Светят ли фары, если машина движется со скоростью света? Можно ли достичь края Вселенной, если лететь со скоростью света.

20-й век ознаменовался величайшими открытиями в области физики и космологии. Основами этих открытий стали теории, разработанные плеядой выдающихся физиков. Самым знаменитым из них является Альберт Эйнштейн, на работах которого во многом основывается современная физика. Из теорий ученого следует, что скорость света в вакууме является предельной скоростью движения частиц и взаимодействия. А вытекающие из этих теорий временные парадоксы и вовсе изумляют: так для движущихся объектов время течет медленнее относительно покоящихся, причем чем ближе к скорости света, тем больше замедляется время. Получается, что для объекта, летящего со скоростью света, время полностью остановится.

Рекомендуем

Это дает нам надежду, что при должном уровне технологий, теоретически человек способен в течение жизни одного поколения достичь самых удаленных уголков Вселенной. При этом время полета в земной системе отсчета будет составлять миллионы лет, тогда как на корабле, летящем с околосветовой скоростью, пройдет всего несколько дней… Такие возможности впечатляют, и при этом появляется вопрос: если физики и инженеры будущего каким-то образом разгонят космический корабль до огромных величин, пусть даже теоретически до скорости света (хотя наша физика отрицает такую возможность), сможем ли мы достичь не только самых далеких галактик и звезд, но и края нашей Вселенной, взглянуть за границу неведомого, о чем у ученых нет никаких представлений?

Мы знаем, что Вселенная образовалась около 13,79 млрд. лет назад и с тех пор непрерывно расширяется. Можно было бы предположить, что ее радиус в данный момент должен составлять 13,79 млрд. световых лет, а диаметр, соответственно, 27,58 млрд. световых лет. И это было бы верно, если Вселенная расширялась равномерно со скоростью света – максимальной возможной скоростью. Но полученные данные говорят нам о том, что Вселенная расширяется с ускорением.

Мы наблюдаем, что наиболее удаленные от нас галактики удаляются от нас быстрее, чем находящиеся неподалеку – пространство нашего мира непрерывно расширяется. При этом существует часть Вселенной, которая удаляется от нас быстрее скорости света. При этом никакие постулаты и выводы теории относительности не нарушаются – внутри Вселенной у объектов остаются досветовые скорости. Эту часть Вселенной невозможно увидеть — скорости испущенных источниками излучения фотонов просто недостаточно, чтобы преодолеть скорость расширения пространства.

Вычисления показывают, что видимая для нас часть нашего мира имеет диаметр около 93 млрд. световых лет и носит название Метагалактика . О том, что находится за этой границей и насколько далеко простирается Вселенная, мы можем только догадываться. Логично предположить, что край Вселенной удаляется от нас быстрее всего и намного превышает скорость света. И скорость эта постоянно возрастает. Становится очевидным, что если даже какой-то объект будет лететь со скоростью света, то края Вселенной он никогда не достигнет, потому что край Вселенной будет удаляться от него быстрее.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Тени, могут перемещаться быстрее света, но не могут переносить вещество или информацию

Возможен ли сверхсветовой полёт?

Разделы этой статьи имеют подзаголовки и можно ссылаться на каждый раздел отдельно.

Простые примеры сверхсветового перемещения

1. Эффект Черенкова

Когда мы говорим о движении со сверхсветовой скоростью, то имеем в виду скорость света в вакууме c (299 792 458 м/с). Поэтому эффект Черенкова не может рассматриваться как пример движения со сверхсветовой скоростью.

2. Третий наблюдатель

Если ракета A улетает от меня со скоростью 0.6c на запад, а ракета B улетает от меня со скоростью 0.6c на восток, то я вижу, что расстояние между A и B увеличивается со скоростью 1.2c . Наблюдая полёт ракет A и B со стороны, третий наблюдатель видит, что суммарная скорость удаления ракет больше, чем c .

Однако относительная скорость не равна сумме скоростей. Скорость ракеты A относительно ракеты B - это скорость увеличения расстояния до ракеты A , которую видит наблюдатель, летящий на ракете B . Относительную скорость нужно рассчитывать по релятивистской формуле сложения скоростей. (см. How do You Add Velocities in Special Relativity?) В данном примере относительная скорость примерно равна 0.88c . Так что в этом примере мы не получили сверхсветовой скорости.

3. Свет и тень

Подумайте, как быстро может перемещаться тень. Если лампа близко, то тень твоего пальца на дальней стене движется гораздо быстрее, чем движется палец. При движении пальца параллельно стене, скорость тени в D/d раз больше, чем скорость пальца. Здесь d - расстояние от лампы до пальца, а D - от лампы до стены. Скорость будет ещё больше, если стена расположена под углом. Если стена очень далеко, то движение тени будет отставать по времени от движения пальца, так как свету нужно время, чтобы достичь стены, но скорость перемещения тени по стене увеличится ещё больше. Скорость тени не ограничена скоростью света.

Другой объект, который может перемещаться быстрее света - световое пятно от лазера, направленного на Луну. Расстояние до Луны 385000 км. Вы можете сами рассчитать скорость перемещения светового пятна по поверхности Луны при небольших колебаниях лазерной указки в вашей руке. Вам также может понравиться пример с волной, набегающей на прямую линию пляжа под небольшим углом. С какой скоростью может перемещаться вдоль пляжа точка пересечения волны и берега?

Все эти вещи могут происходить в природе. Например, луч света от пульсара может пробежать вдоль пылевого облака. Мощный взрыв может создать сферические волны света или радиации. Когда эти волны пересекаются с какой-либо поверхностью, на этой поверхности возникают световые круги, которые расширяются быстрее света. Такое явление наблюдается, например, когда электромагнитный импульс от вспышки молнии проходит через верхние слои атмосферы.

4. Твёрдое тело

Если у вас есть длинный жёсткий стержень, и вы ударите по одному концу стержня, то разве другой конец не придёт в движение немедленно? Разве это не способ сверхсветовой передачи информации?

Это было бы верно, если бы существовали идеально жёсткие тела. Практически, удар передаётся вдоль стержня со скоростью звука, которая зависит от упругости и плотности материала стержня. Кроме того теория относительности ограничивает возможные скорости звука в материале величиной c .

Этот же принцип действует, если вы держите вертикально струну или стержень, отпускаете его, и он начинает падать под действием силы тяжести. Верхний конец, который вы отпустили, начинает падать немедленно, но нижний конец начнёт движение только через некоторое время, так как исчезновение удерживающей силы передаётся вниз по стержню со скоростью звука в материале.

Формулировка релятивистской теории упругости довольно сложна, но общую идею можно иллюстрировать с использованием ньютоновской механики. Уравнение продольного движения идеально-упругого тела можно вывести из закона Гука. Обозначим линейную плотность стержня ρ , модуль упругости Юнга Y . Продольное смещение X удовлетворяет волновому уравнению

ρ·d 2 X/dt 2 - Y·d 2 X/dx 2 = 0

Решение в виде плоских волн перемещается со скоростью звука s , которая определяется из формулы s 2 = Y/ρ . Волновое уравнение не позволяет возмущениям среды перемещаться быстрее, чем со скоростью s . Кроме того, теория относительности даёт предел величине упругости: Y < ρc 2 . Практически, ни один известный материал не приближается к этому пределу. Учтите также, что если даже скорость звука близка к c , то само вещество не обязательно движется с релятивистской скоростью.

Хотя в природе нет твёрдых тел, существует движение твёрдых тел , которое можно использовать для преодоления скорости света. Эта тема относится к уже описанному разделу теней и световых пятен. (См. The Superluminal Scissors, The Rigid Rotating Disk in Relativity).

