Какой самый мощный военный лазер. Будущее наступило: эксперты рассказали об использовании лазерного оружия

На сегодняшний день многие армии мира вооружаются боевыми лазерами, базирующимися на кораблях, а также компактными лазерами, устанавливаемыми на самолетах. Как же происходит процесс развития лазерного оружия в мире и, естественно, в России?

Не так давно в западных СМИ появилась информация, что к гонке лазерных вооружений, в которых уже принимают участие Соединенные Штаты с Германией, подключилась и Великобритания. Так, одной из британских компаний планируется разработка лазерной установки с палубным базированием. Однако предполагаемая мощность будущего оружия не упоминается. И это само собой разумеется, потому что в мировой практике на аналогичных разработках, как правило, стоит гриф «секретно».

Понятно, что и Россия не является исключением, ведь и до настоящего времени многие разработки все еще секретные. О таких, параллельно ведущихся с США разработках, еще в 2014 году заявил бывший начальник российского Генштаба генерал армии Ю.Балуевским. Хотя работы над боевыми лазерами в нашей стране собственно и не прерывались. Тем не менее, в наши дни идет развитие оружия, которое сможет выводить из строя военные спутники вероятного противника.

Для лазерного луча, размещенного в условиях вакуума, не будет помехой ни земная атмосфера, ни установка противником дымовых завес. Благодаря этому лазерная установка с легкостью нанесет урон оптике вражеских спутников, а лишенные «глаз» спутники-разведчики станут грудой бесполезного металла, которые будут самоликвидированы или сойдут со своей орбиты и просто сгорят в верхних слоях атмосферы.

«Палить» по оптике неприятеля вначале обучались в земных условиях. Такими лазерными комплексами, размещенными на «самоходках» палили еще во времена Советского Союза в начале 1980 годов. Так, НПО «Астрофизика» были разработаны «Стилеты» — самоходные серийные лазерные комплексы. Они противодействовали оптико-электронной аппаратуре неприятеля.

Позднее их сменили «Сангвины» — комплексы, обладавшие более широким потенциалом. К примеру, на них в первый раз задействовали «Систему разрешения выстрелов» с обеспечением прямого наведения боевых лазеров. Противодействуя подвижным воздушным целям с дальностью расположения восемь-десять километров, они с легкостью занимались разрушением оптических приемных устройств.

В середине 1980 годов для испытательных мероприятий представили только палубную версию этих лазерных установок, которые имели те же самые характеристики и задачи и именовались они тогда «Аквилонами». Их предназначение было в поражении оптико-электронной аппаратуры в системе береговой охраны вероятного противника.

С наступлением 90-х годов «Сангвины»сменили «Сжатиями». Это разработанные тогда самоходные лазерные комплексы, которые автоматически занимались поиском, а также наведением на объекты, бликующих от излучения многоканальных рубиновых твердотельных лазеров. Найти эффективную защиту от двенадцати боевых лазеров в комплексах «Сжатия» с самыми разнообразными длинами волн, с одновременно надетыми на оптике двенадцатью фильтрами, практически не представлялось возможным. Тем не менее, наземные комплексы своей эффективностью вызывали немало сомнений у тогдашнего военного ведомства.

Не исключено, что собственно вследствие этой причины все дальнейшие испытания боевых лазеров были перемещены в воздушное пространство. «Стилеты», «Сангвины» и «Сжатия» в некоторой мере оказались в роли первых наземных испытательных стендов.

Для проведения тестирования в воздушном пространстве советские ученые разработали летающую лабораторию А-60, в которой находилась лазерная экспериментальная установка, базирующаяся на самолете Ил-76МД. Разработкой этой программы занимались бериевцы во взаимодействии с «Алмазом». Для этой цели на базе филиала курчатовского института создали мощный одномегаватный лазер. Этой установкой в процессе тестирования в апреле 1984 года благополучно была поражена воздушная цель. Тогда задействовали боевую лазерную установку по стратосферному аэростату на высоте до тридцати-сорока километров.

Лазерное оружие России, что о нем известно

Модернизированным лазерным комплексом, который устанавливали на другом таком же самолете А-60, и прекратились все работы по этим проектам еще в 1993 году. Однако весь наработанный опыт был использован в «Соколе-Эшелоне». Это была новая программа, возобновленная в 2003 году «Алмаз-Антеем».

На протяжении десятилетий работы по этой программе то сворачивали, то возобновляли. По имеющимся сведениям, на самолете А-60 все еще предполагают установить боевые лазеры нового поколения для тестирования комплекса по «ослеплению» средств космического слежения.

