Десять мифов о системах геотермального обогрева и охлаждения. Тепловые поля на границе Здание-Грунт

Для моделирования температурных полей и для других расчётов необходимо узнать температуру грунта на заданной глубине.

Температуру грунта на глубине измеряют с помощью вытяжных почвенно- глубинных термометров. Это плановые исследования, которые регулярно проводят метеорологические станции. Данные исследований служат основой для климатических атласов и нормативной документации.

Для получения температуры грунта на заданной глубине можно попробовать, например, два простых способа. Оба способа заключаются в использовании справочной литературы:

  1. Для приближённого определения температуры можно использовать документ ЦПИ-22. «Переходы железных дорог трубопроводами». Здесь в рамках методики теплотехнического расчёта трубопроводов приводится таблица 1, где для определённых климатических районов приводятся величины температур грунта в зависимости от глубины измерения. Эту таблицу я привожу здесь ниже.

Таблица 1

  1. Таблица температур грунта на различных глубинах из источника «в помощь работнику газовой промышленности» еще времён СССР

Нормативные глубины промерзания для некоторых городов:

Глубина промерзания грунта зависит от типа грунта:

Я думаю, что самый простой вариант, это воспользоваться вышеуказанными справочными данными, а затем интерполировать.

Самый надёжный вариант для точных расчётов с использованием температур грунта — воспользоваться данными метеорологических служб. На базе метеорологических служб работают некоторые онлайн справочники. Например, http://www.atlas-yakutia.ru/.

Здесь достаточно выбрать населённый пункт, тип грунта и можно получить температурную карту грунта или её данные в табличной форме. В принципе, удобно, но похоже этот ресурс платный.

Если Вы знаете ещё способы определения температуры грунта на заданной глубине, то, пожалуйста, пишите комментарии.

Возможно Вам будет интересен следующий материал:

Это могло бы показаться фантастикой, если бы не было правдой. Оказывается, в суровых сибирских условиях можно получать тепло прямо из земли. Первые объекты с геотермальными системами отопления появились в Томской области в прошлом году, и хотя они позволяют снизить себестоимость тепла по сравнению с традиционными источниками примерно в четыре раза, массового хождения «под землю» пока нет. Но тренд заметен и главное - набирает обороты. По сути, это наиболее доступный альтернативный источник энергии для Сибири, где не всегда могут показать свою эффективность, например, солнечные батареи или ветряные генераторы. Геотермальная энергия, по сути, просто лежит у нас под ногами.

«Глубина промерзания грунта составляет 2–2,5 метра. Температура земли ниже этой отметки остается одинаковой и зимой и летом в диапазоне от плюс одного до плюс пяти градусов Цельсия. Работа теплового насоса построена на этом свойстве, - говорит энергетик управления образования администрации Томского района Роман Алексеенко . - В земляной контур на глубину 2,5 метра закапывают сообщающиеся трубы, на расстоянии примерно полутора метров друг от друга. В системе труб циркулирует теплоноситель - этиленгликоль. Внешний горизонтальный земляной контур сообщается с холодильной установкой, в которой циркулирует хладагент - фреон, газ с низкой температурой кипения. При плюс трех градусах Цельсия этот газ начинает закипать, и когда компрессор резко сжимает кипящий газ, температура последнего возрастает до плюс 50 градусов Цельсия. Нагретый газ направляется в теплообменник, в котором циркулирует обычная дистиллированная вода. Жидкость нагревается и разносит тепло по всей системе отопления, уложенной в полу».

Чистая физика и никаких чудес

Детский сад, оборудованный современной датской системой геотермального отопления открылся в поселке Турунтаево под Томском летом прошлого года. По словам директора томской компании «Экоклимат» Георгия Гранина , энергоэффективная система позволила в несколько раз снизить плату за теплоснабжение. За восемь лет это томское предприятие уже оснастило геотермальными системами отопления около двухсот объектов в разных регионах России и продолжает заниматься этим в Томской области. Так что в словах Гранина сомневаться не приходится. За год до открытия садика в Турунтаево «Экоклимат» оборудовал системой геотермального отопления, которая обошлась в 13 млн руб­лей, еще один детский сад «Солнечный зайчик» в микрорайоне Томска «Зеленые горки». По сути это был первый опыт такого рода. И он оказался вполне успешным.