5. Фазовая скорость

Волновое уравнение
d 2 u/dt 2 - c 2 ·d 2 u/dx 2 + w 2 ·u = 0

имеет решение в виде
u = A·cos(ax - bt), c 2 ·a 2 - b 2 + w 2 = 0

Это синусоидальные волны, распространяющиеся со скоростью v
v = b/a = sqrt(c 2 + w 2 /a 2)

Но это больше, чем c. Может это уравнение для тахионов? (см. далее раздел ). Нет, это обычное релятивистское уравнение для частицы с массой.

Чтобы устранить парадокс нужно различать "фазовую скорость" v ph , и "групповую скорость" v gr , причём
v ph ·v gr = c 2

Решение в виде волны может иметь дисперсию по частоте. При этом волновой пакет движется с групповой скоростью, которая меньше, чем c . При помощи волнового пакета можно передавать информацию только с групповой скоростью. Волны в волновом пакете движутся с фазовой скоростью. Фазовая скорость - ещё один пример сверхсветового движения, которое нельзя использовать для передачи сообщений.

6. Сверхсветовые галактики

7. Релятивистская ракета

Пусть наблюдатель на Земле видит космический корабль, удаляющийся со скоростью 0.8c В соответствии с теорией относительности, он увидит, что часы на космическом корабле идут медленнее в 5/3 раза. Если разделить расстояние до корабля на время полёта по бортовым часам, то получим скорость 4/3c . Наблюдатель делает вывод, что, используя свои бортовые часы, пилот корабля тоже определит, что летит со сверхсветовой скоростью. С точки зрения пилота его часы идут нормально, а межзвёздное пространство сжалось в 5/3 раза. Поэтому он пролетает известные расстояния между звёздами быстрее, со скоростью 4/3c .

Но это всё же не сверхсветовой полёт. Нельзя рассчитывать скорость, используя расстояние и время, определённые в разных системах отсчёта.

8. Скорость гравитации

Некоторые настаивают, что скорость гравитации гораздо больше c или даже бесконечна. Посмотрите Does Gravity Travel at the Speed of Light? и What is Gravitational Radiation? Гравитационные возмущения и гравитационные волны распространяются со скоростью c .

9. Парадокс ЭПР

10. Виртуальные фотоны

11. Квантовый туннельный эффект

В квантовой механике туннельный эффект позволяет частице преодолеть барьер, даже если её энергии для этого не хватает. Можно рассчитать время туннелирования через такой барьер. И оно может оказаться меньше, чем требуется свету для преодоления такого же расстояния со скоростью c . Можно ли это использовать для передачи сообщений быстрее света?

Квантовая электродинамика говорит "Нет!" Тем не менее, выполнен эксперимент, продемонстрировавший сверхсветовую передачу информации при помощи туннельного эффекта. Через барьер шириной 11.4 см со скоростью 4.7 c передана Сороковая симфония Моцарта. Объяснение этого эксперимента очень противоречиво. Большинство физиков считают, что при помощи туннельного эффекта нельзя передать информацию быстрее света. Если бы это было возможно, то почему не передать сигнал в прошлое, поместив оборудование в быстро перемещающуюся систему отсчета.

17. Квантовая теория поля

За исключением гравитации, все наблюдаемые физические явления соответствуют "Стандартной модели". Стандартная модель - это релятивистская квантовая теория поля, которая объясняет электромагнитные и ядерные взаимодействия, а также все известные частицы. В этой теории любая пара операторов, соответствующих физическим наблюдаемым, разделённым пространственноподобным интервалом событий, "коммутирует" (то есть, можно поменять порядок этих операторов). В принципе, это подразумевает, что в стандартной модели воздействие не может распространяться быстрее света, и это можно считать квантово-полевым эквивалентом довода о бесконечной энергии.

Однако в квантовой теории поля Стандартной модели нет безупречно строгих доказательств. Никто пока даже не доказал, что эта теория внутренне непротиворечива. Скорее всего, это не так. Во всяком случае, нет гарантии, что не существует каких-то пока не открытых частиц или сил, которые не подчиняются запрету на сверхсветовое перемещение. Нет также и обобщения этой теории, включающего гравитацию и общую теорию относительности. Многие физики, работающие в области квантовой гравитации, сомневаются, что простые представления о причинности и локальности будут обобщены. Нет гарантии, что в будущей более полной теории скорость света сохранит смысл предельной скорости.

18. Парадокс дедушки

В специальной теории относительности частица, летящая быстрее света в одной системе отсчета, движется обратно во времени в другой системе отсчета. Сверхсветовое перемещение или передача информации давали бы возможность путешествия или отправки сообщения в прошлое. Если бы такое путешествие во времени было возможно, то вы могли бы вернуться в прошлое и изменить ход истории, убив своего дедушку.

Это очень серьёзный аргумент против возможности сверхсветового перемещения. Правда остаётся почти неправдоподобная вероятность, что возможны какие-то ограниченные сверхсветовые перемещения, не допускающие возвращения в прошлое. Или, может быть, путешествия во времени возможны, но причинность нарушается каким-то непротиворечивым образом. Всё это очень неправдоподобно, но если мы обсуждаем сверхсветовые перемещения, то лучше быть готовым к новым идеям.

Верно и обратное. Если бы мы могли переместиться в прошлое, то смогли бы преодолеть скорость света. Можно вернуться в прошлое, полететь куда-то с небольшой скоростью, и прибыть туда раньше, чем прибудет свет, отправленный обычным образом. Смотрите подробности по этой теме в Time Travel.

Открытые вопросы сверхсветовых путешествий

В этом последнем разделе я опишу несколько серьёзных идей о возможном перемещении быстрее света. Эти темы не часто включают в FAQ, потому что они больше похожи не на ответы, а на множество новых вопросов. Они включены сюда, чтобы показать, что в этом направлении проводятся серьёзные исследования. Даётся только короткое введение в тему. Подробности вы можете найти в интернете. Как и ко всему в интернете, относитесь к ним критически.

19. Тахионы

Тахионы - это гипотетические частицы, локально перемещающиеся быстрее света. Для этого они должны иметь мнимую величину массы. При этом энергия и импульс тахиона - реальные величины. Нет оснований считать, что сверхсветовые частицы невозможно обнаружить. Тени и световые пятна могут перемещаться быстрее света и их можно обнаружить.

Пока тахионы не найдены, и физики сомневаются в их существовании. Были заявления, что в экспериментах по измерению массы нейтрино, рождающихся при бета-распаде трития, нейтрино были тахионами. Это сомнительно, но пока окончательно не опровергнуто.

В теории тахионов есть проблемы. Кроме возможного нарушения причинности, тахионы также делают вакуум нестабильным. Может быть удастся обойти эти трудности, но и тогда мы не сможем использовать тахионы для сверхсветовой передачи сообщений.

Большинство физиков считает, что появление тахионов в теории - признак каких-то проблем этой теории. Идея тахионов так популярна у публики просто потому, что они часто упоминаются в фантастической литературе. Смотрите Tachyons.

20. Кротовые норы

Самый известный способ глобального сверхсветового путешествия - использование "кротовых нор". Кротовая нора - это прорезь в пространстве-времени из одной точки вселенной в другую, которая позволяет пройти от одного конца норы до другого быстрее, чем по обычному пути. Кротовые норы описываются общей теорией относительности. Для их создания требуется изменить топологию пространства-времени. Может быть, это станет возможным в рамках квантовой теории гравитации.

Чтобы удерживать кротовую нору открытой, нужны области пространства с отрицательной энергий. C.W.Misner и K.S.Thorne предложили для создания отрицательной энергии использовать эффект Казимира в большом масштабе. Visser предложил использовать для этого космические струны. Это очень умозрительные идеи, и может быть, это невозможно. Может быть, требуемая форма экзотической материи с отрицательной энергией не существует.

