На что влияет изменение температуры земле. Причины изменения климата и уменьшение их влияния

Изменение климата - колебания климата Земли в целом или отдельных её регионов с течением времени, выражающиеся в статистически достоверных отклонениях параметров погоды от многолетних значений за период времени от десятилетий до миллионов лет. Учитываются изменения как средних значений погодных параметров, так и изменения частоты экстремальных погодных явлений. Изучением изменений климата занимается наука палеоклиматология . Причиной изменения климата являются динамические процессы на Земле, внешние воздействия, такие как колебания интенсивности солнечного излучения, и, с недавних пор, деятельность человека. Изменения в современном климате (в сторону потепления) называют глобальным потеплением .

Энциклопедичный YouTube

    1 / 5

    ✪ Мифы об изменениях климата. Александр Чернокульский. Ученые против мифов 7-12

    ✪ Экстремальные явления и изменения климата - Александр Кислов

    ✪ ГЛОБАЛЬНОЕ ИЗМЕНЕНИЕ КЛИМАТА. Смещение магнитных полюсов Земли

    ✪ Изменение климата - изменение наклона земной оси. Смена полюсов. Документальный фильм.

    ✪ Трещины в Земле! Что происходит с Планетой??? Климатические изменения 104

    Субтитры

Проявления климатических изменений

Погода - это состояние нижних слоев атмосферы в данное время, в данном месте. Погода является хаотичной нелинейной динамической системой. Климат - это усредненное состояние погоды и он предсказуем. Климат включает в себя такие показатели, как средняя температура, количество осадков, количество солнечных дней и другие переменные, которые могут быть измерены в каком-либо определенном месте. Однако на Земле происходят и такие процессы, которые могут оказывать влияние на климат.

Оледенения

  • изменение размеров, рельефа и взаимного расположения материков и океанов,
  • изменение светимости Солнца ,
  • изменения параметров орбиты и оси Земли,
  • изменение прозрачности и состава атмосферы, в том числе изменение концентрации парниковых газов (СО 2 и CH 4),
  • изменение отражательной способности поверхности Земли (альбедо),
  • изменение количества тепла, имеющегося в глубинах океана, [ ]

Неантропогенные факторы и их влияние на изменение климата

Тектоника литосферных плит

На протяжении длительных отрезков времени тектонические движения плит перемещают континенты , формируют океаны , создают и разрушают горные хребты , то есть создают поверхность, на которой существует климат. Недавние исследования показывают, что тектонические движения усугубили условия последнего ледникового периода: около 3 млн лет назад северо- и южноамериканская плиты столкнулись, образовав Панамский перешеек и закрыв пути для прямого смешивания вод Атлантического и Тихого океанов.

Солнечное излучение

На более коротких временных отрезках также наблюдаются изменения солнечной активности: 11-летний солнечный цикл и более длительные вековыми и тысячелетними модуляции. Однако 11-летний цикл возникновения и исчезновения солнечных пятен не отслеживается явно в климатологических данных. Изменение солнечной активности считается важным фактором наступления малого ледникового периода , а также некоторых потеплений, наблюдаемых между 1900 и 1950 годами. Циклическая природа солнечной активности ещё не до конца изучена; она отличается от тех медленных изменений, которые сопутствуют развитию и старению Солнца.

Циклы Миланковича

В ходе своей истории планета Земля регулярно изменяет эксцентриситет своей орбиты, а также направление и угол наклона своей оси, что приводит к перераспределению солнечного излучения на поверхности Земли. Эти изменения принято называть «циклы Миланковича», они предсказуемы с высокой точностью. Различают 4 цикла Миланковича:

  1. Прецессия - поворот земной оси под влиянием притяжения Луны , а также (в меньшей степени) Солнца . Как выяснил Ньютон в своих «Началах» , сплюснутость Земли у полюсов приводит к тому, что притяжение внешних тел поворачивает земную ось, которая описывает конус с периодом (по современным данным) примерно 25 776 лет, в результате которого меняется сезонная амплитуда интенсивности солнечного потока на северном и южном полушариях Земли;
  2. Нутация - долгопериодические (так называемые вековые) колебания угла наклона земной оси к плоскости её орбиты с периодом около 41 000 лет;
  3. Долгопериодические колебания эксцентриситета орбиты Земли с периодом около 93 000 лет;
  4. Перемещение перигелия орбиты Земли и восходящего узла орбиты с периодом соответственно 10 и 26 тысяч лет.

Поскольку описанные эффекты являются периодическими с некратным периодом, регулярно возникают достаточно продолжительные эпохи, когда они оказывают кумулятивное влияние, усиливая друг друга. Они считаются главными причинами чередования гляциальных и интергляциальных циклов последнего ледникового периода, в том числе объясненяют Климатический оптимум голоцена . Результатом прецессии земной орбиты являются и менее масштабные изменения, такие как периодическое увеличение и уменьшение площади пустыни Сахара .

Вулканизм

Одно сильное извержение вулкана способно повлиять на климат, вызвав похолодание длительностью несколько лет. Например, извержение вулкана Пинатубо в 1991 году существенно повлияло на климат. Гигантские извержения, формирующие крупнейшие магматические провинции, случаются всего несколько раз в сто миллионов лет, но они влияют на климат в течение миллионов лет и являются причиной вымирания видов. Первоначально предполагалось, что причиной похолодания является выброшенная в атмосферу вулканическая пыль, поскольку она препятствует достигнуть поверхности Земли солнечному излучению. Однако измерения показывают, что большая часть пыли оседает на поверхности Земли в течение шести месяцев.

Вулканы являются также частью геохимического цикла углерода . На протяжении многих геологических периодов диоксид углерода высвобождался из недр Земли в атмосферу, нейтрализуя тем самым количество СО 2 , изъятого из атмосферы и связанного осадочными породами и другими геологическими поглотителями СО 2 . Однако этот вклад не сравнится по величине с антропогенной эмиссией оксида углерода, которая, по оценкам Геологической службы США, в 130 раз превышает количество СО 2 , эмитированного вулканами.

Антропогенное воздействие на изменение климата

Антропогенные факторы включают в себя деятельность человека, которая изменяет окружающую среду и влияет на климат. В некоторых случаях причинно-следственная связь прямая и недвусмысленная, как, например, при влиянии орошения на температуру и влажность, в других случаях эта связь менее очевидна. Различные гипотезы влияния человека на климат обсуждались на протяжении многих лет. В конце 19-го века в западной части США и Австралии была, например, популярна теория «дождь идёт за плугом» (англ. rain follows the plow).

Главными проблемами сегодня являются: растущая из-за сжигания топлива концентрация СО 2 в атмосфере, аэрозоли в атмосфере, влияющие на её охлаждение, и цементная промышленность. Другие факторы, такие как землепользование, уменьшение озонового слоя, животноводство и вырубка лесов, также влияют на климат.