Еще в 2012 году в ходе визита в Данию, организованного по программе Евро Инфо Корреспондентского Центра (ЕИКЦ-Томская область), компании удалось договориться о сотрудничестве с датской компанией Danfoss. А сегодня датское оборудование помогает добывать тепло из томских недр, и, как говорят без лишней скромности специалисты, получается довольно эффективно. Основной показатель эффективности - экономичность. «Отопительная система здания детского сада площадью 250 квадратных метров в Турунтаево обошлась в 1,9 миллиона руб­лей, - говорит Гранин. - А плата за отопление составляет 20–25 тысяч руб­лей в год». Эта сумма несопоставима с той, которую садик платил бы за тепло, используя традиционные источники.

Система без проблем проработала в условиях сибирской зимы. Был произведен расчет соответствия теплового оборудования нормам СанПиН, по которым оно должно поддерживать в здании детского сада температуру не ниже +19°C при температуре наружного воздуха -40°C. Всего на перепланировку, ремонт и переоборудование здания было затрачено около четырех миллионов руб­лей. Вместе с тепловым насосом сумма составила чуть меньше шести миллионов. Благодаря тепловым насосам сегодня отопление детского сада представляет собой полностью изолированную и независимую систему. В здании теперь нет традиционных батарей, а отопление помещения реализуется при помощи системы «теплый пол».

Турунтаевский садик утеплен, что называется, «от» и «до» - в здании обустроена дополнительная теплоизоляция: поверх существующей стены (толщиной в три кирпича) установлен 10-сантиметровый слой утеплителя, эквивалентный двум–трем кирпичам. За утеплителем находится воздушная прослойка, а следом - металлический сайдинг. Таким же образом утеплена и крыша. Основное внимание строителей сосредоточилось на «теплом полу» - системе отопления здания. Получилось несколько слоев: бетонный пол, слой пенопласта толщиной 50 мм, система труб, в которых циркулирует горячая вода и линолеум. Несмотря на то, что температура воды в теплообменнике может достигать +50°C, максимальный нагрев фактического напольного покрытия не превышает +30°C. Фактическая температура каждой комнаты может регулироваться вручную - автоматические датчики позволяют устанавливать температуру пола таким образом, чтобы помещение детского сада прогревалось до положенных санитарными нормами градусов.

Мощность насоса в Турунтаевском садике составляет 40 кВт вырабатываемой тепловой энергии, для производства которых тепловому насосу требуется 10 кВт электрической мощности. Таким образом, из 1 кВт потребляемой электрической энергии тепловой насос производит 4 кВт тепловой. «Мы немного боялись зимы - не знали, как поведут себя тепловые насосы. Но даже в сильные морозы в садике было стабильно тепло - от плюс 18 до 23 градусов Цельсия, - говорит директор Турунтаевской средней школы Евгений Белоногов . - Конечно, здесь стоит учесть, что и само здание было хорошо утеплено. Оборудование неприхотливо в обслуживании, и несмотря на то, что это разработка западная, в наших суровых сибирских условиях она показала себя довольно эффективно».

Комплексный проект по обмену опытом в сфере ресурсосбережения был реализован ЕИКЦ-Томская область Томской ТПП. Его участниками стали малые и средние предприятия, разрабатывающие и внедряющие ресурсосберегающие технологии. В мае прошлого года в рамках российско-датского проекта Томск посетили датские эксперты, и результат получился, что называется, налицо.

Инновации приходят в школу

Новая школа в селе Вершинино Томского района, построенная фермером Михаилом Колпаковым , - это третий объект в области, использующей в качестве источника тепла для отопления и горячего водоснабжения тепло земли. Школа уникальна еще и потому, что имеет наивысшую категорию энергоэффективности - «А». Систему отопления спроектировала и запустила все та же компания «Экоклимат».

«Когда мы принимали решение, какое отопление сделать в школе, у нас было несколько вариантов - угольная котельная и тепловые насосы, - говорит Михаил Колпаков. - Мы изучили опыт энергоэффективного детского сада в Зеленых Горках и посчитали, что отопление по старинке, на угле, нам обойдется более чем в 1,2 миллиона руб­лей за зиму, да еще и горячая вода нужна. А с тепловыми насосами затраты составят около 170 тысяч за весь год, вместе с горячей водой».