Нынешний рекорд скорости в космосе держится уже 46 лет. Когда же он будет побит? Мы, люди, одержимы скоростью. Так, только за последние несколько месяцев стало известно о том, что студенты в Германии поставили рекорд скорости для электромобиля, а в США планируют так усовершенствовать гиперзвуковые самолеты, чтобы те развивали скорость в пять раз превышающую скорость звука, т.е. свыше 6100 км/ч.У таких самолетов не будет экипажа, но не потому, что люди не могут передвигаться с такой высокой скоростью. На самом деле люди уже перемещались со скоростью, которая в несколько раз выше скорости звука.Однако существует ли предел, преодолев который наши стремительно несущиеся тела уже не смогут выдерживать перегрузки?Нынешний рекорд скорости поровну принадлежит трем астронавтам, которые участвовали в космической миссии "Аполлон 10", - Тому Стаффорду, Джону Янгу и Юджину Сернану.В 1969 году, когда астронавты облетели вокруг Луны и возвращались обратно, капсула в которой они находились, развила скорость, которая на Земле равнялась бы 39,897 км/час."Я думаю, что сто лет назад мы вряд ли могли себе представить, что человек сможет перемещаться в космосе со скоростью почти в 40 тысяч километров в час", - говорит Джим Брей из аэрокосмического концерна Lockheed Martin.Брей - директор проекта обитаемого модуля для перспективного корабля "Орион" (Orion), который разрабатывается Космическим агентством США НАСА.По замыслу разработчиков, космический корабль "Орион" – многоцелевой и частично многоразовый - должен выводить астронавтов на низкую орбиту Земли. Очень может быть, что с его помощью удастся побить рекорд скорости, установленный для человека 46 лет назад.Новая сверхтяжелая ракета, входящая в Систему космических пусков (Space Launch System), должна, согласно плану, совершить свой первый пилотируемый полет в 2021 году. Это будет облет астероида, находящегося на окололунной орбите.Затем должны последовать многомесячные экспедиции к Марсу. Сейчас, по мысли конструкторов, обычная максимальная скорость "Ориона" должна составлять примерно 32 тысяч км/час. Однако скорость, которую развил "Аполлон 10", можно будет превзойти даже при сохранении базовой конфигурации корабля "Орион"."Orion предназначен для полетов к различным целям в течение всего своего срока эксплуатации, - говорит Брей. – Его скорость может оказаться значительно выше той, что мы сейчас планируем".Но даже "Орион" не будет представлять пик скоростного потенциала человека. "По сути дела, не существует другого предела скорости, с какой мы можем перемещаться, кроме скорости света", - говорит Брей.Скорость света один миллиард км/час. Есть ли надежда, что нам удастся преодолеть разрыв между 40 тысячами км/час и этими величинами?Удивительным образом скорость как векторная величина, обозначающая быстроту перемещения и направление движения, не является для людей проблемой в физическом смысле, пока она относительно постоянна и направлена в одну сторону.Следовательно, люди – теоретически – могут перемещаться в пространстве лишь чуть медленнее "скоростного предела вселенной", т.е. скорости света.Но даже если допустить, что мы преодолеем значительные технологические препятствия, связанные с созданием скоростных космических кораблей, наши хрупкие, состоящие в основном из воды тела столкнутся с новыми опасностями, сопряженными с эффектами высокой скорости.Могут возникнуть и пока только воображаемые опасности, если люди смогут передвигаться быстрее скорости света благодаря использованию лазеек в современной физике или с помощью открытий, разрывающих шаблон. Как выдержать перегрузкиВпрочем, если мы намерены передвигаться со скоростью свыше 40 тысяч км/час, нам придется достигать ее, а затем замедляться, не спеша и сохраняя терпение.Быстрое ускорение и столь же быстрое замедление таят в себе смертельную опасность для организма человека. Об этом свидетельствует тяжесть телесных травм, возникающих в результате автомобильных катастроф, при которых скорость падает с нескольких десятков километров в час до нуля.В чем причина этого? В том свойстве Вселенной, которое носит название инерции или способности физического тела, обладающего массой, противостоять изменению его состояния покоя или движения при отсутствии или компенсации внешних воздействий.Эта идея сформулирована в первом законе Ньютона, который гласит: "Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменять это состояние"."Состояние покоя и движение с постоянной скоростью - это нормально для человеческого организма, - объясняет Брей. - Нам скорее следует беспокоиться о состоянии человека в момент ускорения".Около века назад создание прочных самолетов, которые могли маневрировать на скорости, привело к тому, что пилоты стали говорить о странных симптомах, вызываемых изменениями скорости и направления полета. Эти симптомы включали в себя временную потерю зрения и ощущение либо тяжести, либо невесомости.Причина заключается в перегрузках, измеряемых в единицах G, которые представляют собой отношение линейного ускорения к ускорению свободного падения на поверхности Земли под воздействием притяжения или гравитации. Эти единицы отражают воздействие ускорения свободного падения на массу, например, человеческого тела.Перегрузка в 1 G равна весу тела, которое находится в поле тяжести Земли и притягивается к центру планеты со скоростью 9,8 м/сек (на уровне моря).Перегрузки, которые человек испытывает вертикально с головы до пят или наоборот, являются поистине плохой новостью для пилотов и пассажиров.При отрицательных перегрузках, т.е. замедлении, кровь приливает от пальцев на ногах к голове, возникает чувство перенасыщения, как при стойке на руках."Красная пелена" (чувство, которое испытывает человек, когда кровь приливает к голове) наступает, когда распухшие от крови, полупрозрачные нижние веки поднимаются и закрывают зрачки глаз.И, наоборот, при ускорении или положительных перегрузках кровь отливает от головы к ногам, глаза и мозг начинают испытывать недостаток кислорода, поскольку кровь скапливается в нижних конечностях.Сначала зрение туманится, т.е. происходит потеря цветного зрения и накатывает, что называется, "серая пелена", потом наступает полная потеря зрения или "черная пелена", но человек остается в сознании.Чрезмерные перегрузки ведут к полной потере сознания. Это состояние называют обмороком, вызванным перегрузкой. Многие пилоты погибли из-за того, что на их глаза опускалась "черная пелена" - и они разбивались.Среднестатистический человек может вынести перегрузку примерно в пять G, прежде чем потеряет сознание.Пилоты, одетые в специальные противоперегрузочные комбинезоны и обученные особым образом напрягать и расслаблять мышцы торса для того, чтобы кровь не отливала от головы, способны управлять самолетом при перегрузках примерно в девять G."На протяжении коротких периодов времени человеческое тело может переносить гораздо более сильные перегрузки, чем девять G, - говорит Джефф Свентек, исполнительный директор Ассоциации аэрокосмической медицины, расположенной в городе Александрия, штат Вирджиния. - Но выдерживать высокие перегрузки на протяжении длительного периода времени способны очень немногие".Мы, люди, в состоянии переносить огромные перегрузки без тяжких травм, правда, только в течение нескольких мгновений.Рекорд кратковременной выносливости поставил капитан ВВС США Эли Бидинг-младший на авиабазе Холломэн в штате Нью-Мексико. В 1958 году он при торможении на специальных санях с ракетным двигателем после разгона до 55 км/ч за 0.1 секунду испытал перегрузку в 82.3 G.Этот результат зафиксировал акселерометр, закрепленный у него на груди. На глаза Бидинга также упала "черная пелена", но он отделался только синяками во время этой выдающейся демонстрации выносливости человеческого организма. Правда, после заезда он провел три дня в госпитале. А теперь в космосАстронавты, в зависимости от средства передвижения, также испытывали довольно высокие перегрузки - от трех до пяти G - во время взлетов и при возвращении в плотные слои атмосферы соответственно.Эти перегрузки переносятся сравнительно легко, благодаря разумной идее пристегивать космических путешественников к креслам в положении лежа лицом по направлению полета.По достижении стабильной крейсерской скорости в 26 000 км/ч на орбите астронавты ощущают скорость не больше, чем пассажиры коммерческих авиарейсов.Если перегрузки не будут представлять собой проблему для длительных экспедиций на кораблях "Орион", то с мелкими космическими камнями – микрометеоритами – все сложнее.Эти частицы размером с рисовое зернышко могут развивать впечатляющие и при этом разрушительные скорости до 300 тысяч км/час. Для обеспечения целостности корабля и безопасности его экипажа "Орион" оснащен внешним защитным слоем, толщина которого варьируется от 18 до 30 см.Кроме того, предусмотрены дополнительные экранирующие щиты, а также используется хитроумное размещение оборудования внутри корабля."Чтобы не лишиться полетных систем, жизненно важных для всего космического корабля, мы должны точно рассчитывать углы подлета микрометеоритов", - говорит Джим Брей.Будьте уверены: микрометеориты – не единственная помеха для космических экспедиций, во время которых высокие скорости полета человека в безвоздушном пространстве будут играть все более важную роль.В ходе экспедиции к Марсу придется решать и другие практические задачи, например, по снабжению экипажа продовольствием и противодействию повышенной опасности раковых заболеваний из-за воздействия на человеческий организм космической радиации.