Пути проникновения бериллия в организм. Бериллий в организме человека

Бериллий относят к группе металлов. И, несмотря на то, что в природе он довольно редкое явление, его часто используют в промышленности. Кто знает, возможно, без него не осуществилась бы давняя мечта человечества — полёт в космос, ведь этот серебристо-серый металл практически незаменим в строении ракет и в аэрокосмической отрасли.

В поисках названия — от Велура до Берилловой земли

Несложно догадаться, что свое наименование бериллий получил от минерала берилла. Но что известно о происхождении корня слова — «берилл»? Предполагается, что название минерала связано с торговым городом Велур на юге Индии, в окрестностях которого было найдено месторождение изумрудов — разновидностей берилла. Берилл означает «кристалл», «жемчуг», или «отбелить, становиться бледным».

В 1798 известный французский химик Луи Никола Воклен выявил в минерале берилле окись неизвестного ранее металла бериллия. Его работа была опубликована в научном журнале. Редактор издания решил дать элементу название «глицина» (с древнегреческого. «глюциний» означает сладкий), так как при растворении в воде его соединения принимали сладковатый вкус. Однако немецкому химику Мартину Клапроту и шведскому минералогу Андерсу Экебергу такое название хим.элемента пришлось не по душе, и приведя в аргумент то, что у солей иттрия также сладкий вкус и дали свое название элементу – «берриловая земля».

Тем не менее, примерно до середины 19 века бериллий все равно называли «глицинием» или «глюцинием». Стоит отметить, что в выявлении этого элемента оставлен и русский след. Русский горный инженер И. В. Авдеев в ходе своих исследований выявил точный состав соединений бериллия. Данные этого ученого пригодилось Дмитрию Менделееву при составлении знаменитой Периодической таблицы, в ней Менделеев отнес бериллий ко 2-ой группе элементов.

Еще один важный факт — Вокленом металл был выделен не в чистом виде, а лишь в виде оксида ВеО, а беспримесный бериллий получили лишь в 1828 году.

Насколько опасен бериллий для организма человека

Бериллий , в отличие от своего минерала бериллонита, для магов, литотерапевтов и астрологов не представляет никакого интереса. Все дело в ядовитых качествах элемента, из-за которых человеку попросту опасно работать с ним без использования специальных приборов.

Известно, что в организм человека с пищей и водой бериллий поступает в малых количествах, в основном он присутствует в томатах и листовом салате.

Преимущественно бериллий попадает в организм человека ингаляционно, через органы дыхания в виде дыма и пара. Поэтому люди, чья работа сопряжена с частым вдыханием пыли, содержащей бериллий, рискуют приобрести такое профессиональное заболевание как бериллиоз (саркоидоз легких). Печальная статистика гласит, что из 100 отравлений бериллием, 10 случаев заканчивались летальным исходом для человека. Первый случай со смертельным исходом был зафиксирован в 1930 году, тогда в воздухе на 1 кубический метр было всего 25 мг бериллия.

При чрезмерной насыщенности бериллия в пище может произойти процесс, вследствие чего разовьется неизлечимый бериллиевый рахит. От него страдают животные, чья область обитания попадает под провинции, богатые бериллием.

Агентство по охране окружающей среды США заявило, что преимущественно поступление элемента в среду обитания и деятельности человека происходит через сжигание каменного угля. Чаще всего он загрязняет почву, поступление его в воду невелико.

В ходе исследований, проведенных Международным агентством по изучению рака, и связанных с влиянием бериллия на здоровье человека, этот химический элемент причислен к потенциально канцерогенным веществам.

Где применяется бериллий

Наибольшие запасы бериллия находятся в США, преимущественно в Юте, кроме того залежи бериллия имеются в Бразилии и России. Бериллий используют для надобностей оборонной промышленности. К примеру, этот металл применяют в производстве реакторов для атомных подлодок, кораблей — в электронном, оптическом и спутниковом оборудовании.

Находят применение бериллию в атомной отрасли. Распространено использование этого металла в нефтедобывающей и газовой промышленностях, а также в изготовлении компьютеров. Может быть использован бериллий для изготовления медицинского оборудования, в частности для ренгтен-аппаратов.

Пик частого применения бериллия в производстве самолетов выпал на 40-ые, военные годы, так как во время Второй Мировой выросла необходимость в быстром и высококачественном изготовлении боевых воздушных кораблей.

Кроме того бериллий незаменим при изготовлении тормозов для аэрокосмического оборудования, тепловых экранов.

Материалы, созданные на основе бериллия, ценны множеством свойств: они и легки, и прочны, и стойки к высоким температурам.

Бериллий (Ве)

Разрушитель костей

Бериллий относится к токсичным ультрамикроэлементам. Физиологическая роль бериллия в организме человека изучена недостаточно, однако известно, что бериллий может участвовать в регуляции фосфорно-кальциевого обмена, поддержке иммунного статуса организма.

Суточная потребность организма человека точно не установлена, однако есть данные, что оптимальное среднесуточное поступление бериллия составляет 10–20 мкг.

В организм человека бериллий может попадать как с пищей, так и через легкие. При введении в растворимой форме в желудочно-кишечный тракт бериллий взаимодействует с фосфатами и образует плохо растворимый Be 3 (PO 4) 2 или связывается с белками эпителиальных клеток в прочные протеинаты. Поэтому всасываемость бериллия в желудочно-кишечном тракте невелика и колеблется от 4 до 10% от поступившего количества. Следует отметить, что этот показатель зависит также и от кислотности желудочного сока.

Общее количество бериллия в теле взрослого человека колеблется (по разным данным) от 0,4 до 40 мкг. Бериллий постоянно присутствует в крови, костной и мышечной тканях (0,001–0,003 мкг/г) и других органах. Установлено, что бериллий может депонироваться в легких, печени, лимфатических узлах, костях, миокарде.

Выводится бериллий из организма преимущественно с мочой (более 90%).

Биологическая роль в организме человека . В основном бериллий участвует в обмене магния и фосфора в ткани. Установлено, что активность соединений бериллия отчетливо проявляется в различных биохимических превращениях, связанных с участием неорганических фосфатов.