Не оружием единым известны российские лазеры

Наряду с этим следует подметить тот факт, что применение лазеров не ограничивается лишь самыми разнообразными видами вооружений, но также и средством по наведению таковых. В этом направлении были достигнуты большие успехи. Например, «Радиоэлектронными технологиями» была разработана многоканальная лазерно-лучевая система по наведению, используемая во многих боевых вертолетах.

Представленной системой обеспечивается высокая точность по наведению ракетных вооружений. Благодаря этому вертолеты могут пользоваться ракетами разнообразных модификаций. Предназначение лазерно-лучевой системы — выполнение задач по управлению движением и доведение управляемых ракет до цели, захваченных и удерживаемых автоматами по сопровождению или операторами в ручных режимах.

По мнению многих экспертов, современные российские лазерные технологии всецело соответствуют всем требованиям. Такие системы можно устанавливать не только на вертолетах, но также и на наземной технике, в переносных зенитных ракетных комплексах и беспилотниках.

Более того, с помощью лазерных технологий можно эффективно противодействовать против современных зенитных ракетных комплексов. Так, например, «Экраном», входящим в состав КРЭТ, разработана лазерная система по оптико-электронному подавлению. Системой обеспечивается надежность и эффективность в противодействии самым разнообразным образцам ПЗРК.

Одной из самых известных таких разработок стала система «Президент-С». В процессе тестирования по самым разнообразным авиацелям ни одной «Иглой» не была поражена ни одна из целей.

Лазерное оружие в США

Как всегда возникают вполне резонные вопросы о том, как же все обстоит по этим направлениям у одного из основных потенциальных заокеанских вероятных противников — в США? К примеру, генерал-полковником Леонидом Ивашовым, президентом Академии геополитических проблем утверждается приблизительно такое.

Для России потенциально опасным может быть наличие мощных химических лазеров, размещаемых на борту «Боингов-747» или на платформах, размещенных в космическом пространстве. Между прочим, эти лазерные системы являются еще советскими разработками, переданными в 90 годах по приказанию тогдашнего президента Ельцина для американцев.

И что интересно, совсем недавно американская пресса обсуждала появление официального заявления Пентагона. В нем говорилось, что тестирование боевых лазерных установок для противодействия баллистическим ракетам, предназначенным для базирования на авианосителях, прошли благополучно. Кроме того выяснилось, что американским Агентством по ПРО было получено от конгресса разрешение по финансированию программ тестирования лазерных систем еще в 2011 году на один миллиард долларов.

Согласно замыслу американского военного ведомства, авиацию, оснащенную лазерным вооружением, предполагается задействовать преимущественно против ракетных систем со средней дальностью. Однако, скорее всего, будут применяться только против ракетных систем оперативно-тактического действия. Радиус поражающего действия таких боевых лазеров даже при идеальной обстановке ограничивается максимум триста пятидесятью километрами. Таким образом, выходит, что для сбивания баллистической ракеты в процессе разгона, самолетом, оснащенным боевой лазерной системой необходимо пребывать в радиусе сто-двести километров от месторасположения пусковых ракетных установок.

Однако позиции с межконтинентальными баллистическими ракетами дислоцируются в основном в середине территории государства. Понятно, что если какое-нибудь воздушное судно случайно окажется в таких регионах, то несомненно оно будет уничтожено. Вследствие этого принятие американским военным ведомством на вооружение лазеров с воздушным базированием сможет только оказать некоторое воспрепятствование для потенциальных угроз от государств, которые непонаслышке знакомы с ракетными технологиями, однако не имеют полноценную противовоздушную оборону.

На сегодняшний день американцы экспериментируют с несколькими боевыми лазерными комплексами. Так, например, одним из таких является комплекс с авиационным базированием ATL. Его предполагается разместить на самолете-транспортнике С-130. Основным предназначением этой лазерной системы является борьба с небронированными наземными целями.

Однако эта система обладает целым рядом несовершенств:

  • Огонь системой может вестись прицельно и предельно эффективно лишь только с близких расстояний;
  • Система, невзирая на ее многомиллионные вложения, может быть легко уничтожена любым зенитно-ракетным комплексом.