Сокращение времени в пути снизит остроту таких проблем, поэтому быстрота перемещения будет становиться все более желаемой. Космические полеты следующего поколенияЭта потребность в скорости воздвигнет новые препятствия на пути космических путешественников.Новые корабли НАСА, которые угрожают побить рекорд скорости "Аполлона 10", по-прежнему будут полагаться на испытанные временем химические системы ракетных двигателей, используемые со времен первых космических полетов. Но эти системы обладают жесткими ограничениями скорости по причине высвобождения малых величин энергии на единицу топлива.Поэтому, чтобы существенно увеличить скорость полета для людей, отправляющихся на Марс и далее, необходимы, как признают ученые, совершенно новые подходы."Те системы, которыми мы располагаем сегодня, вполне в состоянии доставить нас туда, - говорит Брей, - однако все мы хотели бы стать свидетелями революции в двигателях".Эрик Дэвис, ведущий физик-исследователь в Институте перспективных исследований в Остине, штат Техас, и участник программы НАСА по прорывным разработкам в физике движения, шестилетнего исследовательского проекта, завершившегося в 2002 году, выделил три наиболее перспективных средства, с точки зрения традиционной физики, способных помочь человечеству достичь скоростей, разумно достаточных для межпланетных путешествий.Если коротко, речь идет о явлениях выделения энергии при расщеплении вещества, термоядерном синтезе и аннигиляции антиматерии.Первый метод заключается в делении атомов и применяется в коммерческих ядерных реакторах.Второй, термоядерный синтез, заключается в создании более тяжелых атомов из простых атомов – такого рода реакции питают энергией Солнце. Это технология, которая завораживает, но не дается в руки; до ее обретения "всегда остается еще 50 лет" - и так будет всегда, как гласит старый девиз этой отрасли."Это весьма передовые технологии, - говорит Дэвис, - но они основаны на традиционной физике и прочно утвердились еще на заре Атомного века". По оптимистическим оценкам, двигательные системы, основанные на концепциях деления атомов и термоядерном синтезе, в теории, способны разогнать корабль до 10% скорости света, т.е. до весьма достойных 100 миллионов км/час.Наиболее предпочтительный, хотя и труднодостижимый источник энергии для быстрого космического корабля - это антиматерия, двойник и антипод обычной материи.Когда два вида материи приходят в соприкосновение, они уничтожают друг друга, в результате чего выделяется чистая энергия.Технологии, позволяющие вырабатывать и хранить – пока крайне незначительные – количества антиматерии, существуют уже сегодня.В то же время производство антивещества в полезных количествах потребует новых специальных мощностей следующего поколения, а инженерной мысли придется вступить в конкурентную гонку по созданию соответствующего космического корабля.Но, как говорит Дэвис, немало отличных идей уже прорабатывается на чертежных досках.Космические корабли, приводимые в движение энергией антиматерии, смогут перемещаться с ускорением в течение нескольких месяцев и даже лет и достигать более существенных процентов от скорости света.При этом перегрузки на борту будут оставаться приемлемыми для обитателей кораблей.Вместе с тем, такие фантастические новые скорости будут таить в себе и иные опасности для организма человека. Энергетический градНа скорости в несколько сот миллионов километров в час любая пылинка в космосе, от распыленных атомов водорода до микрометеоритов, неизбежно становится пулей, обладающей высокой энергией и способной прошить корпус корабля насквозь."Когда вы передвигаетесь с очень высокой скоростью, это означает, что частицы, летящие вам навстречу, движутся с теми же скоростями", - говорит Артур Эдельстайн.Вместе с покойным отцом, Уильямом Эдельстайном, профессором радиологии в Медицинской школе Университета имени Джона Хопкинса, он работал над научным трудом, в котором рассматривались последствия воздействия атомов космического водорода (на людей и технику) во время сверхбыстрых космических путешествий в космосе.Хотя его содержание не превышает одного атома на кубический сантиметр, рассеянный в космосе водород может приобрести свойства интенсивной радиационной бомбардировки.Водород начнет разлагаться на субатомные частицы, которые будут проникать внутрь корабля и подвергать воздействию радиации как экипаж, так и оборудование.На скорости, равной 95% скорости света, воздействие такой радиации будет означать почти мгновенную смерть.Звездолет нагреется до температур плавления, перед которыми не устоит ни один мыслимый материал, а вода, содержащаяся в организме членов экипажа, немедленно закипит."Это все крайне неприятные проблемы", - замечает Эдельстайн с мрачным юмором.Он и его отец приблизительно подсчитали, что для создания некоей гипотетической системы магнитной защиты, способной оградить корабль и находящихся в нем людей от смертоносного водородного дождя, звездолет может перемещаться со скоростью, не превышающей половины скорости звука. Тогда люди на борту имеют шанс выжить.Марк Миллис, физик, занимающийся проблемами поступательного движения, и бывший руководитель программы НАСА по прорывным разработкам в физике движения, предупреждает, что этот потенциальный предел скорости для полетов в космосе остается пока проблемой отдаленного будущего."На основании физических знаний, накопленных к настоящему времени, можно сказать, что развить скорость свыше 10% от скорости свет будет крайне трудно, - говорит Миллис. – Опасность нам пока не угрожает. Простая аналогия: зачем переживать, что мы можем утонуть, если мы еще даже не вошли в воду". Быстрее света?Если допустить, что мы, так сказать, научились плавать, сможем ли мы тогда освоить скольжение по космическому времени - если развивать дальше эту аналогию - и летать со сверхсветовой скоростью?Гипотеза о врожденной способности к выживанию в сверхсветовой среде хотя и сомнительна, но не лишена определенных проблесков образованной просвещенности в кромешной тьме.Один из таких интригующих способов перемещения основан на технологиях, подобных тем, что применяются в "варп-двигателе" или "двигателе искривления" из сериала "Звездный путь".Принцип действия этой силовой установки, известной еще как "двигатель Алькубьерре"* (названного по фамилии мексиканского физика-теоретика Мигеля Алькубьерре), состоит в том, что он позволяет кораблю сжимать перед собой нормальное пространство-время, описанное Альбертом Эйнштейном, и расширять его позади себя.По существу, корабль перемещается в некоем объеме пространства-времени, своеобразном "пузыре искривления", который движется быстрее скорости света.Таким образом, корабль остается неподвижным в нормальном пространстве-времени в этом "пузыре", не подвергаясь деформациям и избегая нарушений универсального предела скорости света."Вместо того чтобы плыть в толще воды нормального пространства-времени, - говорит Дэвис, - двигатель Алькубьерре понесет вас, как серфингиста, несущегося на доске по гребню волны".Есть тут и определенный подвох. Для реализации этой затеи необходима экзотическая форма материи, обладающая отрицательной массой, чтобы сжимать и расширять пространство-время."Физика не содержит никаких противопоказаний относительно отрицательной массы, - говорит Дэвис, - но никаких ее примеров нет, и мы никогда не встречали ее в природе".Существует и другой подвох. В опубликованной в 2012 году работе исследователи из Университета Сиднея предположили, что "пузырь искривления" будет накапливать заряженные высокой энергией космические частицы, поскольку неизбежно начнет взаимодействовать с содержимым Вселенной.Некоторые частицы будут проникать внутрь самого пузыря и накачивать корабль радиацией. Застрявшие в досветовых скоростях?Неужели мы так и обречены застрять на этапе досветовых скоростей по причине нашей деликатной биологии?!Речь ведь не столько о том, чтобы установить новый мировой (галактический?) рекорд скорости для человека, сколько о перспективе превращения человечества в межзвездное общество.Со скоростью в половину скорости света - а это тот предел, который, согласно данным изысканий Эдельстайна, способен выдержать наш организм - путешествие к ближайшей звезде в оба конца займет более 16 лет.(Эффекты расширения времени, под воздействием которых для экипажа звездолета в его системе координат пройдет меньше времени, чем для людей, оставшихся на Земле в своей системе координат, не приведут к драматическим последствиям на скорости, составляющей половину скорости света).Марк Миллис полон надежд. Принимая во внимание, что человечество изобрело противоперегрузочные костюмы и защиту от микрометеоритов, позволяющие людям безопасно путешествовать в великой голубой дали и усеянной звездами черноте космоса, он уверен, что мы сможем найти способы выживания, на какие бы скоростные рубежи не вышли в будущем."Те же самые технологии, которые смогут помочь нам достигать невероятных новых скоростей перемещения, - размышляет Миллис, - обеспечат нас новыми, пока неведомыми возможностями для защиты экипажей".Примечание:*Мигель Алькубьерре выдвинул идею своего "пузыря" в 1994 году. А в 1995 году российский физик-теоретик Сергей Красников предложил концепцию устройства для космических путешествий быстрее скорости звука. Идея получила название "трубы Красникова".Это искусственное искривление пространства времени по принципу так называемой кротовой норы. Гипотетически корабль будет двигаться по прямой от Земли к заданной звезде сквозь искривленное пространство-время, проходя через другие измерения.Согласно теории Красникова, космический путешественник вернется обратно в то же самое время, когда он отправился в путь.