Действие бериллия на организм многостороннее. На сегодня доказан его токсический (в том числе – и цитотоксический), сенсибилизирующий, эмбриотоксический и канцерогенный эффекты. Последний установлен в эксперименте на животных определенных видов и обсуждается в отношении человека. Бериллий и его соединения имеют способность проникать во все органы, клетки и их ядра, в клеточные органеллы, в частности, в митохондрии. Он повреждает клеточные мембраны , в том числе – и их липидные компоненты , нарушая микровязкость. Бериллий тормозит активность АТФ–азы саркоплазматического ретикулума путем ингибирования транспорта магния и кальция.

Проникая в ядра клеток, бериллий снижает активность ферментов синтеза ДНК, в частности ДНК–полимеразы, имеются указания на значение нарушений синтеза ДНК для появления аномальных белков, играющих роль аутоантигенов.

Цитотоксический эффект соединений бериллия изучен на фагоцитах. В частности, введение сульфата и цитрата бериллия вызывает блокаду клеток системы мононуклеарных фагоцитов и снижает индекс фагоцитоза на 65–75%. Введение фосфата бериллия подавляет воспалительную реакцию .

При внутритрахеальном введении соединений бериллия происходит повышенный выход макрофагов и полинуклеаров в просвет альвеол. Однако подвижность макрофагов при этом снижается, их органеллы повреждаются и снижается синтез ДНК.

Показано, что при ингаляции растворимых солей бериллия разрастается соединительная ткань преимущественно в периваскулярных и перибронхиальных зонах. Фиброз развивается в ответ на проникновение бериллия в легкие, причем этот процесс имеет максимальную скорость в течение первого месяца после внутритрахеального введения гидроокиси бериллия. Склероз легочной ткани, как правило, сочетается с возникновением своеобразных гранулем. Электронно-микроскопические и гистохимические исследования последних лет показали сходство их с гранулемами аллергического характера. Доказано, что в лимфоцитах гранулем число органелл увеличено. Этот факт и наличие большого числа свободных рибосом свидетельствуют об их активном состоянии. Эпителиоидные клетки гранулем возникают из мононуклеаров и лимфоцитов. Уже в первые месяцы после ингаляции растворимых соединений бериллия развиваются гранулемоподобные узелки, состоящие из лимфоидно–гистиоцитарных элементов. В центре таких узелков обнаруживаются распадающиеся макрофаги и клеточный детрит. Это трактуется как результат выхода бериллия при гибели макрофагов, поглотивших его.

Синергисты и антагонисты бериллия . Антагонистом бериллия является магний . Магний в организме преимущественно находится внутри клеток, где образует соединения с белками и нуклеиновыми кислотами, содержащими связи Mg–N и Mg–O. Сходство физико-химических характеристик ионов Be 2+ и Mg 2+ обусловливает их способность к взаимному замещению в таких соединениях. Это объясняет, в частности, ингибирование магнийсодержащих ферментов при попадании в организм бериллия.

Признаки недостаточности бериллия . Научные данные отсутствуют.

Повышенное содержание бериллия в пище способствует образованию фосфата бериллия. Систематически «отнимая» фосфаты у важнейшей части костей – фосфата кальция, – бериллий ослабляет и разрушает костную ткань. Известно, что введение этого элемента животным вызывает «бериллиевый» рахит . Установлено, что даже небольшое количество бериллия в составе костей приводит к их размягчению.
В местах парентерального введения бериллия происходит разрушение окружающих тканей, отсюда бериллий выводится очень медленно. В конце концов бериллий депонируется в скелете и печени.

По современным представлениям, бериллий – это токсический, канцерогенный и мутагенный элемент . Патогенное действие бериллия наблюдается при его ингаляции в концентрациях, превышающих предельно допустимые концентрации в 2 и более раз. Соли бериллия в концентрации 1 мкмоль/л специфически ингибируют активность щелочной фосфатазы, угнетающе действуют на другие ферменты. Достаточно хорошо изучены иммунотоксические свойства бериллия.

В патологии различают острые и хронические отравления бериллием. Известно, например, что элиминация соединений бериллия из организма (особенно из органов лимфоидной системы, где они аккумулируются), происходит чрезвычайно медленно, в течение более 10 лет. Повышенный уровень бериллия встречается в семьях рабочих, контактирующих с этим элементом на производстве.

Основные проявления избытка бериллия : поражение легочной ткани (фиброз, саркоидоз), поражение кожи – экзема, эритема, дерматоз (при контактах соединений бериллия с кожей), бериллиоз, лихорадка литейная (раздражение слизистых оболочек глаз и дыхательных путей); эрозии слизистых оболочек желудочно-кишечного тракта, нарушение функций миокарда, печени, развитие аутоиммунных процессов, опухоли.

Бериллий необходим : в древности бериллом (силикат алюминия и бериллия) лечили огромное количество женских заболеваний. Бытовало мнение, что с помощью порошка берилла можно избежать опущения матки, зубной и головной боли, а бериллиевые браслеты защищают от заболеваний яичников и мочевого пузыря. Врачи–литотерапевты современности рекомендуют носить берилл в случае расстройств нервной системы и хронических болезней дыхательной системы.

Пищевые источники бериллия : поступление бериллия с пищей и водой незначительно, значительные количества накапливаются в томатах и в листовом салате .
Основной путь поступления бериллия в организм – ингаляционный, т.е. через дыхательные пути. У людей, которые работают в условиях, где есть вероятность вдыхания пыли, содержащей бериллий, может развиться профессиональное заболевание – бериллиоз (бериллиевая или химическая пневмония).


Содержание статьи

БЕРИЛЛИЙ (Beryllium) Be – химический элемент 2 (IIa) группы Периодической системы Д.И.Менделеева. Атомный номер 4, относительная атомная масса 9,01218. В природе встречается только один стабильный изотоп 9 Be. Известны также радиоактивные изотопы бериллия 7 Be и 10 Be с периодами полураспада 53.29 дней и 1,6·10 6 лет, соответственно. Степени окисления +2 и +1 (последняя крайне неустойчива).

Бериллиесодержащие минералы известны с древности. Некоторые из них добывались на Синайском полуострове еще в 17 в. до н.э. Название берилл встречается у греческих и латинских (Beryll) античных писателей. Сходство берилла и изумруда отмечал Плиний Старший : «Берилл, если подумать, имеет ту же природу, что и смарагд (изумруд), или, по крайней мере, очень похожую» (Естественная история, книга 37). В Изборнике Святослава (1073) берилл фигурирует под названием вируллион.