Для производства тепла системе необходимо только электричество. Потребляя 1 кВт электроэнергии, тепловые насосы в школе производят около 7 кВт тепловой энергии. Кроме того, в отличие от угля и газа, тепло земли - самовозобновляемый источник энергии. Установка современной отопительной системы школе обошлась примерно в 10 млн руб­лей. Для этого на территории школы пробурили 28 скважин.

«Арифметика здесь простая. Мы посчитали, что обслуживание угольной котельной, с учетом зарплаты истопнику и стоимости топлива, в год обойдется более чем в миллион руб­лей, - отмечает начальник управления образования Сергей Ефимов . - При использовании тепловых насосов придется платить за все ресурсы около пятнадцати тысяч руб­лей в месяц. Несомненные плюсы использования тепловых насосов - это их экономичность и экологичность. Система теплоснабжения позволяет регулировать подачу тепла в зависимости от погоды на улице, что исключает так называемые «недотопы» или «перетопы» помещения».

По предварительным расчетам, дорогостоящее датское оборудование окупит себя за четыре–пять лет. Срок службы тепловых насосов компании Danfoss, с которыми работает ООО «Экоклимат», - 50 лет. Получая информацию о температуре воздуха на улице, компьютер определяет, когда греть школу, а когда можно этого не делать. Поэтому вопрос о дате включения и отключения отопления отпадает вообще. Независимо от погоды за окнами внутри школы для детей всегда будет работать климат-контроль.

«Когда в прошлом году на общероссийское совещание приехал чрезвычайный и полномочный посол королевства Дании и посетил наш детский сад в «Зеленых Горках», он был приятно удивлен, что те технологии, которые даже в Копенгагене считаются инновационными, применены и работают в Томской области, - говорит коммерческий директор компании «Экоклимат» Александр Гранин .

В целом использование местных возоб­новляемых источников энергии в различных отраслях экономики, в данном случае в социальной сфере, куда относятся школы и детские сады, - одно из основных направлений, реализуемых в регионе в рамках программы по энергосбережению и повышению энергетической эффективности. Развитие возобновляемой энергетики активно поддерживает губернатор региона Сергей Жвачкин . И три бюджетных учреждения с системой геотермального отопления - лишь первые шаги по реализации большого и перспективного проекта.

Детский сад в «Зеленых Горках» на конкурсе в Сколково был признан лучшим энергоэффективным объектом России. Затем появилась Вершининская школа с геотермальным отоплением также наивысшей категории энергоэффективности. Следующий объект, не менее значимый для Томского района, - детский сад в Турунтаево. В нынешнем году компании «Газхимстройинвест» и «Стройгарант» уже приступили к строительству детских садов на 80 и 60 мест в поселках Томского района Копылово и Кандинке соответственно. Оба новых объекта будут отапливаться геотермальными системами отопления - от тепловых насосов. Всего в этом году на строительство новых садиков и ремонт существующих районная администрация намерена израсходовать почти 205 млн руб­лей. Предстоит реконструкция и переоборудование здания под детский сад в селе Тахтамышево. В этом здании отопление также будет реализовано посредством тепловых насосов, поскольку система успела себя хорошо зарекомендовать.

В вертикальных коллекторах отбирается энергия из земли с помощью геотермальных земляных зондов. Это закрытые системы со скважинами диаметром 145-150мм и глубиной от 50 до 150м, по которым прокладываются трубы. На конце трубопровода инсталлируется возвратное U колено. Обычно установка осуществляется с помощью одноконтурного зонда с трубами 2x d40 («шведская система»), или двухконтурного зонда с трубами 4x d32. Двухконтурные зонды должны достигать на 10-15% больший отбор тепла. При скважинах глубже чем 150 м нужно использовать трубы 4xd40 (для понижения потери давления).

В настоящее время большая часть скважин для отбора тепла земли имеет глубину 150 м. На большей глубине можно получить больше тепла, но при этом затраты на такие скважины будут очень высоки. Поэтому важно заранее просчитать затраты на установку вертикального коллектора в сравнении с предполагаемой экономией в будущем. В случае инсталляции системы активно-пассивного охлаждения более глубокие скважины не делают из-за высшей температуры в почве и более низком потенциале в момент отдачи тепла из раствора окружающей среде. В системе циркулирует незамерзающая смесь (спирт, глицерин, гликоль), разбавленная водой до нужной консистенции незамерзания. В тепловом насосе отдает тепло, отобранное у земли, хладагенту. Температура земли на глубине 20 м примерно 10°C, и растет каждые 30м на 1°C. На нее не оказывают влияние климатические условия, и поэтому можно рассчитывать на качественный отбор энергии и зимой и летом. Нужно добавить, что температура в земле немного отличается в начале сезона (сентябрь-октябрь) от температуре в конце сезона (март-апрель). Поэтому необходимо учитывать при расчете глубины вертикальных коллекторов длину отопительного сезона в месте инсталляции.