Доктор технических наук А. ГОЛУБЕВ.

В середине прошлого года в журналах появилось сенсационное сообщение. Группа американских исследователей обнаружила, что очень короткий лазерный импульс движется в особым образом подобранной среде в сотни раз быстрее, чем в вакууме. Это явление казалось совершенно невероятным (скорость света в среде всегда меньше, чем в вакууме) и даже породило сомнения в справедливости специальной теории относительности. Между тем сверхсветовой физический объект - лазерный импульс в усиливающей среде - был впервые обнаружен не в 2000 году, а на 35 лет раньше, в 1965 году, и возможность сверхсветового движения широко обсуждалась до начала 70-х годов. Сегодня дискуссия вокруг этого странного явления вспыхнула с новой силой.

Примеры "сверхсветового" движения.

В начале 60-х годов короткие световые импульсы большой мощности стали получать, пропуская через квантовый усилитель (среду с инверсной заселенностью) лазерную вспышку.

В усиливающей среде начальная область светового импульса вызывает вынужденное излучение атомов среды усилителя, а конечная его область - поглощение ими энергии. В результате наблюдателю будет казаться, что импульс движется быстрее света.

Эксперимент Лиджуна Вонга.

Луч света, проходящий сквозь призму из прозрачного материала (например, стекла), преломляется, то есть испытывает дисперсию.

Световой импульс представляет собой набор колебаний разной частоты.

Наверное, всем - даже людям, далеким от физики, - известно, что предельно возможной скоростью движения материальных объектов или распространения любых сигналов является скорость света в вакууме. Она обозначается буквой с и составляет почти 300 тысяч километров в секунду; точная величина с = 299 792 458 м/с. Скорость света в вакууме - одна из фундаментальных физических констант. Невозможность достижения скоростей, превышающих с , вытекает из специальной теории относительности (СТО) Эйнштейна. Если бы удалось доказать, что возможна передача сигналов со сверхсветовой скоростью, теория относительности пала бы. Пока что этого не случилось, несмотря на многочисленные попытки опровергнуть запрет на существование скоростей, больших с . Однако в экспериментальных исследованиях последнего времени обнаружились некоторые весьма интересные явления, свидетельствующие о том, что при специально созданных условиях можно наблюдать сверхсветовые скорости и при этом принципы теории относительности не нарушаются.

Для начала напомним основные аспекты, относящиеся к проблеме скорости света. Прежде всего: почему нельзя (при обычных условиях) превысить световой предел? Потому, что тогда нарушается фундаментальный закон нашего мира - закон причинности, в соответствии с которым следствие не может опережать причину. Никто никогда не наблюдал, чтобы, например, сначала замертво упал медведь, а потом выстрелил охотник. При скоростях же, превышающих с , последовательность событий становится обратной, лента времени отматывается назад. В этом легко убедиться из следующего простого рассуждения.

Предположим, что мы находимся на неком космическом чудо-корабле, движущемся быстрее света. Тогда мы постепенно догоняли бы свет, испущенный источником во все более и более ранние моменты времени. Сначала мы догнали бы фотоны, испущенные, скажем, вчера, затем - испущенные позавчера, потом - неделю, месяц, год назад и так далее. Если бы источником света было зеркало, отражающее жизнь, то мы сначала увидели бы события вчерашнего дня, затем позавчерашнего и так далее. Мы могли бы увидеть, скажем, старика, который постепенно превращается в человека средних лет, затем в молодого, в юношу, в ребенка... То есть время повернуло бы вспять, мы двигались бы из настоящего в прошлое. Причины и следствия при этом поменялись бы местами.

Хотя в этом рассуждении полностью игнорируются технические детали процесса наблюдения за светом, с принципиальной точки зрения оно наглядно демонстрирует, что движение со сверхсветовой скоростью приводит к невозможной в нашем мире ситуации. Однако природа поставила еще более жесткие условия: недостижимо движение не только со сверхсветовой скоростью, но и со скоростью, равной скорости света, - к ней можно только приближаться. Из теории относительности следует, что при увеличении скорости движения возникают три обстоятельства: возрастает масса движущегося объекта, уменьшается его размер в направлении движения и замедляется течение времени на этом объекте (с точки зрения внешнего "покоящегося" наблюдателя). При обычных скоростях эти изменения ничтожно малы, но по мере приближения к скорости света они становятся все ощутимее, а в пределе - при скорости, равной с , - масса становится бесконечно большой, объект полностью теряет размер в направлении движения и время на нем останавливается. Поэтому никакое материальное тело не может достичь скорости света. Такой скоростью обладает только сам свет! (А также "всепроникающая" частица - нейтрино, которая, как и фотон, не может двигаться со скоростью, меньшей с. )