Бериллий был открыт в 1798. Французский кристаллограф и минералог Рене Жюст Гаюи (Haüy René Just) (1743–1822), отметив сходство твердости, плотности и внешнего вида зеленовато-голубых кристаллов берилла из Лиможа и зеленых кристаллов изумруда из Перу, предложил французскому химику Никола Луи Воклену (Vauquelin Nicolas Louis) (1763–1829) проанализировать берилл и изумруд, чтобы узнать, не являются ли они химически идентичными. В результате Воклен показал, что оба минерала содержат не только оксиды алюминия и кремния, как было известно и раньше, но также и новую «землю», которая очень напоминала оксид алюминия, но, в отличие от него, реагировала с карбонатом аммония и не давала квасцов. Именно этими свойствами Воклен и воспользовался для разделения оксидов алюминия и неизвестного элемента.

Редакция журнала «Annakts de Chimie», опубликовавшего работу Воклена, предложила для открытой им земли название «глицина» за способность к образованию соединений, обладающие сладким вкусом. Известные химики Мартин Генрих Клапрот (Klaproth Martin Heinrich) (1743–1817) и Андерс Экеберг (Ekeberg Anders) (1767–1813) сочли это название неудачным, так как соли иттрия также имеют сладковатый вкус. В их работах «земля», открытая Вокленом, называется берилловой. Тем не менее, в научной литературе 19 в. для нового элемента долгое время использовали термины «глиций», «глициний» или «глюциний». В России до середины 19 в. оксид этого элемента называли «сладкоземом», «сладимой землей», «сладоземом» а сам элемент именовался глицинием, глицинитом, глицием, сладимцем

В виде простого вещества элемент, открытый Вокленом, впервые получил немецкий химик Фридрих Вёлер (Wöhler Friedrich) (1800–1882) в 1828, восстановливая хлорид бериллия калием:

BeCl 2 + 2K = Be + 2KCl

Независимо от него в этом же году тем же методом металлический бериллий был выделен французским химиком Антуаном Бюсси (Bussy Antoine) (1794–1882).

Общепринятым стало название элемента по имени минерала (латинское beryllus от греческого bhrnlloV), однако во Франции бериллий до сих пор называют глицинием.

Было установлено, что масса одного эквивалента бериллия равна примерно 4,7 г/моль. Однако сходство между бериллием и алюминием привело к существенному заблуждению относительно валентности и атомной массы бериллия. Долгое время бериллий считали трехвалентным с относительной атомной массой 14 (что примерно равно утроенной массе одного эквивалента бериллия 3 × 4,7). Лишь через 70 лет после открытия бериллия русский ученый Д.И. Менделеев пришел к выводу, что в его периодической таблице места для такого элемента нет, а вот двухвалентный элемент с относительной атомной массой 9 (приблизительно равной удвоенной массе одного эквивалента бериллия 2 × 4,7) легко размещается между литием и бором.

Бериллий в природе и его промышленное извлечение. Бериллий, как и соседние с ним литий и бор, относительно мало распространен в земной коре, его содержание составляет около 2·10 –4 %. Хотя бериллий и редкий элемент, но он не является рассеянным, так как входит в состав поверхностных залежей берилла в пегматитовых породах, которые последними закристаллизовались в гранитных куполах. Есть сообщения о гигантских бериллах длиной до 1 м и массой до нескольких тонн.

Известно 54 собственно бериллиевых минерала. Важнейший из них – берилл 3BeO·Al 2 O 3 ·6SiO 2 . У него много окрашенных разновидностей. Изумруд содержит около 2% хрома, придающего ему зеленый цвет. Аквамарин своей голубой окраской обязан примеси железа(II). Розовый цвет воробьевита обусловлен примесью соединений марганца(II), а золотисто-желтый гелиодор окрашен ионами железа(III). Промышленно важными минералами являются также фенакит 2BeO·SiO 2 , бертрандит 4BeO·2SiO 2 ·H 2 O, гельвин (Mn,Fe,Zn) 4 3 S.

Мировые природные ресурсы бериллия оцениваются более чем в 80 тыс. т (по содержанию бериллия), из которых около 65% сосредоточено в США, где основным бериллиевым сырьем является бертрандитовая руда. Ее подтвержденные запасы в США на месторождении Spur Mountain (шт. Юта), являющемся основным в мире источником бериллия, на конец 2000 составили примерно 19 тыс. т (по содержанию металла). Берилла в США очень мало. Из других стран наибольшими запасами бериллия обладают Китай, Россия и Казахстан. Во времена СССР бериллий на территории России добывался на Малышевском (Свердловская область), Завитинском (Читинская область), Ермаковском (Бурятия), Пограничном (Приморский край) месторождениях. В связи с сокращением ВПК и прекращением строительства атомных электростанций, его добыча была прекращена на Малышевском и Ермаковском и значительно сокращена на Завитимском месторождениях. При этом значительная часть добываемого бериллия продается за рубеж, в основном, в Европу и Японию.

По оценке Геологической службы США, мировая добыча бериллия в 2000 характеризовалась следующими данными (т):

Всего 356
США 255
КНР 55
Россия 40
Казахстан 4
Прочие страны 2

Характеристика простого вещества и промышленное получение металлического бериллия. По внешнему виду бериллий – серебристо-серый металл. Он очень твердый и хрупкий. Бериллий имеет две кристаллические модификации: a-Be имеет решетку гексагонального типа (что приводит к анизотропии свойств); решетка b-Be относится к кубическому типу; температура перехода составляет 1277° С. Бериллий плавится при 1287° С, кипит при 2471° С.

Это один из самых легких металлов (плотность равна 1,816 г/см 3). У него высокий модуль упругости, в 4 раза больший, чем у алюминия, в 2,5 раза превышающий соответствующий параметр титана, и на треть выше, чем у стали. Бериллий обладает наибольшей среди всех металлов теплоемкостью: 16,44 Дж/(моль К) для a-Be, 30,0 Дж/(моль К) для b-Be.

По устойчивости к коррозии во влажном воздухе бериллий, благодаря образованию защитного оксидного слоя, напоминает алюминий. Тщательно отполированные образцы долго сохраняют свой блеск.