Взаимодействие факторов

Влияние на климат всех факторов, как естественных, так и антропогенных, выражается единой величиной - радиационным прогревом атмосферы в Вт/м 2 . [ ] Извержения вулканов, оледенения, дрейф континентов и смещение полюсов Земли - мощные природные процессы, влияющие на климат Земли. В масштабе нескольких лет вулканы могут играть главную роль. В результате извержения вулкана Пинатубо в 1991 года на Филиппинах на высоту 35 км было заброшено столько пепла, что средний уровень солнечной радиации снизился на 2,5 Вт/м 2 . Однако эти изменения не являются долгосрочными, частицы относительно быстро оседают вниз. В масштабе тысячелетий определяющим климат процессом будет, вероятно, медленное движение от одного ледникового периода к следующему.

В масштабе нескольких столетий на 2005 год по сравнению с 1750 годом имеется комбинация разнонаправленных факторов, каждый из которых значительно слабее, чем результат роста концентрации в атмосфере парниковых газов, оцениваемый как прогрев на 2,4-3,0 Вт/м 2 . Влияние человека составляет менее 1 % от общего радиационного баланса, а антропогенное усиление естественного парникового эффекта - примерно 2 %, с 33 до 33,7 град С. Таким образом, средняя температура воздуха у поверхности Земли увеличилась с доиндустриальной эпохи (примерно с 1750 года) на 0,7 °С

Цикличность изменений климата

35-45 летние циклы изменений климата

Чередование прохладно-влажных и тепло-сухих периодов в интервале 35-45 лет, выдвинута ещё в конце XIX в. русскими учеными Э. А. Брикнером и А. И. Воейковым. Впоследствии эти научные положения были существенно развиты А. В. Шнитниковым в виде стройной теории о внутривековой и многовековой изменчивости климата и общей увлажненности материков Северного полушария. В основу системы доказательств положены факты о характере изменения горного оледенения Евразии и Северной Америки, уровней наполнения внутренних водоемов, в том числе Каспийского моря, уровня Мирового океана, изменчивость ледовой обстановки в Арктике, исторические сведения о климате. .

Климат Земли быстро меняется . Ученые пытаются выяснить, что вызывает изменение климата, собирая доказательства, чтобы исключить неверные причины и выяснить, кто же несет ответственность.

На основе более ста научных исследований, понятно, что люди ответственны за большую часть изменения климата за последние 150 лет.

Люди влияют на изменение климата

Люди не единственная причина, влияющая на изменение климата. Погода изменилась на протяжении всей истории Земли, задолго до того как люди эволюционировали. Солнце является основным фактором климата. Грубо говоря, глобальная температура возрастет, когда больше энергии от Солнца поступает в атмосферу, чем возвращается в космос через атмосферу. Земля охлаждается в любое время если больше энергии возвращается в космос, чем приходит от Солнца, в то же время как люди могут влиять на этот баланс. Также есть и другие факторы: от дрейфа континентов и изменения формы орбиты Земли к изменениям в активности и явлениям Солнца, как процесс Эль-Ниньо (колебание температуры воды в экваториальной части Тихого океана), все это может повлиять на климат. С учетом темпов изменения климата сегодня, ученые могут исключить из большинства некоторые причины, которые происходят слишком медленно, чтобы объяснить нынешнее изменение климата, в то время как другие имеют малые циклы, а не долгосрочные тенденции влияния на климат в части планеты. Ученые знают об этих факторах и могут учитывать их при оценке изменения погоды, вызванные человеком.

Влияние человека на изменение климата было впервые описано более ста лет назад, опираясь на исследования в 1850-х годах английским физиком Джоном Тиндалю.

Свет от Солнца нагревает поверхность Земли, которая затем испускает энергию в виде инфракрасного излучения, которое чувствуется в солнечный день. Парниковые газы, такие как водяной пар и углекислый газ (CO2), поглощают эту излученную энергию, нагревается атмосфера и поверхность. Этот процесс приводит к потеплению температуры Земли, чем если бы она нагревались только под прямыми солнечными лучами.

На протяжении более 100 лет, ученые считали людей в качестве главной причины в текущих климатических изменениях. На рубеже 20-го века, шведский физико-химик Сванте Аррениус предположил, что люди в результате сжигания угля, увеличили количества парниковых газов в атмосфере и усилили естественный согревающий эффект, способствуя тому, что атмосфера нагрелась больше, чем если бы всё это проходило через строго естественные процессы.

Когда люди сжигают бензин, уголь, природный газ, а также другие виды топлива для производства электроэнергии или вождения машины, они выделяют значительное количество углекислого газа в атмосферу. При сгорании литра бензина, объем выделяющегося СО2 будет 2 кг. Парниковые газы выбрасываются из электростанций и автомобилей, со свалок, ферм и вырубленных лесов, а также через другие тонкие процессы.

С 1950 году ученые начали методично измерять глобальне увеличение углекислого газа. С тех пор они подтвердили, что увеличение вызвано в первую очередь от сжигания ископаемого топлива (и через другие области деятельности человека, такие как очистка земли). Это увеличение, а также изменения CO2 добавляется в атмосферу и обеспечивает «дымящийся пистолет», который показывает, что люди ответственны за повышенные уровня углекислого газа в атмосфере .

В результате изучения материалов метеорологических наблюдений, выполняемых во всех районах земного шара, установлено, что климат не является постоянным, а подвержен определенным изменениям. Начавшееся в конце XIX в. потепление особенно усилилось в 1920-30-х гг., однако затем началось медленное похолодание, которое прекратилось в 1960-е гг. Исследования геологами осадочных отложений земной коры показали, что в прошедшие эпохи происходили гораздо большие изменения климата. Поскольку эти изменения были обусловлены природными процессами их называют естественными.

Наряду с естественными факторами на глобальные климатические условия оказывает всевозрастающее влияние хозяйственная деятельность человека . Это влияние начало проявляться тысячи лет назад, когда в связи с развитием земледелия в засушливых районах стало широко применяться искусственное орошение. Распространение земледелия в лесной зоне также приводило к некоторым изменениям климата, так как требовало вырубки лесов на больших пространствах. Однако изменения климата в основном ограничивались изменениями метеорологических условий только в нижнем слое воздуха в тех районах, где осуществлялись значительные хозяйственные мероприятия.

Во второй половине XX в. в связи с быстрым развитием промышленности и ростом энерговооруженности возникли угрозы изменения климата на всей планете. Современными научными исследованиями установлено, что влияние антропогенной деятельности на глобальный климат связано с действием нескольких факторов, из которых наибольшее значение имеют:

  • увеличение количества атмосферного углекислого газа, а также некоторых других газов, поступающих в атмосферу в ходе хозяйственной деятельности, что усиливает парниковый эффект в атмосфере;
  • увеличение массы атмосферных аэрозолей;
  • возрастание количества вырабатываемой в процессе хозяйственной деятельности тепловой энергии, поступающей в атмосферу.