Теперь о скорости передачи сигнала. Здесь уместно воспользоваться представлением света в виде электромагнитных волн. Что такое сигнал? Это некая информация, подлежащая передаче. Идеальная электромагнитная волна - это бесконечная синусоида строго одной частоты, и она не может нести никакой информации, ибо каждый период такой синусоиды в точности повторяет предыдущий. Cкорость перемещения фазы cинусоидальной волны - так называемая фазовая скорость - может в среде при определенных условиях превышать скорость света в вакууме. Здесь ограничения отсутствуют, так как фазовая скорость не является скоростью сигнала - его еще нет. Чтобы создать сигнал, надо сделать какую-то "отметку" на волне. Такой отметкой может быть, например, изменение любого из параметров волны - амплитуды, частоты или начальной фазы. Но как только отметка сделана, волна теряет синусоидальность. Она становится модулированной, состоящей из набора простых синусоидальных волн с различными амплитудами, частотами и начальными фазами - группы волн. Скорость перемещения отметки в модулированной волне и является скоростью сигнала. При распространении в среде эта скорость обычно совпадает с групповой скоростью, характеризующей распространение вышеупомянутой группы волн как целого (см. "Наука и жизнь" № 2, 2000 г.). При обычных условиях групповая скорость, а следовательно, и скорость сигнала меньше скорости света в вакууме. Здесь не случайно употреблено выражение "при обычных условиях", ибо в некоторых случаях и групповая скорость может превышать с или вообще терять смысл, но тогда она не относится к распространению сигнала. В СТО устанавливается, что невозможна передача сигнала со скоростью, большей с .

Почему это так? Потому, что препятствием для передачи любого сигнала со скоростью больше с служит все тот же закон причинности. Представим себе такую ситуацию. В некоторой точке А световая вспышка (событие 1) включает устройство, посылающее некий радиосигнал, а в удаленной точке В под действием этого радиосигнала происходит взрыв (событие 2). Понятно, что событие 1 (вспышка) - причина, а событие 2 (взрыв) - следствие, наступающее позже причины. Но если бы радиосигнал распространялся со сверхсветовой скоростью, наблюдатель вблизи точки В увидел бы сначала взрыв, а уже потом - дошедшую до него со скоростью с световую вспышку, причину взрыва. Другими словами, для этого наблюдателя событие 2 совершилось бы раньше, чем событие 1, то есть следствие опередило бы причину.

Уместно подчеркнуть, что "сверхсветовой запрет" теории относительности накладывается только на движение материальных тел и передачу сигналов. Во многих ситуациях возможно движение с любой скоростью, но это будет движение не материальных объектов и не сигналов. Например, представим себе две лежащие в одной плоскости достаточно длинные линейки, одна из которых расположена горизонтально, а другая пересекает ее под малым углом. Если первую линейку двигать вниз (в направлении, указанном стрелкой) с большой скоростью, точку пересечения линеек можно заставить бежать сколь угодно быстро, но эта точка - не материальное тело. Другой пример: если взять фонарик (или, скажем, лазер, дающий узкий луч) и быстро описать им в воздухе дугу, то линейная скорость светового зайчика будет увеличиваться с расстоянием и на достаточно большом удалении превысит с. Световое пятно переместится между точками А и В со сверхсветовой скоростью, но это не будет передачей сигнала из А в В, так как такой световой зайчик не несет никакой информации о точке А.

Казалось бы, вопрос о сверхсветовых скоростях решен. Но в 60-х годах двадцатого столетия физиками-теоретиками была выдвинута гипотеза существования сверхсветовых частиц, названных тахионами. Это очень странные частицы: теоретически они возможны, но во избежание противоречий с теорией относительности им пришлось приписать мнимую массу покоя. Физически мнимая масса не существует, это чисто математическая абстракция. Однако это не вызвало особой тревоги, поскольку тахионы не могут находиться в покое - они существуют (если существуют!) только при скоростях, превышающих скорость света в вакууме, а в этом случае масса тахиона оказывается вещественной. Здесь есть некоторая аналогия с фотонами: у фотона масса покоя равна нулю, но это просто означает, что фотон не может находиться в покое - свет нельзя остановить.

Наиболее сложным оказалось, как и следовало ожидать, примирить тахионную гипотезу с законом причинности. Попытки, предпринимавшиеся в этом направлении, хотя и были достаточно остроумными, не привели к явному успеху. Экспериментально зарегистриро вать тахионы также никому не удалось. В итоге интерес к тахионам как к сверхсветовым элементарным частицам постепенно сошел на нет.

Однако в 60-х же годах было экспериментально обнаружено явление, поначалу приведшее физиков в замешательство. Об этом подробно рассказано в статье А. Н. Ораевского "Сверхсветовые волны в усиливающих средах" (УФН № 12, 1998 г.). Здесь мы кратко приведем суть дела, отсылая читателя, интересующегося подробностями, к указанной статье.

Вскоре после открытия лазеров - в начале 60-х годов - возникла проблема получения коротких (длительностью порядка 1 нс = 10 -9 с) импульсов света большой мощности. Для этого короткий лазерный импульс пропускался через оптический квантовый усилитель. Импульс расщеплялся светодели тельным зеркалом на две части. Одна из них, более мощная, направлялась в усилитель, а другая распространялась в воздухе и служила опорным импульсом, с которым можно было сравнивать импульс, прошедший через усилитель. Оба импульса подавались на фотоприемники, а их выходные сигналы могли визуально наблюдаться на экране осциллографа. Ожидалось, что световой импульс, проходящий через усилитель, испытает в нем некоторую задержку по сравнению с опорным импульсом, то есть скорость распространения света в усилителе будет меньше, чем в воздухе. Каково же было изумление исследователей, когда они обнаружили, что импульс распространялся через усилитель со скоростью не только большей, чем в воздухе, но и превышающей скорость света в вакууме в несколько раз!

Оправившись от первого шока, физики стали искать причину столь неожиданного результата. Ни у кого не возникло даже малейшего сомнения в принципах специальной теории относительности, и именно это помогло найти правильное объяснение: если принципы СТО сохраняются, то ответ следует искать в свойствах усиливающей среды.

Не вдаваясь здесь в детали, укажем лишь, что подробный анализ механизма действия усиливающей среды полностью прояснил ситуацию. Дело заключалось в изменении концентрации фотонов при распространении импульса - изменении, обусловленном изменением коэффициента усиления среды вплоть до отрицательного значения при прохождении задней части импульса, когда среда уже поглощает энергию, ибо ее собственный запас уже израсходован вследствие передачи ее световому импульсу. Поглощение вызывает не усиление, а ослабление импульса, и, таким образом, импульс оказывается усиленным в передней и ослабленным в задней его части. Представим себе, что мы наблюдаем за импульсом при помощи прибора, движущегося со скоростью света в среде усилителя. Если бы среда была прозрачной, мы видели бы застывший в неподвижности импульс. В среде же, в которой происходит упомянутый выше процесс, усиление переднего и ослабление заднего фронта импульса будет представляться наблюдателю так, что среда как бы подвинула импульс вперед. Но раз прибор (наблюдатель) движется со скоростью света, а импульс обгоняет его, то скорость импульса превышает скорость света! Именно этот эффект и был зарегистрирован экспериментаторами. И здесь действительно нет противоречия с теорией относительности: просто процесс усиления таков, что концентрация фотонов, вышедших раньше, оказывается больше, чем вышедших позже. Со сверхсветовой скоростью перемещаются не фотоны, а огибающая импульса, в частности его максимум, который и наблюдается на осциллографе.

Таким образом, в то время как в обычных средах всегда происходит ослабление света и уменьшение его скорости, определяемое показателем преломления, в активных лазерных средах наблюдается не только усиление света, но и распространение импульса со сверхсветовой скоростью.