Металлический бериллий относительно мало реакционноспособен при комнатной температуре. В компактном виде он не реагирует с водой и водяным паром даже при температуре красного каления и не окисляется воздухом до 600° С. Порошок бериллия при поджигании горит ярким пламенем, при этом образуются оксид и нитрид. Галогены реагируют с бериллием при температуре выше 600° С, а халькогены требуют еще более высокой температуры. Аммиак взаимодействует с бериллием при температуре выше 1200° С с образованием нитрида Be 3 N 2 , а углерод дает карбид Ве 2 С при 1700° С. С водородом бериллий непосредственно не реагирует, и гидрид ВеН 2 получают косвенным путем.

Бериллий легко растворяется в разбавленных водных растворах кислот (соляной, серной, азотной), однако холодная концентрированная азотная кислота пассивирует металл. Реакция бериллия с водными растворами щелочей сопровождается выделением водорода и образованием гидроксобериллатов:

Be + 2NaOH (р) + 2H 2 O = Na 2 + H 2

При проведении реакции с расплавом щелочи при 400–500° С образуются диоксобериллаты:

Be + 2NaOH (ж) = Na 2 BeO 2 + H 2

Металлический бериллий быстро растворяется в водном растворе NH 4 HF 2 . Эта реакция имеет технологическое значение для получения безводного BeF 2 и очистки бериллия:

Be + 2NH 4 HF 2 = (NH 4) 2 + H 2

Бериллий выделяют из берилла сульфатным или фторидным способом. В первом случае концентрат сплавляют при 750° С с карбонатом натрия или кальция, а затем сплав обрабатывают концентрированной горячей серной кислотой. На образовавшийся раствор сульфата бериллия, алюминия и других металлов действуют сульфатом аммония. Это приводит к выделению большей части алюминия в виде алюмокалиевых квасцов. Оставшийся раствор обрабатывают избытком гидроксида натрия. При этом образуется раствор, содержащий Na 2 и алюминаты натрия. При кипячении этого раствора в результате разложения гидроксобериллата осаждается гидроксид бериллия (алюминаты остаются в растворе).

По фторидному способу концентрат нагревают с Na 2 и Na 2 CO 3 при 700–750° С. При этом образуется тетрафторобериллат натрия:

3BeO·Al 2 O 3 ·6SiO 2 + 2Na 2 + Na 2 CO 3 = 3Na 2 + 8SiO 2 + Al 2 O 3 + CO 2

Затем выщелачивают растворимый фторобериллат водой и осаждают гидроксид бериллия при рН около 12.

Для выделения металлического бериллия его оксид или гидроксид сначала переводят в хлорид или фторид. Металл получают электролизом расплавленных смесей хлоридов бериллия и щелочных элементов или действием магния на фторид бериллия при температуре около 1300° С:

BeF 2 + Mg = MgF 2 + Be

Для получения заготовок и изделий из бериллия используют, в основном, методы порошковой металлургии.

Бериллий – легирующая добавка в медных, никелевых, железных и других сплавах. Способность бериллия увеличивать твердость меди была открыта в 1926. Сплавы меди с 1–3% бериллия назвали бериллиевыми бронзами. Сейчас известно, что добавка около 2% бериллия в шесть раз увеличивают прочность меди. Кроме того, такие сплавы (которые также обычно содержат 0,25% кобальта) имеют хорошую электрическую проводимость, высокую прочность и сопротивление износу. Они не магнитны, устойчивы к коррозии и находят многочисленные области применения в движущихся частях двигателей самолетов, точных инструментах, управляющих реле в электронике. Кроме того, они не искрят и поэтому широко применяются для изготовления ручного инструмента в нефтяной промышленности. Никелевый сплав, содержащий 2% бериллия, используется также для высокотемпературных пружин, зажимов, мехов и электрических контактов. Все большее значение приобретают бериллий-алюминиевые сплавы, в которых содержание бериллия достигает 65%. Они имеют широкий круг сфер использования – от авиакосмической промышленности до производства компьютеров.

С помощью бериллия улучшают качество поверхности деталей машин и механизмов. Для этого готовое изделие выдерживают в порошке бериллия при 900–1000° С, и его поверхность делается тверже, чем у лучших сортов закаленной стали.

Еще одна важная область применения бериллия – в ядерных реакторах, так как он является одним из наиболее эффективных замедлителей и отражателей нейтронов. Его используют и в качестве материала для окошек в рентгеновских трубках. Бериллий пропускает рентгеновские лучи в 17 раз лучше, чем алюминий и в 8 раз лучше, чем линдемановское стекло.

Смесь соединений радия и бериллия долгое время использовалась как удобный лабораторный источник нейтронов, образующихся по ядерной реакции:

9 Be + 4 He = 12 C + 1 n

В 1932 при использовании именно этой смеси английским физиком Джеймсом Чедвиком был открыт нейтрон.

В производстве металлического бериллия доминируют США (американская фирма «Brush Wellman», базирующаяся в Кливленде). Китай и Казахстан также имеют производственные мощности по выпуску металлического бериллия.

Потребление бериллия в США, где этот металл применяется больше всего, в 2000 составило примерно 260 т (по содержанию металла), из которых 75% использовалось в виде медно-бериллиевых сплавов для изготовления пружин, соединителей и переключателей, применяемых в автомобилях, летательных аппаратах и компьютерах. В течение 1990-х цены на медно-бериллиевые сплавы оставались стабильными и составляли примерно 400 долларов за килограмм бериллия, этот уровень цен сохраняется и сейчас.

По оценке компании «Roskill», мировой спрос на бериллий в 2001 резко снизился, в частности, за счет сокращения рынка телекоммуникационного оборудования, являющегося, вероятно, крупнейшей сферой потребления этого металла. Однако эксперты «Roskill» полагают, что в среднесрочной перспективе это снижение будет компенсироваться ростом спроса на медно-бериллиевую ленту со стороны производителей автомобильных электронных устройств и компьютеров. В более отдаленной перспективе, как ожидают, продолжится рост потребления медно-бериллиевых сплавов в производстве подводного телекоммуникационного оборудования, а также повысится спрос на трубы для нефтегазовой промышленности, в состав материала которых входит бериллий.