Наибольшее значение имеет первая из указанных причин антропогенного изменения климата. Суть « » заключается в следующем. В атмосфере содержатся в определенной концентрации «радиационно-активные» газы, имеющие большое значение для жизни на Земле, поскольку задерживают тепло в нижних слоях атмосферы. Без этих газов температура земной поверхности была бы примерно на 33°С ниже. Однако повышение концентрации парниковых газов (углекислого газа — С0 2 , метана — СН 4 , закиси азота — N,0, хлорфторуглеродов и др.) у земной поверхности приводит к формированию определенной «газовой завесы», которая не пропускает избыточное инфракрасное излучение от поверхности Земли обратно в космос, как это должно быть при нормальной концентрации этих газов. В результате значительная часть энергии остается в приземном слое, что вызывает потепление у самой ее поверхности.

Основной вклад в потепление вносит углекислый газ (65% от всех источников). Рост концентрации углекислого газа в атмосфере определяется образованием С0 2 в результате сжигания угля, нефтепродуктов и других видов топлива. Поступление углекислого газа в атмосферу столь велико, что прекращение этого процесса в ближайшие десятилетия представляется технически неосуществимым. Кроме того, объем потребления энергии в развивающихся странах начинает быстро расти. Постепенный рост количества СО, и других парниковых газов в атмосфере уже оказывает заметное влияние на климат Земли, изменяя его в сторону потепления. Общая тенденция к повышению глобальной средней температуры у поверхности земли усиливается, что уже привело в XX в. к повышению средней температуры воздуха на 0,6°С.

В результате четырехкратного увеличения во второй половине XX в. объема выбросов углеродистых соединений атмосфера Земли стала нагреваться возрастающими темпами (рис. 1). Согласно прогнозам ООН, последующее глобальное повышение температуры воздуха в XXI столетия составит от 1,5 до 4°С.

Рис. 1. Изменение среднегодовой температуры воздуха в приземном слое Земли (1860-2000 гг.)

Прогнозируются следующие последствия глобального потепления:

  • повышение уровня мирового океана, вследствие таяния ледников и полярных льдов (за последние 100 лет на 10-25 см), что, в свою очередь, оборачивается затоплением территорий, смещением границ болот и низинных районов, повышением солености воды в устьях рек, а также потенциальной утратой мест проживания человека;
  • изменение количества осадков (количество осадков повышается в северной части Европы и снижается в южной);
  • изменение гидрологического режима, количества и качества водных ресурсов;
  • воздействие на экологические системы, сельское и лес!юе хозяйство (смешение климатических зон в северном направлении и миграция видов дикой фауны, изменение сезонности роста и продуктивности угодий в сельском и лесном хозяйстве).

Все перечисленные выше факторы могут оказать катастрофическое воздействие на здоровье людей, экономику и на общество в целом. Растущая частота засух и последующий кризис сельского хозяйства повышают угрозу голода и социальной стабильности в некоторых регионах мира. Сложности с водоснабжением в странах с теплым климатом стимулируют распространение тропических и субтропических болезней. По мере усиления тенденций к потеплению погодные условия становятся более изменчивыми, а климатические стихийные бедствия — более разрушительными. Возрастает ущерб, наносимый стихийными бедствиями мировому хозяйству (рис. 2). Лишь за один 1998 г. он превысил ущерб, нанесенный стихийными бедствиями за все 1980-е гг., десятки тысяч людей погибли и около 25 млн «экологических беженцев» вынуждены были покинуть свои дома.

Рис. 2. Экономический ущерб, нанесенный мировому хозяйству, 1960-2000 гг. (млрд долл. США, ежегодно)

В конце XX в. человечество пришло к пониманию необходимости решения одной из сложнейших и чрезвычайно опасных экологических проблем, связанной с изменением климата, и в середине 1970-х гг. начались активные работы в этом направлении. На Всемирной климатической конференции в Женеве (1979) были заложены основы Всемирной климатической программы. В соответствии с резолюцией Генеральной Ассамблеи ООН об охране глобального климата в интересах нынешнего и будущего поколений принята рамочная Конвенция ООН об изменении климата (1992). Цель конвенции — добиться стабилизации концентрации парниковых газов в атмосфере на таком уровне, который не будет оказывать опасное воздействие на глобальную климатическую систему. Причем решение этой задачи предполагается осуществить в срок, достаточный для естественной адаптации экосистем к изменению климата и позволяющий избежать угрозы производству продовольствия, а также обеспечивающий дальнейшее экономическое развитие на устойчивой основе.

Для ослабления угрозы глобального потепления необходимо в первую очередь сократить объем выбросов диоксида углерода. Большинство этих выбросов возникает в результате сжигания ископаемого топлива, которое по-прежнему обеспечивает более 75% мировой энергии. Быстро увеличивающееся число автомобилей на планете усиливает опасность дальнейшего объема выбросов. Стабилизация СО, в атмосфере на безопасном уровне возможна при общем снижении (примерно на 60%) объема выбросов парниковых газов, вызывающих глобальное потепление. В этом может помочь дальнейшее развитие энергосберегающих технологий, более широкое использование возобновляемых источников энергии.

На III Конференции стран, подписавших рамочную Конвенцию ООН об изменении климата (РКИК) в г. Киото был принят Киотский протокол к РКИК (1997), который зафиксировал определенные количественные обязательства по сокращению выбросов парниковых газов для промышленно развитых стран и стран с переходной экономикой. На момент подписания Киотского протокола выбросы парниковых газов распределялись следующим образом: США — 36,1 %, страны ЕС — 25,0, Россия — 17,4, Япония — 8,5, страны Восточной Европы — 7,4, Канада — 3,3, Австралия и Новая Зеландия — 2,3% от общемировых выбросов. Реализация Киотского протокола могла бы привести к значительному прогрессу, так как протокол обязывает промышленно развитые страны пойти на ограничения выбросов и сократить общие выбросы парниковых газов в период 2008-2012 гг. в среднем на 5%, по сравнению с уровнем 1990 г. Достижение первой группы целей, поставленных в Киотском протоколе рассматривается ООН лишь как начало движения в направлении к тому, что необходимо сделать для замедления процесса глобального потепления, а в перспективе — к снижению риска глобального изменения климата.

Большие надежды мировая общественность возлагала на 15-ю конференцию ООН по изменению климата (Копенгаген, 2009). Накануне ее открытия были опубликованы новые данные о распределении выбросов парниковых газов по отдельным странам: Китай — 20,8%; США — 19,9; Россия-5,5; Индия-4,6; Япония-4,3; Германия — 2,8; Канада — 2,0; Великобритания — 1,8; Южная Корея — 1,7; Иран — 1,6% относительно совокупного выброса С02 в атмосферу. На конференции были разработаны рекомендации о сокращении выбросов парниковых газов и ежегодном выделении малым государствам 100 млрд долл. на финансирование экологических программ до 2020 г. Однако разногласия между развитыми и развивающимися странами не позволили принять юридически обязывающий документ по сокращению вредных выбросов.