При отборе тепла с помощью геотермальных вертикальных зондов очень важным являются правильные расчеты и конструкция коллекторов. Для проведения грамотных расчетов необходимо знать, возможно ли бурение в месте инсталляции до желаемой глубины.

Для теплового насоса мощностью 10kW необходимо примерно 120-180 m скважины. Скважины должна быть размещены минимум 8м друг от друга. Количество и глубина скважин зависит от геологических условий, наличие подземных вод, способности почвы удерживать тепло и технологии бурения. При бурении нескольких скважин общая желаемая длина скважины разделится на количество скважин.

Преимуществом вертикального коллектора перед горизонтальным является меньший участок земли для использования, более стабильный источник тепла, и независимость источника тепла на погодных условиях. Минусом вертикальных коллекторов являются высокие затраты на земляные работы и постепенное охлаждение земли возле коллектора (необходимы грамотные расчеты необходимой мощности при проектировании).

Расчет необходимой глубины скважин

    Информация,необходимая для предварительного расчета глубины и количества скважин:

    Мощность теплового насоса

    Выбранный тип отопления - «теплые полы», радиаторы, комбинированное

    Предполагаемое количество часов эксплуатации теплового насоса за год, покрытие потребности в энергии

    Место инсталляции

    Использование геотермальной скважины - отопление, обогрев ГВС, сезонный подогрев бассейна, круглогодичный подогрев бассейна

    Использование функции пассивного (активного) охлаждения в объекте

    Общее годовое потребление тепла для отопления (MВ/час)

Самая большая трудность - избежать патогенной микрофлоры. А это сложно сделать в среде влагонасыщенной и достаточно теплой. Даже в самых лучших погребах всегда есть плесень. Посему нужна система регулярно используемой очистки труб от всякой гадости, накапливающейся на стенках. А сделать это при 3-х метровом залождении не так уж и просто. На ум в первую очередь приходит механический способ - ёршик. Как для чистки дымовых труб. С использованием какой-то жидкой химии. Или газ. Если прокачать через трубу фозген к примеру, то всё подохнет и на пару месяцев возможно этого хватит. Но любой газ вступает в хим. реакции с влагой в трубе и соответственно оседает в ней, что заставляет проветривать долго. А долгое проветривание приведет к восстановлению патогенов . Тут нужен грамотный подход со знанием современных средств чистки.

Вообщем подписьіваюсь под кажньім словом! (правда не знаю чему тут радоваться).

В данной системе я вижу несколько вопросов которьіе предстоит решить:

1. Достаточно ли длиньі данного теплообменника для еффективного его использования (какой то еффект ессно будет, но не ясно какой)
2. Конденсат. Зимой его не будет, так как по трубе будет прокачиваться холодньій воздух. Конденсат будет вьіпадать с внешней стороньі трубьі - в земле (она теплее). Но вот летом... Проблема КАК вьікачивать конденсат из под глубиньі 3м - уже додумался на стороне збора конденсата сделать герметичньій колодец-стакан для сбора конденсата. В него устанавливать насос которьій будет периодично откачивать конденсат...
3. Предполагается, что канализационньіе трубьі (пластиковьіе) - герметичньі. Если так, то грунтовьіе водьі вокруг не должньі проникать внуть и не должньі влиять на влажность воздуха. Поетому я полагаю влажности (как в подвале) там не будет. По крайней мере зимой. Я думаю подвал влажньій из за плохого проветривания. Плесень не любит солнечньій свет и сквозняки (в трубе будут сквозняки ). А теперь вопрос - НАСКОЛЬКО герметичньі канализационньіе трубьі в земле? На сколько лет мне их хватит? Дело в том что данньій проект сопутствующий - траншея копается для канализации (будет на глубине 1-1.2м) потом изоляция (пенополистирол) и глуже - земельньій аккумулятор). А значит данная система неремонтопригодна при разгерметизации - я ее вьікапьівать не буду - просто засьіплю землей и все.
4. Чистка труб. Думал в нижней точке делать смотровой колодец. сейчас "интузизизма" по етому поводу меньше - грунтовьіе водьі - может оказатся что его затопит и толку будет НОЛЬ. Без колодца вариантов не так то много:
а. с двух сторон делаются ревизии (для каждой 110мм трубьі), которьіе вьіходят на поверхность, в трубьі протягьівается нержавеющий тросик. Для чистки к нему крепим квач. Минусьі - на поверхность вьіходит куча труб, котоьіе будут влиять на температурньій и гидродинамический режим работьі аккумулятора.
б. периодически затапливать трубьі водой с хлоркой, например (или другим дезинфицирующим средством), откачивая воду из конденсационного колодца на другом конце труб. Потом сушка труб воздухом (возможно ревесньім режимом - из дома наружу, хотя такая идея мне не очень нравится).
5. Плесени не будет (сквозняк). а вот другие микроорганизмьі которьіе живут в пьіли - очень даже. Есть надежда на зимний режим - холодньій сухой воздух хорошо дезинфицирует. Вариант защитьі - фильтр на вьіходе из аккумулятора. Или ультрафиолет (дорого)
6. Насколько сильно напряжно гонять воздух по такой конструкции?
Фильтр (мелкая сетка) на входе
-> поворот на 90градусов вниз
-> 4м 200мм труба вниз
-> разделение потока на 4 110мм трубьі
-> 10 метров по горизонтали
-> поворот на 90градусов вниз
-> 1 метр вниз
-> поворот на 90градусов
-> 10 метров по горизонтали
-> сбор потока в 200мм трубу
-> 2 метра вверх
-> поворот на 90градусов (в дом)
-> фильтр бумажньій или тканевой карманньій
-> вентилятор

Имеем 25м труб, 6 поворотов на 90 градусов(поворотьі можно делать плавнее - 2х45), 2 фильтра. Хочется 300-400м3/ч. Скорость потока ~4м/сек

Температура внутри земли чаще всего является довольно субъективным показателем, поскольку точную температуру можно назвать только в доступных местах, например, в Кольской скважине (глубина 12 км). Но это место относится к наружной части земной коры.

Температуры разных глубин Земли

Как выяснили ученые, температура поднимается на 3 градуса каждые 100 метров вглубь Земли. Эта цифра является постоянной для всех континентов и частей земного шара. Такой рост температуры происходит в верхней части земной коры, примерно первые 20 километров, далее температурный рост замедляется.

Самый большой рост зафиксирован в США, где температура поднялась на 150 градусов за 1000 метров вглубь земли. Самый медленный рост зафиксирован в Южной Африке, столбик термометра поднялся всего лишь на 6 градусов по Цельсию.

На глубине около 35-40 километров температура колеблется в районе 1400 градусов. Граница мантии и внешнего ядра на глубине от 25 до 3000 км раскаляется от 2000 до 3000 градусов. Внутренние ядро нагрето до 4000 градусов. Температура же в самом центре Земли, по последним сведениям, полученным в результате сложных опытов, составляет около 6000 градусов. Такой же температурой может похвастаться и Солнце на своей поверхности.

Минимальные и максимальные температуры глубин Земли

При расчете минимальной и максимальной температуры внутри Земли в расчет не берут данные пояса постоянной температуры. В этом поясе температура является постоянной на протяжении всего года. Пояс располагается на глубине от 5 метров (тропики) и до 30 метров (высокие широты).

Максимальная температура была измерена и зафиксирована на глубине около 6000 метров и составила 274 градуса по Цельсию. Минимальная же температура внутри земли фиксируется в основном в северных районах нашей планеты, где даже на глубине более 100 метров термометр показывает минусовую температуру.

Откуда исходит тепло и как оно распределяется в недрах планеты

Тепло внутри земли исходит от нескольких источников:

1) Распад радиоактивных элементов ;

2) Разогретая в ядре Земли гравитационная дифференциация вещества ;

3) Приливное трение (воздействие Луны на Землю, сопровождающееся замедлением последней) .

Это некоторые варианты возникновения тепла в недрах земли, но вопрос о полном списке и корректности уже имеющегося открыт до сих пор.

Тепловой поток, исходящий из недр нашей планеты, изменяется в зависимости от структурных зон. Поэтому распределение тепла в месте, где находится океан, горы или равнины, имеет совершенно разные показатели.