Некоторые физики пытались экспериментально доказать наличие сверхсветового движения при туннельном эффекте - одном из наиболее удивительных явлений в квантовой механике. Этот эффект состоит в том, что микрочастица (точнее говоря, микрообъект, в разных условиях проявляющий как свойства частицы, так и свойства волны) способна проникать через так называемый потенциальный барьер - явление, совершенно невозможное в классической механике (в которой аналогом была бы такая ситуация: брошенный в стену мяч оказался бы по другую сторону стены или же волнообразное движение, приданное привязанной к стене веревке, передавалось бы веревке, привязанной к стене с другой стороны). Сущность туннельного эффекта в квантовой механике состоит в следующем. Если микрообъект, обладающий определенной энергией, встречает на своем пути область с потенциальной энергией, превышающей энергию микрообъекта, эта область является для него барьером, высота которого определяется разностью энергий. Но микрообъект "просачивается" через барьер! Такую возможность дает ему известное соотношение неопределенностей Гейзенбер га, записанное для энергии и времени взаимодействия. Если взаимодействие микрообъекта с барьером происходит в течение достаточно определенного времени, то энергия микрообъекта будет, наоборот, характеризоваться неопределенностью, и если эта неопределен ность будет порядка высоты барьера, то последний перестает быть для микрообъекта непреодолимым препятствием. Вот скорость проникновения через потенциальный барьер и стала предметом исследований ряда физиков, полагающих, что она может превышать с .

В июне 1998 года в КЈльне состоялся международный симпозиум по проблемам сверхсветовых движений, где обсуждались результаты, полученные в четырех лабораториях - в Беркли, Вене, КЈльне и во Флоренции.

И, наконец, в 2000 году появились сообщения о двух новых экспериментах, в которых проявились эффекты сверхсветового распространения. Один из них выполнил Лиджун Вонг с сотрудниками в исследовательском институте в Принстоне (США). Его результат состоит в том, что световой импульс, входящий в камеру, наполненную парами цезия, увеличивает свою скорость в 300 раз. Получалось, что главная часть импульса выходит из дальней стенки камеры даже раньше, чем импульс входит в камеру через переднюю стенку. Такая ситуация противоречит не только здравому смыслу, но, в сущности, и теории относитель ности.

Сообщение Л. Вонга вызвало интенсивное обсуждение в кругу физиков, большинство которых не склонны видеть в полученных результатах нарушение принципов относительно сти. Задача состоит в том, полагают они, чтобы правильно объяснить этот эксперимент.

В эксперименте Л.Вонга световой импульс, входящий в камеру с парами цезия, имел длительность около 3 мкс. Атомы цезия могут находиться в шестнадцати возможных квантовомеханических состояниях, называемых "сверхтонкие магнитные подуровни основного состояния". При помощи оптической лазерной накачки почти все атомы приводились только в одно из этих шестнадцати состояний, соответствующее почти абсолютному нулю температуры по шкале Кельвина (-273,15 о C). Длина цезиевой камеры составляла 6 сантиметров. В вакууме свет проходит 6 сантиметров за 0,2 нс. Через камеру же с цезием, как показали выполненные измерения, световой импульс проходил за время на 62 нс меньшее, чем в вакууме. Другими словами, время прохождения импульса через цезиевую среду имеет знак "минус"! Действительно, если из 0,2 нс вычесть 62 нс, получим "отрицательное" время. Эта "отрицательная задержка" в среде - непостижимый временной скачок - равен времени, в течение которого импульс совершил бы 310 проходов через камеру в вакууме. Следствием этого "временного переворота" явилось то, что выходящий из камеры импульс успел удалиться от нее на 19 метров, прежде чем приходящий импульс достиг ближней стенки камеры. Как же можно объяснить такую невероятную ситуацию (если, конечно, не сомневаться в чистоте эксперимента)?

Судя по развернувшейся дискуссии, точное объяснение еще не найдено, но несомненно, что здесь играют роль необычные дисперсионные свойства среды: пары цезия, состоящие из возбужденных лазерным светом атомов, представляют собой среду с аномальной дисперсией. Напомним кратко, что это такое.

Дисперсией вещества называется зависимость фазового (обычного) показателя преломления n от длины волны света l. При нормальной дисперсии показатель преломления увеличивается с уменьшением длины волны, и это имеет место в стекле, воде, воздухе и всех других прозрачных для света веществах. В веществах же, сильно поглощающих свет, ход показателя преломления с изменением длины волны меняется на обратный и становится гораздо круче: при уменьшении l (увеличении частоты w) показатель преломления резко уменьшается и в некоторой области длин волн становится меньше единицы (фазовая скорость V ф > с ). Это и есть аномальная дисперсия, при которой картина распространения света в веществе меняется радикальным образом. Групповая скорость V гр становится больше фазовой скорости волн и может превысить скорость света в вакууме (а также стать отрицательной). Л. Вонг указывает на это обстоятельство как на причину, лежащую в основе возможности объяснения результатов его эксперимента. Следует, однако, заметить, что условие V гр > с является чисто формальным, так как понятие групповой скорости введено для случая малой (нормальной) дисперсии, для прозрачных сред, когда группа волн при распространении почти не меняет своей формы. В областях же аномальной дисперсии световой импульс быстро деформируется и понятие групповой скорости теряет смысл; в этом случае вводятся понятия скорости сигнала и скорости распространения энергии, которые в прозрачных средах совпадают с групповой скоростью, а в средах с поглощением остаются меньше скорости света в вакууме. Но вот что интересно в эксперименте Вонга: световой импульс, пройдя через среду с аномальной дисперсией, не деформируется - он в точности сохраняет свою форму! А это соответствует допущению о распространении импульса с групповой скоростью. Но если так, то получается, что в среде отсутствует поглощение, хотя аномальная дисперсия среды обусловлена именно поглощением! Сам Вонг, признавая, что многое еще остается неясным, полагает, что происходящее в его экспериментальной установке можно в первом приближении наглядно объяснить следующим образом.

Световой импульс состоит из множества составляющих с различными длинами волн (частотами). На рисунке показаны три из этих составляющих (волны 1-3). В некоторой точке все три волны находятся в фазе (их максимумы совпадают); здесь они, складываясь, усиливают друг друга и образуют импульс. По мере дальнейшего распространения в пространстве волны расфазируются и тем самым "гасят" друг друга.

В области аномальной дисперсии (внутри цезиевой ячейки) волна, которая была короче (волна 1), становится длиннее. И наоборот, волна, бывшая самой длинной из трех (волна 3), становится самой короткой.

Следовательно, соответственно меняются и фазы волн. Когда волны прошли через цезиевую ячейку, их волновые фронты восстанавливаются. Претерпев необычную фазовую модуляцию в веществе с аномальной дисперсией, три рассматриваемые волны вновь оказываются в фазе в некоторой точке. Здесь они снова складываются и образуют импульс точно такой же формы, как и входящий в цезиевую среду.

Обычно в воздухе и фактически в любой прозрачной среде с нормальной дисперсией световой импульс не может точно сохранять свою форму при распространении на удаленное расстояние, то есть все его составляющие не могут быть сфазированы в какой-либо удаленной точке вдоль пути распространения. И в обычных условиях световой импульс в такой удаленной точке появляется спустя некоторое время. Однако вследствие аномальных свойств использованной в эксперименте среды импульс в удаленной точке оказался сфазирован так же, как и при входе в эту среду. Таким образом, световой импульс ведет себя так, как если бы он имел отрицательную временную задержку на пути до удаленной точки, то есть пришел бы в нее не позже, а раньше, чем прошел среду!