В России разработана и утверждена климатическая доктрина, в которой государство декларирует, что оно готово выделять ресурсы на систематические наблюдения за климатом, а также на фундаментальные прикладные исследования в области климата и смежных областях науки. Россия максимально концентрирует усилия на снижении выбросов парниковых газов и увеличении их абсорбции поглотителями и накопителями. Достичь этого предполагается при последовательном внедрении энергосберегающих технологий и альтернативных источников энергии. Россия взяла на себя обязательства по дальнейшему смягчению антропогенного воздействия на климат: к 2020 г. сократить выбросы парниковых газов на 25% относительно 1990 г. (страны Евросоюза — на 20%).

Изучение климатических изменений

Растительные остатки, рельеф и ледниковые отложения, горные породы и ископаемые содержат информацию о значительных колебаниях средних температур и осадков на протяжении геологического времени. Изменения климата также могут изучаться на основании анализа годичных колец древесины, аллювиальных отложений, донных осадков океанов и озер и органических торфяников. В течение нескольких последних миллионов лет в целом происходило похолодание климата, а сейчас, судя по непрерывному сокращению полярных ледяных покровов, мы, видимо, находимся в конце ледникового периода.

Климатические изменения за исторический период иногда можно реконструировать на основе информации о неурожаях, наводнениях, заброшенных поселениях и миграции народов. Непрерывные ряды измерений температуры воздуха имеются только для метеорологических станций, расположенных преимущественно в Северном полушарии. Они охватывают лишь немногим более одного столетия. Эти данные свидетельствуют, что за последние 100 лет средняя температура на земном шаре увеличилась почти на 0,5 °С. Это изменение происходит не плавно, а скачкообразно — резкие потепления сменялись стабильными этапами.

Специалисты разных областей знания предложили многочисленные гипотезы для объяснения причин климатических изменений. Одни полагают, что климатические циклы определяются периодическими колебаниями солнечной активности с интервалом около 11 лет. На годовые и сезонные температуры могли влиять изменения формы орбиты Земли, что приводило к изменению расстояния между Солнцем и Землей. В настоящее время Земля находится ближе всего к Солнцу в январе, однако примерно 10 000 лет назад такое положение она занимала в июле. Согласно еще одной гипотезе в зависимости от угла наклона земной оси менялось количество поступавшей на Землю солнечной радиации, что влияло на общую циркуляцию атмосферы. Не исключено также, что полярная ось Земли занимала иное положение. Если географические полюса находились на широте современного экватора, то, соответственно, смещались и климатические пояса.

Географические теории объясняют долговременные колебания климата движениями земной коры и изменением положения материков и океанов. В свете глобальной тектоники плит на протяжении геологического времени материки перемещались. В результате менялось их положение по отношению к океанам, а также по широте и т. д.

Большие массы пыли и газов, поступавшие в атмосферу при извержениях вулканов, эпизодически становились преградой на пути солнечной радиации и приводили к охлаждению земной поверхности. Повышение концентрации некоторых газов в атмосфере усугубляет общую тенденцию к потеплению.

Влияние климата на жизнь и хозяйственную деятельность людей

Человек, живущий в определенной местности, привыкает, адаптируется (от лат. adaptation — приспособление) к условиям окружающей его среды, в том числе и к климатическим особенностям местности. Его одежда, обувь, питание, жилище, занятия — результат этой адаптации. Она оказывает существенное влияние на хозяйственную деятельность.

Адаптация необходима человеку при перемене климатических условий.

Геологический возраст нашей планеты составляет приблизительно 4,5 миллиарда лет. За этот период Земля кардинально изменилась. Состав атмосферы, масса самой планеты, климат - в начале существования все было совершенно другим. Раскаленный шар очень медленно становился таким, каким мы его привыкли видеть теперь. Сталкивались тектонические плиты, образуя все новые горные системы. На постепенно остывающей планете образовывались моря и океаны. Появлялись и пропадали материки, менялись их очертания и размеры. Земля стала медленней вращаться. Появились первые растения, а затем и сама жизнь. Соответственно, за прошедшие миллиарды лет на планете произошли кардинальные перемены во влагообороте, теплообороте и атмосферном составе. Изменения климата происходили на всем протяжении существования Земли.

Эпоха голоцена

Голоцен - часть четвертичного периода Другими словами, это эпоха, которая началась приблизительно 12 тысяч лет назад и продолжается по настоящий момент. Начался голоцен с окончанием ледникового периода, и с тех пор изменение климата на планете шло в сторону глобального потепления. Эту эпоху часто называют межледниковой, так как за всю климатическую историю планеты было уже несколько ледниковых периодов.

Последнее глобальное похолодание наступило приблизительно 110 тысяч лет назад. Около 14 тысяч лет назад началось потепление, постепенно охватившее всю планету. Ледники, покрывавшие на тот момент большую часть Северного полушария, начали таять и разрушаться. Естественно, случилось все это не в одночасье. В течение очень долгого периода планету сотрясали сильные температурные колебания, ледники то наступали, то отступали вновь. Все это влияло и на уровень Мирового океана.

Периоды голоцена

Во время многочисленных исследований ученые решили разделить голоцен на несколько временных периодов в зависимости от климата. Приблизительно 12-10 тысяч лет назад сошли ледниковые покровы, наступило послеледниковье. В Европе стала исчезать тундра, ее сменили березовые, сосновые и таежные леса. Это время принято называть арктическим и субарктическим периодом.

Затем последовала бореальная эпоха. Тайга оттесняла тундру все дальше на север. В Южной Европе появились широколиственные леса. В это время климат был преимущественно прохладным и сухим.

Приблизительно 6 тысяч лет назад началась атлантическая эпоха, во время которой воздух стал теплым и влажным, намного теплее современного. Этот период времени считается климатическим оптимумом всего голоцена. Половина была покрыта березовыми лесами. Европа изобиловала большим разнообразием теплолюбивых растений. В то же время протяженность умеренных лесов была значительно дальше к северу. На берегах Баренцева моря росли темнохвойные леса, а тайга достигла мыса Челюскина. На месте современной Сахары была саванна, а уровень воды в озере Чад был выше современного на 40 метров.

Затем снова произошло изменение климата. Наступило похолодание, длившееся примерно 2 тысячи лет. Этот период времени называют суббореальным. Горные массивы на Аляске, Исландии, в Альпах обзавелись ледниками. Ландшафтные зоны сместились ближе к экватору.

Приблизительно 2,5 тысячи лет назад начался последний период современного голоцена - субатлантический. Климат этой эпохи стал более прохладным и влажным. Начали появляться торфяные болота, тундра стала постепенно наседать на леса, а леса - на степи. Приблизительно с 14-го века началось похолодание климата, приведшее к малому ледниковому периоду, который продлился до середины 19-го века. В это время фиксировались нашествия ледников в горных массивах Северной Европы, Исландии, на Аляске и в Андах. В разных точках земного шара климат изменялся не синхронно. Причины наступления малого ледникового периода до сих пор остаются неизвестными. По предположениям ученых, климат мог меняться из-за увеличений извержений вулканов и уменьшения концентрации углекислого газа в атмосфере.