Маловероятно, что спрос на металлический бериллий заметно возрастет, поскольку цены на альтернативные материалы ниже, чем на бериллий, который является весьма дорогостоящим металлом. Так, в ряде сфер потребления альтернативными ему материалами могут служить графит, сталь, алюминий и титан, а вместо медно-бериллиевых сплавов может использоваться фосфорная бронза.

Соединения бериллия.

У бериллия, в отличие от других элементов 2 группы, нет соединений с преимущественно ионными связями, в то же время для него известны многочисленные координационные соединения, а также металлоорганические соединения, в которых часто образуются многоцентровые связи.

Вследствие малого размера атома бериллий почти всегда проявляет координационное число 4, что важно для аналитической химии.

Соли бериллия в воде быстро гидролизуются с образованием ряда гидроксокомплексов неопределенной структуры. Осаждение начинается при отношении OH – : Be 2+ > 1. Дальнейшее добавление щелочи приводит к растворению осадка.

Гидрид бериллия ВеН 2 был впервые получен в 1951 восстановлением хлорида бериллия с помощью LiAlH 4 . Он представляет собой аморфное белое вещество. При нагревании до 250° С гидрид бериллия начинает выделять водород. Это соединение умеренно устойчиво в воздухе и воде, но быстро разлагается кислотами. Гидрид бериллия полимеризован за счет трехцентровых связей ВеНВе.

Галогениды бериллия . Безводные галогениды бериллия нельзя получить реакциями в водных растворах вследствие образования гидратов, таких как F 2 , и гидролиза. Лучшим способом для получения фторида бериллия является термическое разложение (NH 4) 2 , а хлорид бериллия удобно получать из оксида. Для этого действуют хлором на смесь оксида бериллия и углерода при 650–1000° С. Хлорид бериллия можно также синтезировать прямым высокотемпературным хлорированием металлического бериллия или его карбида. Эти же реакции используются для получения безводных бромида и иодида.

Фторид бериллия – стекловидный материал. Его структура состоит из неупорядоченной сетки из атомов бериллия (КЧ 4), связанных мостиками из атомов фтора, и похожа на структуру кварцевого стекла. Выше 270° С фторид бериллия самопроизвольно кристаллизуется. Подобно кварцу, он существует в низкотемпературной a-форме, которая при 227° С переходит в b-форму. Кроме того, можно получить формы кристобалита и тридимита. Структурное сходство между BeF 2 и SiO 2 распространяется также на фторобериллаты (которые образуются при взаимодействии фторида бериллия с фторидами щелочных элементов и аммония) и силикаты.

Фторид бериллия – компонент фторобериллатных стекол и солевой смеси, используемой в ядерных реакторах на расплавленных солях.

Хлорид и другие галогениды бериллия можно рассматривать как полиядерные комплексные соединения, в которых координационное число бериллия равно 4. В кристаллах хлорида бериллия есть бесконечные цепочки с мостиковыми атомами хлора

Даже при температуре кипения (550° С) в газовой фазе содержится около 20% молекул димеров Be 2 Cl 4 .

Цепочечная структура хлорида бериллия легко разрушается слабыми лигандами, такими как диэтиловый эфир, с образованием молекулярных комплексов :

Более сильные доноры, такие так вода или аммиак, дают ионные комплексы 2+ (Cl –) 2 . В присутствии избытка галогенид-ионов образуются галогенидные комплексы, например 2– .

Оксид бериллия BeO встречается в природе в виде редкого минерала бромеллита.

Непрокаленный оксид бериллия гигроскопичен, адсорбирует до 34% воды, а прокаленный при 1500° С – лишь 0,18%. Оксид бериллия, прокаленный не выше 500° С, легко взаимодействует с кислотами, труднее – с растворами щелочей, а прокаленный выше 727° С – лишь со фтороводородной кислотой, горячей концентрированной серной кислотой и расплавами щелочей. Оксид бериллия устойчив к воздействию расплавленных лития, натрия, калия, никеля и железа.

Оксид бериллия получают термическим разложением сульфата или гидроксида бериллия выше 800° С. Продукт высокой чистоты образуется при разложении основного ацетата выше 600° С.

Оксид бериллия обладает очень высокой теплопроводностью. При 100° С она составляет 209,3 Вт / (м К), что больше, чем у любых неметаллов и даже у некоторых металлов. Оксид бериллия сочетает высокую температуру плавления (2507° С) при с незначительным давлением пара при температуре ниже этой. Он служит в качестве химически стойкого и огнеупорного материала для изготовления тиглей, высокотемпературных изоляторов, труб, чехлов для термопар, специальной керамики. В инертной атмосфере или вакууме тигли из оксида бериллия могут применяться при температурах до 2000° С.

Хотя оксид бериллия часто заменяют более дешевым и менее токсичным нитридом алюминия, в этих случаях обычно наблюдается ухудшение рабочих характеристик оборудования. Ожидают, что в более отдаленной перспективе продолжится стабильный рост потребления оксида бериллия, особенно в производстве компьютеров.

Гидроксид бериллия Be(OH) 2 осаждают из водных растворов солей бериллия аммиаком или гидроксидом натрия. Его растворимость в воде при комнатной температуре намного ниже, чем у его соседей по Периодической системе, и составляет всего лишь 3·10 –4 г л –1 . Гидроксид бериллия амфотерен, вступает в реакции как с кислотами, так и со щелочами с образованием солей, в которых бериллий входит в состав катиона или аниона, соответственно:

Be(OH) 2 + 2H 3 O + = Be 2+ + 2H 2 O

Be(OH) 2 + 2OH – = 2–

Гидроксокарбонат бериллия – соединение переменного состава. Образуется при взаимодействии водных растворов солей бериллия с карбонатами натрия или аммония. При действии избытка растворимых карбонатов легко образует комплексные соединения, такие как (NH 4) 2 .