Большая часть физиков склонна связывать этот результат с возникновением низкоинтенсивного предвестника в диспергирующей среде камеры. Дело в том, что при спектральном разложении импульса в спектре присутствуют составляющие сколь угодно высоких частот с ничтожно малой амплитудой, так называемый предвестник, идущий впереди "главной части" импульса. Характер установления и форма предвестника зависят от закона дисперсии в среде. Имея это в виду, последовательность событий в эксперименте Вонга предлагается интерпретировать следующим образом. Приходящая волна, "простирая" предвестник впереди себя, приближается к камере. Прежде чем пик приходящей волны попадет на ближнюю стенку камеры, предвестник инициирует возникновение импульса в камере, который доходит до дальней стенки и отражается от нее, образуя "обратную волну". Эта волна, распространяясь в 300 раз быстрее с , достигает ближней стенки и встречается с приходящей волной. Пики одной волны встречаются со впадинами другой, так что они уничтожают друг друга и в результате ничего не остается. Получается, что приходящая волна "возвращает долг" атомам цезия, которые "одалживали" ей энергию на другом конце камеры. Тот, кто наблюдал бы только начало и конец эксперимента, увидел бы лишь импульс света, который "прыгнул" вперед во времени, двигаясь быстрее с.

Л. Вонг считает, что его эксперимент не согласуется с теорией относительности. Утверждение о недостижимости сверхсветовой скорости, полагает он, применимо только к объектам, обладающим массой покоя. Свет может быть представлен либо в виде волн, к которым вообще неприменимо понятие массы, либо в виде фотонов с массой покоя, как известно, равной нулю. Поэтому скорость света в вакууме, считает Вонг, не предел. Тем не менее Вонг признает, что обнаруженный им эффект не дает возможности передавать информацию со скоростью больше с .

"Информация здесь уже заключена в переднем крае импульса, - говорит П. Милонни, физик из Лос-Аламосской национальной лаборатории США. - И может создаться впечатление о сверхсветовой посылке информации, даже когда вы ее не посылаете".

Большинство физиков считают, что новая работа не наносит сокрушительного удара по фундаментальным принципам. Но не все физики полагают, что проблема улажена. Профессор А. Ранфагни из итальянской исследовательской группы, осуществившей еще один интересный эксперимент 2000 года, считает, что вопрос еще остается открытым. Этот эксперимент, проведенный Даниэлом Мугнаи, Анедио Ранфагни и Рокко Руггери, обнаружил, что радиоволны сантиметрового диапазона в обычном воздухе распространяются со скоростью, превышающей с на 25%.

Резюмируя, можно сказать следующее. Работы последних лет показывают, что при определенных условиях сверхсветовая скорость действительно может иметь место. Но что именно движется со сверхсветовой скоростью? Теория относительности, как уже упоминалось, запрещает такую скорость для материальных тел и для сигналов, несущих информацию. Тем не менее некоторые исследователи весьма настойчиво пытаются продемонстри ровать преодоление светового барьера именно для сигналов. Причина этого кроется в том, что в специальной теории относительности нет строгого математического обоснования (базирующегося, скажем, на уравнениях Максвелла для электромагнитного поля) невозможности передачи сигналов со скоростью больше с . Такая невозможность в СТО устанавливается, можно сказать, чисто арифметически, исходя из эйнштейновской формулы сложения скоростей, но фундаментальным образом это подтверждается принципом причинности. Сам Эйнштейн, рассматривая вопрос о сверхсветовой передаче сигналов, писал, что в этом случае "...мы вынуждены считать возможным механизм передачи сигнала, при использовании которого достигаемое действие предшествует причине. Но, хотя этот результат с чисто логической точки зрения и не содержит в себе, по-моему, никаких противоречий, он все же настолько противоречит характеру всего нашего опыта, что невозможность предположения V > с представляется в достаточной степени доказанной". Принцип причинности - вот тот краеугольный камень, который лежит в основе невозможности сверхсветовой передачи сигналов. И об этот камень, по-видимому, будут спотыкаться все без исключения поиски сверхсветовых сигналов, как бы экспериментаторам не хотелось такие сигналы обнаружить, ибо такова природа нашего мира.

В заключение следует подчеркнуть, что все вышеизложенное относится именно к нашему миру, к нашей Вселенной. Такая оговорка сделана потому, что в последнее время в астрофизике и космологии появляются новые гипотезы, допускающие существование множества скрытых от нас Вселенных, соединенных топологическими туннелями -перемычками. Такой точки зрения придерживается, например, известный астрофизик Н. С. Кардашев. Для внешнего наблюдателя входы в эти туннели обозначаются аномальными полями тяготения, подобно черным дырам. Перемещения в таких туннелях, как предполагают авторы гипотез, позволят обойти ограничение скорости движения, накладыва емое в обычном пространстве скоростью света, и, следовательно, реализовать идею о создании машины времени... Не исключено, что в подобных Вселенных действительно могут происходить необычные для нас вещи. И хотя пока что такие гипотезы слишком уж напоминают сюжеты из научной фантастики, вряд ли следует категорически отвергать принципиальную возможность многоэлементной модели устройства материального мира. Другое дело, что все эти другие Вселенные, скорее всего, останутся чисто математическими построениями физиков-теоретиков, живущих в нашей Вселенной и силой своей мысли пытающихся нащупать закрытые для нас миры...

См. в номере на ту же тему

Даже если бы мы смогли сконструировать прототипы кораблей, выдуманных учеными из NASA и способных двигаться с релятивистской скоростью, а также нашли бы неприлично большой источник энергии, необходимой для того, чтобы запустить их в небеса, наше путешествие оказалось бы вовсе не таким приятным, как может показаться с борта «Тысячелетнего сокола». От возможности летать к соседним звездам нас отделяют отнюдь не технологии - это лишь вопрос нескольких веков. Проблема заключается в том, насколько опасен космос, если он превращается в среду обитания, и насколько хрупким на самом деле может оказаться человеческое тело.

Если бы мы стали перемещаться со скоростью света (300 000 км/с) в межзвездном пространстве, то погибли бы через пару секунд. Несмотря на то что плотность вещества в космосе очень низкая, на такой скорости даже несколько атомов водорода на кубический сантиметр врежутся в носовую часть корабля с ускорением, которое на Земле достижимо лишь на Большом адронном коллайдере. Из-за этого мы получим дозу излучения, равную десяти тысячам зивертов в секунду. Учитывая, что смертельная доза для человека составляет шесть зивертов, такой радиоактивный луч повредит корабль и уничтожит все живое на борту.

«Если бы мы стали перемещаться со скоростью света в космосе, то погибли бы через пару секунд»

Согласно исследованиям ученых из Университета Джонса Хопкинса, никакая броня не может уберечь нас от этой ионизирующей радиации. Переборка из алюминия толщиной десять сантиметров в таком случае поглотит меньше 1% энергии - а ведь размеры переборок невозможно увеличивать бесконечно, не рискуя возможностью взлететь. Однако помимо радиоактивного водорода нашему космолету на скорости света будет угрожать эрозия, возникающая из-за воздействия межзвездной пыли. В лучшем случае нам придется согласиться на 10% от скорости света, что позволит с большим трудом достичь лишь самой близкой звезды - Проксимы Центавра. С учетом расстояния в 4,22 светового года такой полет займет 40 лет - то есть одну неполную человеческую жизнь.

Космическая радиация пока остается для нас непреодолимым препятствием, однако, если в далеком будущем мы сможем его преодолеть, путешествие со скоростью света окажется самым невероятным переживанием, которое только доступно человеку. На такой скорости время замедлится, и старение станет намного более протяженным процессом (ведь даже космонавты на МКС за шесть месяцев успевают состариться на 0,007 секунды меньше, чем люди на Земле). Наше зрительное поле во время такого полета искривится, превратившись в туннель. Мы будем лететь по этому туннелю вперед, к сияющей белоснежной вспышке, не видя следов от звезд и оставляя за спиной самую кромешную, самую абсолютную темноту, какую только можно себе представить.