Начало метеорологических наблюдений

Первые появились в конце 18-го века. С того времени ведутся постоянные наблюдения за климатическими колебаниями. Можно достоверно утверждать, что потепление, которое началось после малого ледникового периода, продолжается и по настоящий момент.

С конца 19-го века фиксируется рост средней глобальной температуры планеты. В середине 20-го века было небольшое похолодание, которое не повлияло на климат в целом. С середины 70-х годов снова стало теплее. По подсчетам ученых, за последнее столетие глобальная температура Земли выросла на 0,74 градуса. Наибольший рост этого показателя зафиксирован в последние 30 лет.

Изменения климата неизменно сказываются на состоянии Мирового океана. Повышение глобальной температуры ведет к расширению воды, а значит, и к повышению ее уровня. Также идут изменения и в распределении осадков, что, в свою очередь, может влиять на сток рек и ледников.

По данным наблюдений, уровень Мирового океана за прошедшие 100 лет вырос на 5 см. Потепление климата ученые связывают с увеличением концентрации углекислого газа и значительным усилением парникового эффекта.

Климатообразующие факторы

Ученые провели множество археологических исследований и пришли к выводу, что климат планеты не раз резко менялся. Было выдвинуто множество гипотез на этот счет. Согласно одному из мнений, если расстояние между Землей и Солнцем останется прежним, так же как скорость вращения планеты и угол наклона оси, то климат будет оставаться стабильным.

Внешние факторы изменения климата:

  1. Изменение излучения Солнца ведет к трансформации потоков солнечной радиации.
  2. Движения тектонических плит влияют на орографию суши, а также уровень океана и его циркуляцию.
  3. Газовый состав атмосферы, в частности концентрация метана и углекислого газа.
  4. Изменение наклона оси вращения Земли.
  5. Изменение параметров орбиты планеты по отношению к Солнцу.
  6. Земные и космические катастрофы.

Деятельность человека и ее влияние на климат

Причины изменения климата связаны в том числе и с тем, что человечество на всем протяжении своего существования вмешивалось в природу. Вырубка лесных массивов, распашка и т. п. приводят к преобразованиям влажностного и ветрового режимов.

Когда люди вносят изменения в окружающую природу, осушая болота, создавая искусственные водоемы, вырубая леса или высаживая новые, строя города и т. п., изменяется микроклимат. Лес сильно влияет на ветровой режим, от которого зависит то, как ляжет снежный покров, насколько промерзнет почва.

Зеленые насаждения в городах уменьшают влияние солнечной радиации, увеличивают влажность воздуха, сокращают разницу температур в дневное и вечернее время, уменьшают запыленность воздуха.

Если люди вырубают леса на возвышенностях, то в дальнейшем это приводит к смыву почвы. Также уменьшение количества деревьев снижает глобальную температуру. Однако это означает увеличение концентрации в воздухе углекислого газа, который не только не поглощается деревьями, но еще и дополнительно выделяется при разложении древесины. Все это компенсирует понижение глобальной температуры и ведет к ее увеличению.

Промышленность и ее влияние на климат

Причины изменения климата кроются не только в общем потеплении, но и в деятельности человечества. Люди увеличили концентрацию в воздухе таких веществ, как углекислый газ, закись азота, метан, тропосферный озон, хлорфторуглеводы. Все это в конечном итоге приводит к усилению парникового эффекта, и последствия могут быть необратимы.

Ежедневно промышленные предприятия выбрасывают в воздух множество опасных газов. Повсеместно используется транспорт, загрязняющий атмосферу своими выхлопами. Много углекислого газа образуется при сжигании нефти и угля. Даже сельское хозяйство наносит немалый ущерб атмосфере. Приблизительно 14% всех выбросов приходится на эту сферу. Это и вспашка полей, и сожжение отходов, выжигание саванны, навоз, удобрения, животноводство и т. п. Парниковый эффект помогает поддерживать на планете температурный баланс, но деятельность человечества усиливает этот эффект в разы. И это может привести к катастрофе.

Почему следует опасаться изменения климата?

97% климатологов мира уверены, что в последние 100 лет все сильно преобразовалось. И главная проблема изменения климата - это антропогенная деятельность. Нельзя достоверно сказать, насколько серьезна эта ситуация, но есть множество причин для беспокойства:


Конвенция ООН

Правительства большинства стран планеты всерьез опасаются того, какими могут быть последствия изменения климата. Более 20 лет назад был создан международный договор - Рамочная конвенция об изменении климата. Здесь рассматриваются все возможные меры для предотвращения глобального потепления. Сейчас конвенция ратифицирована 186 странами, в том числе и Россией. Все участницы продифференцированы на 3 группы: промышленно с экономическим развитием и развивающиеся страны.

Конвенция ООН об изменении климата борется за снижение роста парниковых газов в атмосфере и дальнейшую стабилизацию показателей. Достигнуть этого можно либо увеличением стока парниковых газов из атмосферы, либо снижением их эмиссии. Для первого варианта нужно большое количество молодых лесов, которые будут поглощать углекислый газ из атмосферы, а второй вариант будет достигнут, если снизить потребление ископаемого топлива. Все ратифицированные страны согласны с тем, что в мире идет глобальное изменение климата. ООН готова сделать все возможное, чтобы смягчить последствия надвигающегося удара.

Многие страны, участвующие в конвенции, пришли к выводу, что наиболее эффективными будут совместные проекты и программы. На настоящий момент насчитывается более 150 таких проектов. Официально в России работает 9 подобных программ, а неофициально - более 40.

В конце 1997 года Конвенция об изменении климата подписала Киотский протокол, в котором прописывалось, что страны с переходной экономикой берут на себя обязательства по сокращению выбросов парниковых газов. Протокол ратифицирован 35 странами.

Наша страна также приняла участие в реализации данного протокола. Изменение климата в России привело к тому, что количество стихийных бедствий выросло в два раза. Даже если учесть, что на территории государства располагаются бореальные лесные массивы, они не справляются со всеми выбросами парниковых газов. Следует улучшать и увеличивать лесные экосистемы, проводить масштабные мероприятия по сокращению выбросов с промышленных предприятий.

Прогнозы последствий глобального потепления

Суть изменения климата в последнее столетие состоит в глобальном потеплении. По самым худшим прогнозам, дальнейшая нерациональная деятельность человечества может повысить температуру Земли на отметку в 11 градусов. Изменения климата будут необратимыми. Замедлится вращение планеты, погибнет множество видов животных и растений. Уровень Мирового океана поднимется настолько, что будут затоплены многие острова и большая часть прибрежных территорий. Гольфстрим изменит свой курс, что приведет к новому малому ледниковому периоду в Европе. Будут случаться повсеместные катаклизмы, наводнения, смерчи, ураганы, засухи, цунами и т. п. Начнется таяние льдов Арктики и Антарктиды.