Карбоксилаты бериллия . Уникальность бериллия проявляется в образовании устойчивых летучих молекулярных оксид-карбоксилатов с общей формулой , где R = H, Me, Et, Pr, Ph и т.д. Эти белые кристаллические вещества, типичным представителем которых является основный ацетат бериллия (R = CH 3), хорошо растворимы в органических растворителях, включая алканы, и нерастворимы в воде и низших спиртах. Их можно получить простым кипячением гидроксида или оксида бериллия с карбоновой кислотой. Структура таких соединений содержит центральный атом кислорода, тетраэдрически окруженный четырьмя атомами бериллия. На шести ребрах этого тетраэдра есть шесть мостиковых ацетатных групп, расположенных таким образом, что каждый атом бериллия имеет тетраэдрическое окружение из четырех атомов кислорода. Ацетатное соединение плавится при 285° С и кипит при 330° С. Оно устойчиво к нагреванию и окислению в нежестких условиях, медленно гидролизуется горячей водой, но быстро разлается минеральными кислотами с образованием соответствующей соли бериллия и свободной карбоновой кислоты.

Нитрат бериллия Be(NO 3) 2 при обычных условиях существует в виде тетрагидрата. Он хорошо растворим в воде, гигроскопичен. При 60–100° С образуется гидроксонитрат переменного состава. При более высокой температуре он разлагается до оксида бериллия.

Основный нитрат имеет аналогичную карбоксилатам структуру с мостиковыми нитрато-группами. Это соединение образуется при растворении хлорида бериллия в смеси N 2 O 4 и этилацетата с образованием кристаллического сольвата , который затем нагревают до 50° С, чтобы получить безводный нитрат Be(NO 3) 2 , быстро разлагающийся при 125° С на N 2 O 4 и .

Бериллиеорганические соединения . Для бериллия известны многочисленные соединения, содержащие связи бериллий–углерод. Соединения состава ВеR 2 , где R – алкил, являются ковалентными и имеют полимерную структуру. Соединение (CH 3) 2 Be имеет цепочное строение с тетраэдрическим расположением метильных групп вокруг атома бериллия. Он легко возгоняется при нагревании. В парах существует в виде димера или тримера.

Соединения R 2 Be самовоспламеняются на воздухе и в атмосфере диоксида углерода, бурно реагируют с водой и спиртами, дают устойчивые комплексы с аминами, фосфинами, эфирами.

Синтезируют R 2 Be взаимодействием хлорида бериллия с магнийорганическими соединениями в эфире или металлического бериллия с R 2 Hg. Для получения (C 6 H 5) 2 Be и (C 5 H 5) 2 Be используют реакцию хлорида бериллия с соответствующими производными щелочных элементов.

Предполагают, что соединения состава RBeX (Х – галоген, OR, NH 2 , H) представляют собой R 2 Be . BeX 2 . Они менее реакционноспособны, в частности, на них не действует диоксид углерода.

Бериллийорганические соединения используют как катализаторы димеризации и полимеризации олефинов, а также для получения металлического бериллия высокой чистоты.

Биологическая роль бериллия.

Бериллий не относится к биологически важным химическим элементам. В то же время, повышенное содержание бериллия опасно для здоровья. Соединения бериллия очень ядовиты, особенно в виде пыли и дыма, обладают аллергическим и канцерогенным действием, раздражают кожу и слизистые оболочки. При попадании в легкие могут вызвать хроническое заболевание – бериллиоз (легочная недостаточность). Заболевания легких, кожи и слизистых оболочек могут возникнуть через 10–15 лет после прекращения контакта с бериллием.

Считают, что токсичные свойства этого элемента связаны со способностью Be(II) замещать Mg(II) в магниесодержащих ферментах за счет его более сильной координационной способности.

Елена Савинкина

Бериллий - металл, обладающий большой прочностью и твердостью, увеличивает электропроводность металлов. В связи с этим он применяется в сплавах с другими металлами для изготовления прочных особо важных деталей, приборов в различных отраслях промышленности -химической, машиностроительной, авиационной и др.

При получении металлического бериллия из руд применяются фтористые соли, что сопровождается образованием фтористых соединений бериллия, из которых самым токсичным и наиболее изученным является фтористый бериллий.

Пути проникновения бериллия в организм

Бериллий в виде тонкодисперсной пыли или паров может проникать в организм через органы дыхания. Выделяется преимущественно через кишечник, частично с мочой.

При воздействии бериллия и его соединений могут наблюдаться острые и хронические отравления.

Острые отравления развиваются главным образом при воздействии соединений бериллия, чаще всего фтористого бериллия.

Патогенез и симптомы отравления бериллием

Фтористый бериллий относится к высокотоксичным веществам, вызывающим поражение преимущественно органов дыхания. Проникая в глубокие дыхательные пути, мелкодисперсные частицы бериллия могут обусловить развитие тяжело протекающих бронхо-бронхиолитов. При этом, как доказано экспериментально, обычно наблюдается воспалительная реакция окружающей бронхи интерстициальной ткани с развитием перибронхита и перибронхиолита. Отсюда наличие в дальнейшем последовательных явлений в виде пневмосклероза, эмфиземы.

Наблюдающиеся при воздействии паров фтористого бериллия некоторые особенности, своеобразие клинического течения, а именно наличие быстро проходящего первоначального лихорадочного приступа по типу так называемой литейной лихорадки, подтверждают известный в токсикологии факт зависимости клинической симптоматологии от физического состояния вещества.

Клинические наблюдения над острыми интоксикациями фтористым бериллием и последующим течением, а именно, частота случаев бронхиальной астмы, эозинофилия, положительные кожные пробы со фторбериллием у лиц, перенесших острую интоксикацию этим продуктом, указывают на развитие повышенной чувствительности организма.

Клиника острых интоксикаций бериллием

В клиническом течении остро возникающих отравлений отмечается определенная последовательность, цикличность развития и нарастания явлений.

Обычно после разной продолжительности (3-6 часов) скрытого периода, через несколько часов после работы, появляется потрясающий озноб, сопровождающийся резким подъемом температуры до 39-40°. При этом отмечается чувство разбитости, общая слабость, головная боль, чувство стеснения в груди, небольшой кашель.

