -74 в квадрат е равно 5476, как в шестом шаге. Это связано с тем, что при умножении двух отрицательных чисел всегда получается положительное число : -95 * -95 = 9025. Поэтому при возведении в квадрат можете просто не обращать внимания на знак «минус».

    Полезный совет

    Чтобы тренировка не была скучной, позовите на помощь друга. Пусть он пишет двузначное число, а вы - итог возведения этого числа в квадрат. Затем меняйтесь местами.