Для человечества последствия будут катастрофическими. Помимо необходимости выживать в условиях сильных природных аномалий у людей будет множество и других проблем. В частности, увеличится число сердечно-сосудистых заболеваний, респираторных болезней, психологических расстройств, начнутся вспышки эпидемий. Будет ощущаться острая нехватка продуктов питания и питьевой воды.

Что же делать?

Чтобы избежать последствий изменения климата, прежде всего нужно снизить уровень парниковых газов в атмосфере. Человечеству следует перейти на новые источники энергии, которые должны быть низкоуглеводными и возобновляемыми. Рано или поздно перед мировой общественностью остро встанет этот вопрос, так как используемый ныне ресурс - минеральное топливо - невозобновляем. Когда-нибудь ученым придется создать новые, более эффективные технологии.

Необходимо также снизить уровень углекислого газа в атмосфере, а помочь с этим может только восстановление площадей лесных массивов.

Требуется применить максимум усилий для стабилизации глобальной температуры на Земле. Но даже если это и не удастся, человечество должно попытаться добиться минимальных последствий глобального потепления.

Изменения климата Земли в исторической перспективе

Со времени формирования Земли из протопланетного облака происходили сильные изменения в температурном режиме ее поверхности. После того, как почти прекратились бомбардировки Земли кусками протопланетного вещества, распалась большая часть радиоактивных изотопов элементов, уменьшилась диссипация энергии приливов (благодаря отодвиганию Луны), и произошла значительная гравитационная дифференциация земного вещества, эти источники тепла стали слишком слабы, и основными факторами, влияющими на температуру всей поверхности Земли в целом, остались только поток солнечной энергии, поступающей к Земле, а также условия прохождения его и переизлученного потока через атмосферу. Т.е. основными факторами остались только солнечная светимость, пропускание земной атмосферой солнечного излучения, а также парниковый эффект.

Если посмотреть, как менялись солнечная светимость и парниковый эффект за всю историю Земли, то окажется, что солнечная светимость и парниковый эффект изменялись разнонаправлено - солнечная светимость постепенно росла, а парниковый эффект в целом уменьшался (хотя у него наблюдались и колебания на более коротких промежутках времени). Эти разнонаправленные процессы, после того, как основная роль в формировании термического режима поверхности Земли перешла именно к ним, позволили удерживать температуры на поверхности Земли в относительно узком коридоре, в котором возможна биологическая жизнь.

В начальный момент существования Земли, около 4,5 млрд. лет назад, солнечная светимость составляла примерно 1/3 часть от нынешней величины - это связано с тем, что хоть звезда типа Солнца в стабильной фазе своего существования почти не меняется, некоторые медленные изменения все же происходят - водород в ядре постепенно выгорает, и это приводит к очень медленному, но все таки заметному постепенному росту светимости. Парниковый же эффект на начальных этапах существования Земли был очень мощным - значительный нагрев Земли в это время за счет выпадения протопланетных обломков, высокой радиоактивности, и прочих указанных в начале главы причин, вызывал мощную дегазацию земных недр, поток углекислого и других парниковых газов в атмосферу был высок, а эффективных путей вывода их из атмосферы еще не было. .

Изменение средней глобальной температуры поверхности Земли, содержания углекислого газа и кислорода в атмосфере Земли, с архея по настоящее время, в самом грубом приближении.

Если в катархее большая часть земной поверхности была расплавлена (особенно значимую роль тут вероятно играла кинетическая энергия соударения с выпадающими на поверхность кусками протопланетного вещества), то в первой половине архея температуры на поверхности уже опустились до уровня примерно 150 градусов Цельсия и даже ниже, что в условиях мощной атмосферы с высоким давлением, позволило начать конденсироваться водяным парам. Наличие жидкой воды включило механизмы геохимического, неорганического механизма вывода углекислого газа из атмосферы. В это время температура опустилась примерно до 70-90°С, и сохранялась на таком уровне почти до конца архея.

К концу архея, примерно около 2,5 млрд. лет назад значительно уменьшилась тектоническая активность, что уменьшило дегазацию недр. Ускорился и вывод углекислого газа из атмосферы. В результате всего за сотню-полторы миллионов лет основные запасы углекислого газа были выведены из атмосферы, наступило первое в истории земли мощное оледенение, известное как гуронское. Оно продолжалось более сотни миллионов лет, и средняя температуры на поверхности Земли на уровне моря в это время составляла менее 10°С. В дальнейшем все же произошло некоторое накопление углекислого газа в атмосфере, и температуры повысились, хотя так и не достигли архейских значений. Средние температуры большей части протерозоя составляли около 35-40°С, как показывают исследования. Однако к концу протерозоя на процессы вывода углекислого газа из атмосферы начал влиять новый мощный фактор.

В период примерно 900-600 млн. лет назад, на Земле вновь прошла череда сильнейших оледенений. Похоже они были вызваны широким распространением к тому времени живых организмов, способных к фотосинтезу, причем в условиях, очень хороших для захоронения органики (отсутствие кислорода на океанических глубинах) и вывода углекислого газа из атмосферы на длительный срок. Периодическое чередование таких оледенений была вызвана, вероятно, изъятием очень больших объемов углекислого газа из атмосферы биотой, похолоданием и оледенением, и в конце гибелью большей части биомассы, что приводило к сильному сокращению вывода углекислого газа из атмосферы, его накоплению в атмосфере вновь, и опять к потеплению и возрождению жизни.

Но началу фанерозоя, около 600 млн. лет назад, в атмосфере накопилось уже очень много кислорода, кроме того, вода океанических глубин также насыщалась кислородом, благодаря совокупности биологических, так и геохимических факторов. В результате заработали и механизмы, эффективно возвращающие часть захороняемого углерода из органики обратно в атмосферу в виде углекислого газа. Т.е. эффектитвно заработали и процессы окисления захороняемой органики. Благодаря этому, мощные колебания содержания углекислого газа в атмосфере, и соответственно парникового эффекта, поуменьшились, и климатическая система стала стабильнее.

а) Изменение содержания углекислого газа в атмосфере (в количествах, кратных современной концентрации), средней глобальной температуры, средней температуры тропических широт, а также величины оледенения начиная от начала фанерозоя (ок. 600 млн. лет назад) и до настоящего времени (Crowley, T.J. and Berner, R.A., 2001, CO2 and climate change, Science 292: 870-872);
б) сглаженные данные изменения температуры от докембрийских эпох до наших дней, с указанием конкретного температурного корридора.

Итак, начиная с фанерозоя, изменения средней глобальной температуры в целом стали относительно небольшими, до 10-15 градусов. В основном, это была более теплая эпоха, по сравнению с современностью, хотя за это время и произошли три оледенения, не достигшие однако, масштаба оледенений протерозоя. Это оледенения на границе верхнего ордовика-нижнего силура (460-420 млн. лет назад), слабое оледенение верхнего девона (370-355 млн. лет назад), и наиболее мощное среди них, пермо-карбоновое (350-230 млн. лет назад), начавшеес в каменноугольном периоде. Связывают их с усилением вывода из атмосферы углекислого газа, с возраставшим в эти периоды потоком захоронения углерода (что отражено даже в названии каменноугольного периода). Кроме того, возможно на колебания климата с приблизительными периодами в 150-250 млн. лет (а именно столько проходит между великими длительными оледенениями) влияет накопление захороненого углерода в предыдущие эпохи. Благодаря движению океанической коры и явлению постоянного подныривания и задвига одних плит под другие (субдукция), происходит модуляция выброса вулканами углекислого газа и метана в атмосферу, запасами углерода накопленного на океаническом дне в предыдущие эпохи.