Через 6-8 часов лихорадка заканчивается обильным проливным потом, температура падает до нормы, самочувствие улучшается, трудоспособность восстанавливается. Снова наступает так называемый промежуточный, бессимптомный период продолжительностью от 2 до 18 дней, во время которого больной не предъявляет никаких жалоб; самочувствие его остается удовлетворительным. И, наконец, этот этап «относительного затишья» сменяется быстрым развитием и нарастанием явлений раздражения дыхательных путей. Вновь поднимается температура до 38-39° и выше, появляется мучительный сильный кашель с обильной серозно-слизистой, а затем и слизисто-гнойной мокротой, в которой нередко имеется примесь крови. Число дыханий доходит до 35-40 в минуту, наблюдается выраженный цианоз слизистых оболочек и кожных покровов, в легких - коробочный звук, низкое стояние легочных границ и малая подвижность диафрагмы, обилие мелких и среднепузырчатых влажных хрипов по всему их пространству с обеих сторон, больше всего в нижних отделах.

Рентгенологические изменения в легких соответствуют обычно стадии и выраженности патологического процесса.

При выраженных, тяжелых отравлениях впервой стадии (5-7 дней) прозрачность легочных полей понижена, корни расширены, с нечетким рисунком и контурами. В средних и нижних полях, особенно в прикорневых областях, огромное количество мелкоочаговых образований, не сливающихся друг с другом. Подвижность диафрагмы резко ограничена. В дальнейшем наступает вторая фаза (от 5-8 дней до 6-7 недель) - количество очаговых теней заметно уменьшается, рисунок легкого имеет мелкопетлистый характер, число очаговых образований значительно снижается, резко повышается прозрачность легочных полей и, наконец, при значительном улучшении общего состояния больного отмечается только некоторое усиление рисунка легких и рентгенологическая картина возвращается к норме.

Таким образом, в более тяжелых случаях отравления наблюдается редко встречающаяся в клинической практике у взрослых картина капиллярного бронхо-бронхиолита.

Нередки также изменения со стороны верхних дыхательных путей - ларингит, носовые кровотечения.

Выраженными являются при этом и изменения со стороны крови, а именно некоторое повышение количества эритроцитов, заметный нейтрофильный лейкоцитоз со сдвигом влево, относительная лимфопения, иногда эозинофилия, высокая РОЭ.

Сопутствующими, как правило, являются диспепсические явления, изменения со стороны печени и сердечно-сосудистой системы - тахикардия, глухость тонов, гипотония.

Продолжительность течения в выраженных случаях исчисляется 2-3 месяцами, после чего клинические явления бронхиолита проходят, самочувствие больных улучшается, нормализуются гематологические сдвиги, температура и рентгенологическая картина.

Следует отметить, что в клиническом течении указанной формы интоксикации наблюдаются нередко новые вспышки, как бы рецидивы интоксикации, когда на фоне заметного улучшения вновь повышается температура, усиливается кашель и увеличиваются изменения в легких. Такие вспышки-рецидивы обусловливают большую длительность, затяжной характер клинического течения патологического процесса.

Наряду с такими ярко выраженными типичными случаями тяжелой острой интоксикации наблюдаются легкие острые отравления, протекающие со значительно менее выраженными изменениями со стороны органов дыхания, при отсутствии первоначального лихорадочного периода.

В дальнейшем при динамическом наблюдении над больными, перенесшими выраженную интоксикацию фтористым бериллием, нередко наблюдаются явления хронического бронхо-бронхиолита, пневмосклероза.

Действие на кожу может проявляться в виде эритематозно-папуловезикулезных дерматитов, протекающих с отеком и резко выраженным зудом. Иногда наблюдаются плотные инфильтраты кожи с изъязвлениями в центре.

Лечение острых отравлений бериллием и его соединениями

Покой, тепло, ингаляции кислорода, внутривенные вливания глюкозы, хлористого кальция; антибиотики, сульфаниламиды, сердечные средства.

Хроническое отравление - бериллиоз наступает обычно при воздействии металлического бериллия или его окиси (ВеО). Как правило, у больных хроническим бериллиозом в анамнезе нет указаний на предшествовавшие острые интоксикации. Болезнь развивается постепенно, после определенного периода контакта с бериллием, чаще через самые различные сроки (до 5-10-15 лет) после прекращения контакта с ним.

Заболевают самые различные возрастные группы. Описаны случаи заболевания детей в возрасте от 7 до 14 лет, родители которых работали в контакте с бериллием.

Заболевают чаще рабочие, соприкасавшиеся с бериллием около 2 лет, однако имеются наблюдения, показавшие, что бериллиоз может развиться и после непродолжительного, очень короткого (в течение одной недели и даже нескольких часов) контакта с ним.

Особо важным является тот факт, что в развитии бериллиоза концентрация токсического вещества не играет доминирующей роли. Наблюдались весьма тяжелые выраженные формы бериллиоза у лиц, работавших на большом расстоянии от места получения бериллия и непосредственного контакта с ним не имевших, что резко отличает эту нозологическую форму от ряда других профессиональных заболеваний, в частности от силикоза, при которых частота развития и тяжесть заболевания находится в прямой связи с концентрацией токсического вещества.

Клиника и симптомы бериллиоза

К наиболее ранним субъективным симптомам относятся жалобы на одышку при незначительном физическом напряжении, кашель, часто с мокротой, боль в груди, общую слабость.

Особенно важным и весьма характерным признаком является резкая и быстрая потеря в весе (похудание иногда на 8-10 кг в течение короткого времени). Нередко больные отмечают непереносимость некоторых лекарственных препаратов, ухудшение общего состояния или начало развития болезни после применения антибиотиков (пенициллин и др.).

Из объективных данных преобладающими в клинической картине являются симптомы, относящиеся главным образом к поражению органов дыхания. Сравнительно рано развивается одышка, цианоз слизистых оболочек и кожных покровов, нередко наблюдаются ногти в виде часовых стекол, пальцы в виде барабанных палочек, перкуторно определяется коробочный звук в заднебоковых отделах легких; весьма часто уже в ранних стадиях развития процесса прослушиваются рассеянные сухие и мелкие влажные хрипы в нижнебоковых отделах легких. Сравнительно рано нарушаются и функции дыхания: уменьшается жизненная емкость легких, минутный объем вентиляции. Чаще, чем при силикозе, наблюдается и некоторая степень гипоксемии - дефицит насыщения артериальной крови кислородом.

Диагностика бериллиоза

Рентгенологически в легких на фоне диффузного фиброза, эмфиземы наблюдаются вначале точечные тени (гранулемы). При прогрессировании процесса гранулематозные образования увеличиваются в размерах и распространяются по всему легкому, не щадя и верхушки. Рентгенологически эти образования неотличимы от силикотических узелков, дифференцировать их можно только гистологически.