После продолжительной, почти постоянно теплой мезозойской эры, температура опять начала постепенно падать. Падало и содержание углекислого газа в атмосфере - в начале кайнозоя оно было примерно в пять раз больше, чем в современную эпоху.


Изменение средней глобальной температуры в течение кайнозойской эры, за последние 65 млн. лет.

Описывая изменения климата в относительно холодные эпохи, необходимо особо выделить одно особо важное обстоятельство. После того, как общее понижение температуры достигало такой величины, что в районе полюсов температура опускалась довольно близко к 0°С, к точке замерзания воды, на климат Земли начинали влиять очень сильно многие факторы, которые в теплые эпохи были малозаметны. Это происходит потому, что тогда даже малого влияния достаточно, чтобы в полярных районах начинали формироваться ледяные шапки, а значит, чтобы и возникала заметная обратная связь между небольшим первоначальным похолоданием, и ростом альбедо, что приводит к дальнейшему, уже большему похолоданию.

Так во второй половине эоцена благодаря тому, что ранее вплотную прижатая к Антарктиде Австралия оторвалась от последней, и начала дрейфовать в строну экватора, вокруг Антарктиды начало формироваться широтное циркумполярное течение, которое стало препятствием для притока к Антарктиде теплых вод, идущих от экватора, и это послужило толчком к началу формирования ледяного щита Антарктиды. В дальнейшем, уже в миоцене, после того, как и Южная Америка отодвинулась от Антарктиды, это широтное течение замкнулось, сформировалось окончательно, и полностью преградило доступ тепла, переносимого океаном, к Антарктиде. В результате, при том что продолжалось и снижение парникового эффекта, и сформировался столь мощный ледяной щит в Антарктиде.

Заметно было и влияние на климат горообразования, повлиявшее уже на атмосферную циркуляцию и перенос атмосферой тепла от экватора к полюсам. Это относиться прежде всего к горообразованию в Евразии, в которой на протяжении кайнозоя сформировался значительный горный пояс, от Пиренеев до Гималаев, что привело к ухудшению переноса атмосферой тепла и влаги в сторону Северного полюса.

Кроме того, сильно стали влиять на климат и циклы Миланковича - периодические изменения параметров земной орбиты, с периодами 23, 41 и 100 тыс. лет. Эти циклы определяют изменения количества солнечной энергии, получаемой различными широтными зонами Земли в отдельные сезоны. Если в теплые эпохи их влияние не превышало 1 градуса, то в холодные, после образования хотя бы небольшого ледяного покрова, их влияние на среднепланетарную температуру начинало возрастать, и в конце концов возрастало в несколько раз.

Это происходило прежде всего потому, что возникали сильные обратные связи между изменением температуры, площадью оледенения (а значит и величиной альбедо) и содержанием водяного пара в атмосфере над оледенением (который является основным парниковым газом и вымораживается над ледяным покровом, а ведь современный парниковый эффект от водяного пара превышает целых 20 градусов!).

Кстати, наличие таких обратных связей и сильное влияние ледяного покрова на местный климат приводит к тому, что изменения температуры в высоких широтах (если там есть оледенение), намного превышает изменение температуры в теплых приэкваториальных широтах (понятно, что при этом сильно растет и общая разница температур между экватором и полюсом). К примеру, при переходе между ледниковым периодом и относительным межледниковьем (типа нынешнего), средняя температура теплых областей, где отсутствовал ледяной покров, менялась всего на 1-2 градуса Цельсия, а изменения в полярных областях были около 10 градусов и выше (колебания в Северном полушарии были выше чем в Южном, в связи с тем, что происходили еще сильные изменения в океанической циркуляции - прежде всего в течении Гольфстрим). А при глобальном переходе от состояния с практически полным отсутсвием льда к состоянию ледниковой эпохи (наподобие ледниковых периодов четвертичного периода) изменения температуры в полярных областях были еще значительнее, составляя уже несколько десятков градусов.


В теплые эпохи, наподобие мезозоя, градиент температуры между экватором и полюсом составлял около 15-20 градусов. В холодные эпохи, наподобие современной, когда возникало оледенение (сначала в приполярных регионах, распространяясь в сторону низких широт со временем), температура в приполярных регионах опускалась значительно сильнее чем на экваторе, на несколько десятков градусов, в то время как на экваторе изменения составляли всего несколько градусов. Градиент температуры между экватором и полюсами увеличивался при этом до 40-60 градусов.

Как видно из рисунка ниже, за последние 5 млн. лет при постепенном снижении температуры сильно росло влияние миланковических циклов (на данном рисунке хорошо видны 100-тысячелетние и наложенные на них 41-тысячелетние циклы), благодаря чему при общем снижении температуры росла амплитуда ее колебаний.


Изменение температуры за последние 5 млн. лет по данным изотопного анализа органических карбонатов. Температурные колебания даны в эквиваленте колебаний температуры в приполярных областях (т. е. заметно более резких чем в среднем по планете)

Наиболее точно известны температуры (прежде всего высоких широт) и содержание углекислого газа и метана в атмосфере за последние несколько сотен тысяч лет. Это связано с тем, что есть возможность прямого измерения содержания указанных газов в пробах льда, взятого из ледяных щитов Антарктики и Арктики; кроме того, измерение температуры изотопным методом, благодаря доступу к древнему льду, позволяет проверять и подтверждать данные изотопного анализа, получаемые по карбонатным отложениям.

Изменение температуры и содержания некоторых парниковых газов за последние 160 тыс. лет по данным ледяных кернов.

На рисунке выше показано изменение температуры и содержания углекислого газа за последние 160 тыс. лет. При этом изменение температуры хорошо отображает миланковические циклы (даже видны 20-тысячилетние циклы). Хорошо видно и почти синхронное изменение содержания углекислого газа и температуры. Вместе с тем отмечается, что при переходе от холодной эпохи к более теплой, температура и содержание углекислого газа в атмосфере меняется синхронно, а при обратном переходе изменение концентрации углекислого газа чуть запаздывает по сравнению с изменением температуры.

Судя по всему, в относительно холодные эпохи, когда парниковый эффект сам по себе уже мал (по сравнению с теплыми эпохами, наподобие мезозоя), и существуют уже очаги оледенений, на климат за счет указанных выше обратных связей (по оледенению и водяному пару) начинают сильно влиять факторы Миланковича, и эти же факторы начинают заметно модулировать парниковый эффект и от углекислого газа и метана. Ведь существуют еще и обратные связи между содержанием углекислого газа и метана в атмосфере и температурой. За счет влияния последней на природные резервуары, в которых законсервированы выведенные из атмосферы парниковые газы, возникают к примеру, такие связи: при изменении температуры меняется растворимость углекислого газа в воде, могут разрушаться либо образовываться метангидраты, меняется скорость выброса в атмосферу углекислого газа и метана при разрушении отмершей органики.

Этим можно объяснить то запаздывание снижения уровня углекислого газа в атмосфере по сравнению со снижением температуры, которое наблюдается при похолодании - ведь переход углекислого газа из атмосферы в остывающий океан (холодные воды могут вместить больше углекислого газа) требует довольно длительного времени (в том числе это связано и с растворением карбонатных пород, для высвобождения карбонат-ионов и образования бикарбонат-ионов - а это тысячелетние характерные времена). А синхронное повышение температуры и содержания углекислого газа в атмосфере при потеплении может быть обусловлено мощным выбросом углекислого газа из растаявших при отступлении ледников болот и общей активизации процессов биологического разложения органики. Да и обратное разложение в океане бикарбонат-ионов с разделением на углекислый газ и карбонат-ионы идет уже быстро.

Изменения средней годовой температуры за последние 140 лет для всего земного шара и изменения среднегодовой температуры за последние 1000 лет для Северного полушария.
Изменения даны в отклонениях от средней глобальной температуры периода 1960-1990 гг.

Вместе с тем, нельзя и недооценивать влияние парникового эффекта холодные эпохи - он значительно усиливает колебания температуры. К примеру, оценка влияния парниковых газов за последний климатический цикл на изменение температуры в Антарктиде составляет около 50%, т. е. примерно 3 градуса из 6 (амплитуды ледниково-межледникового изменения) - это изменения температуры благодаря изменению парникового эффекта.


В последнее время температура на поверхности планеты начала быстро и сильно расти. Причем, как видно из представленных выше графиков, рост температуры хорошо совпадает с выбросами углекислого газа от человеческой деятельности. Вместе с тем, надо обратить внимание на небольшое потепление в 30-40 годах, заметное на графике. Это потепление связывают не столько с повышением содержания углекислого газа в атмосфере (его в то время было еще маловато), сколько с увеличением прозрачности атмосферы для солнечного излучения, уменьшением альбедо в это время. Дело в том, что примерно с 20х годов ХХ века на несколько десятилетий установилась низкая вулканическая активность, что привело к уменьшению поступления аэрозолей, отражающих солнечный свет, в атмосферу. Однако вскоре вулканическая активность восстановила свой уровень, количество аэрозолей в атмосфере возросло, и дальнейшее потепление было обусловлено только парниковыми газами.

Скорость климатических изменений и уникальность настоящего момента

Как видно из представленных материалов, изменения глобальной средней температуры на Земле были обычно довольно медленными, для колебаний около 1 градуса и более. Даже наиболее резкие изменения в циклах Миланковича, шли со скоростью примерно 1-1,5°С за 10 тыс. лет, и то в относительно высоких широтах, с ледяным покровом (изменение в среднем по планете в несколько раз меньше, ведь в низких, приэкваториальных широтах, температура меняется очень слабо). В настоящее же время изменения средней глобальной температуры примерно на 1°С, произошли за время около 100 лет, а прогнозируемые в моделях МГЭИК (IPCC) изменения составляют еще 2-6 градусов за последующие 100 лет.

Вместе с тем, резкие изменения климата в истории Земли все же бывали. Правда они были преимущественно довольно локальными, не распространяясь полностью на всю планету. По настоящему глобальное резкое изменение климата в истории Земли известно только одно - это эоценовый термический максимум. Однако вначале разберемся с локальными изменениями.

При исследовании ледяных кернов Гренландии за последние несколько десятков тысяч лет были обнаружены резкие колебания температуры - менее чем за столетие из очень холодного состояния, местный климат в Гренландии теплел более чем на 10 градусов, температура поднималась до почти современных (правда тоже довольно низких) значений.


Изменения температуры за последние 40 тыс. лет в приполярных регионах Северного и Южного полушария по данным изотопного анализа ледяных кернов. Хорошо заметны резкие колебания в Северном полушарии и практическое отсутствие их в Южном.

Резкие изменения температуры в эпоху «юного дриаса» и несколько более ранних эпох, заметны не только в Гренландии, но и в Европе, да и во многих других районах Северного полушария. Однако в южном полушарии эти изменения почти не заметны, а в Антарктиде и вовсе отсутствуют (в эпоху «юного дриаса» в Антарктиде правда тоже было небольшое изменение, начавшееся, однако на 1000 лет раньше и бывшее заметно слабее). Подобные резкие изменения температуры в районе Северной Атлантики связывают с резкими изменениями течения Гольфстрим, которое несет теплые поверхностные воды из приэкваториальных районов к приполярным. Подобные резкие, но относительно локальные изменения могут произойти и в самом ближайшем будущем, под действием даже значительно менее заметных глобальных изменений климата.

Как уже указано выше, в истории Земли на сегодняшний день известно и одно довольно резкое глобальное изменение климата. Это эоценовый термический максимум 55 млн. лет назад (см. резкий пик на одном из рисунков выше, там где представлен график изменения средней глобальной температуры за последнее 67 млн. лет). Это событие началось с резкого и быстрого повышения температуры, за несколько тысяч лет потепление на поверхности океанов составило 8°С, глубинные воды потеплели на 6°С. И потом около 200 тыс. лет потребовалось для восстановления прежнего состояния.


Эоценовый термический максимум 55 млн. лет назад характеризовался быстрым и значительным подъемом температуры поверхности Мирового океана и глубинных вод. При этом отмечалось и резкое повышение содержания метана в атмосфере.

Это резкое изменение связывают с большим выбросом метана в атмосферу, из подвергнувшихся внезапному разложению запасов метангидратов, предположительно благодаря начавшейся тектонической активности в районе одного из больших скоплений метангидратов, либо благодаря изменению океанических течений. Как раз к тому времени на океаническом дне уже около десятка млн. лет, как существовали относительно благоприятные условия для накопления метангидратов - ведь температура, и особенно глубинных вод, по окончании мезозойской эры заметно понизилась. Это и позволило накопиться заметно количеству метангидратов. Под воздействием внешней силы они начали интенсивно разрушаться, а далее, благодаря сильному влиянию выбросов метана на парниковый эффект, уже сами выбросы и потепление от них, способствовали дальнейшему разрушению метангидратов, пока их запасы не исчерпались, и поступление метана в атмосферу из этого источника не прекратилось.

Подобная ситуация резкого, и даже более резкого чем тогда, глобального потепления может повториться и в близком будущем - ведь прогнозируемое потепление в несколько градусов, от обычных антропогенных выбросов парниковых газов, уже вполне может повлиять на условия залегания метангидратов, вполне может нарушить их стабильность. А накоплено сейчас метангидратов в примерно десять раз больше, чем было накоплено ко времени эоценового термического максимума.