Общетоксическое действие бериллия проявляется тем, что в процесс последовательно вовлекается ряд систем и органов.

Весьма часто обнаруживается увеличенная болезненная печень с нарушением ее функций. Нередким является наличие гепатолиенального синдрома. По данным зарубежных авторов, у больных бериллиозом в печени, селезенке, лимфатических узлах гистологически определено наличие характерных для бериллиоза морфологических изменений, т. е. типичных гранулем.

Со стороны сердечно-сосудистой системы уже при начальных формах бериллиоза отмечается акцент второго тона на легочной артерии, расщепление зубца Р на электрокардиограмме в грудных отведениях. При прогрессировании процесса обычно наблюдаются явления так называемого легочного сердца - расширение границ вправо, тахикардия, выраженный акцент и расщепление второго тона на легочной артерии, правограмма, увеличение и расщепление зубца Р.

Общетоксическое действие бериллия сказывается также и в изменениях со стороны системы крови. Уже в ранних стадиях развития патологического процесса периферической крови наблюдается умеренный нейтрофильный лейкоцитоз со сдвигом влево, та или иная степень ретикулоцитоза. Выраженные сдвиги отмечаются и со стороны белковой формулы крови: уменьшается альбумино-глобулиновый коэффициент за счет увеличения глобулинов с превалированием главным образом -j-глобулиновой фракции, отражающей, как известно, нарушение иммунологических реакций организма.

В клиническом течении бериллиоза обращает на себя внимание еще одно важное обстоятельство - частота субфебрильной температуры (37,3-37,6°) при отсутствии клинико-рентгенологических проявлений туберкулезной инфекции. Туберкулиновые пробы, как правило, отрицательные.

Важным диагностическим признаком является положительная кожная проба с бериллием. Описаны также как частая находка и поражения кожи, поверхностные и подкожные узелковые утолщения, в которых при биопсии находят бериллий.

При дифференциальной диагностике бериллиоза необходимо иметь в виду в основном следующие нозологические формы:

1) милиарный туберкулез;

2) пневмокониозы, в частности силикоз;

3) саркоид Бека.

Отсутствие, как правило, туберкулезных микобактерий при повторных и тщательных анализах мокроты, отрицательные туберкулиновые и биологические пробы, длительность течения, положительная кожная проба с бериллием - все это позволяет отвергнуть диагноз милиарного туберкулеза.

Контакт с бериллием, значительно более выраженная субъективная и объективная симптоматика, отсутствие симптомов туберкулеза, положительная кожная проба с бериллием, более выраженные сдвиги со стороны крови, в частности белковой формулы, значительное повышение ϒ-глобулинов, хороший эффект от применения гормональной терапии - все это облегчает дифференциальную диагностику бериллиоза, силикоза и силико-туберкулеза. И, наконец, помимо указанных выше моментов, следует учесть частоту поражения глаз (иридоциклит), костей, более выраженные изменения лимфатических узлов и более доброкачественное течение, характерное для саркоида Бека.

Следует, однако, указать, что дифференциальная диагностика именно с саркоидозом представляет наибольшие затруднения, так как гранулематозная реакция тканей, свойственная и бериллиозу, и саркоидозу, сближает эти заболевания и по клинико-рентгенологической симптоматике. Эта гранулематозная реакция тканей наблюдается и при ряде других заболеваний. Все чаще и чаще встречаются указания о том, что саркоидоз - это собственно сборное понятие, включающее ряд нозологических форм с единым патогенетическим механизмом, но с различной этиологией - «гранулематозная болезнь».

Лечение отравления бериллием и его соединениями

Наиболее благоприятный эффект отмечается от применения гормональной терапии (кортизон, АКТГ, преднизон и др.). При своевременном применении стероидов отмечается значительное улучшение общего состояния, нормализация температуры, гематологических сдвигов, а в ряде случаев и некоторое улучшение рентгенологических изменений.

Длительное применение указанных препаратов может, по-видимому, сыграть известную роль в предупреждении дальнейшего развития гранулематозного процесса.

Следует обязательно учитывать необходимость длительного применения поддерживающих доз стероидов, так как при прекращении лечения нередко наблюдается резкое ухудшение состояния больных.

Периодические медицинские осмотры рабочих, имеющих контакт с бериллием, производятся один раз в 12 месяцев при участии терапевта, рентгенолога, а по показаниям - дерматолога и отоларинголога. Обязательным является исследование крови на гемоглобин, лейкоциты, РОЭ. Обязательная рентгенография легких.

Экспертиза трудоспособности

При решении вопросов экспертизы трудоспособности следует учесть относительно быстрое прогрессирование процесса и тяжести клинического течения. Однократно перенесенные тяжелые интоксикации служат показанием к длительному переводу на работу вне контакта с соединениями бериллия и другими раздражающими токсическими веществами. Лиц с начальными явлениями бериллиоза следует переводить на работу вне контакта с бериллием. При сохранении трудоспособности и квалификации вопрос о переводе на инвалидность и пенсию исключается.

При более выраженных формах бериллиоза необходимо прекращение контакта с бериллием и другими токсическими веществами. В таких случаях назначается пенсия по соответствующей группе профессиональной инвалидности.

Противопоказаниями к приему на работу, где возможен контакт с бериллием, являются:

1) хронические заболевания верхних дыхательных путей и бронхов, выраженный ларинготрахеит, хронический бронхит, бронхиальная астма, бронхоэктатическая болезнь;

2) заболевания легких - пневмосклероз, эмфизема, туберкулез;

3) органические заболевания сердечно-сосудистой системы: пороки сердца, органические заболевания миокарда, выраженный артериосклероз, гипертоническая болезнь;

4) хронические заболевания печени и почек (гепатит, нефрит, нефроз);

5) органические заболевания центральной нервной системы;

6) поражение кожи - дерматиты, экзема;

7) поражение глаз - хроническое воспаление конъюнктивы, роговой оболочки, слезных путей.

Профилактика отравлений бериллием и его соединениями

Профилактика сводится в основном к механизации и герметизации производственных процессов, рациональной вентиляции, снабжению рабочих индивидуальными защитными приспособлениями.