Однако в те далекие годы, когда еще была в самом разгаре холодная война, главными целями могли быть ракетные комплексы, применявшиеся в ближнем воздушном бою. В результате тестирования выяснился один интересный факт. Военным пришлось опровергнуть ранее утверждаемую дальность ведения огня до шестидесяти километров. В действительности она не превышала и пяти километров. Тем не менее, американцами ведутся поиски способов по созданию эффективных средств по ликвидации осуществляющих старт ракет на дальностях до пятисот километров. Главная цель этих поисков — не допустить запуска ни одной баллистической ракеты с российских подлодок.

Невзирая на колоссальные средства, ежегодно выделяемые американским правительством для разработки лазерного оружия, реальных достижений пока не наблюдалось. Самым большим достижением, которым пока может гордиться американское военное ведомство, является попадание по нескольким мишеням, имитирующих баллистические ракеты. Однако о дальностях до целей и их скоростях не упоминалось.

Системы защиты от боевых лазерных вооружений

Понятно, что если ведутся разработки средств по нанесению ударов, то по идее обязаны вестись разработки и защитных систем или контрмер. Так, еще в 80-х годах разработчиками баллистических ракет были приняты некоторые контрмеры от потенциальной угрозы со стороны боевых лазерных систем и ПРО. Так, на оборонных предприятиях начали монтировать в середине боевых блоков специальную аппаратуру для комплексных средств по противодействию всем видам ПРО. Основными методами защиты от боевых лазерных систем могут быть аэрозольные облака, состоящие из взвеси поглощающих лучей. Придача ракетам вращательных моментов также может привести к некоторому «размыванию» пятен взрывоопасных накалов по большей части поверхностей целей.

Наземные разновидности лазерных вооружений

Разрабатывание лазерных систем наземного базирования в последнее время оказалась широко распространенной тематикой. Многими западными странами серьезно начались секретные разработки этого оружия, под прикрытием благих намерений, связанных с борьбой против мирового терроризма.

Тут же подключилась и китайская армия, которая на своих новых танках ZTZ-99G начала размещать лазерные турели. Они занимаются выведением из строя оптических систем неприятеля и отчасти ослепляют наводчика. Хотя дальнейшие разработки новых образцов этих вооружений правительству Китая пришлось временно заморозить. О советских разработках боевых лазерных систем наземного базирования уже упоминалось выше.

В настоящее время для всех очевидным стал тот факт, что массовое появление реальных мощных боевых лазерных систем в вооруженных силах любой, даже самой технологически продвинутой страны в течение ближайших десятилетий ожидать не приходится. При всем при том и отказа исследовательской деятельности в этом направлении – также.

Не исключено, что будущие разработчики могут решить те немаловажные вопросы, делающие в настоящее время область применения боевых лазерных систем чрезвычайно ограниченной. Естественно, с течением времени Пентагон выведет лазеры даже на околоземную орбиту, а значит и российским военным нужно быть готовыми к встречным контрмерам. И тогда, нашим инженерным умам придется продолжать заниматься ранее начатыми работами по созданию атакующих лазерных систем и, естественно, разрабатывать комплексные системы по защите от таковых.

Привычный для нас термин «лазер» является аббревиатурой от Light Amplification by Stimulated Emission of Radiation, что в переводе означает «усиление света посредством вынужденного излучения».

Впервые о лазере всерьез заговорили во второй половине XX века. Первое действующее лазерное устройство американский физик Теодор Мейман представил в 1960 году, а в наши дни лазеры используются в самых различных сферах. Довольно давно они нашли применение и в военной технике, хотя вплоть до последнего времени речь шла преимущественно о нелетальном вооружении, способном временно ослепить противника или вывести из строя его оптику. Полноценные боевые лазерные комплексы, способные уничтожать технику, пока находятся на стадии разработки, и когда именно они встанут в строй, сказать пока сложно.

Основные проблемы связаны с большой стоимостью и высокой энергозатратностью лазерных комплексов, а также их способностью наносить реальный урон высокозащищенной технике. Тем не менее, с каждым годом ведущие страны мира все активнее разрабатывают боевые лазеры, постепенно увеличивая мощность своих прототипов. Разработку лазерного оружия правильнее всего было бы назвать инвестициями в будущее, когда новые технологии позволят всерьез говорить о целесообразности таких систем.

Крылатый лазер

Одним из самых нашумевших проектов лазерных боевых систем стал экспериментальный Boeing YAL-1. В роли платформы для размещения боевого лазера выступил модифицированный авиалайнер Boeing 747-400F.

Американцы всегда искали способы защитить свою территорию от неприятельских ракет, и проект YAL-1 создавался именно для этой цели. В его основе лежит химический кислородный лазер мощностью 1 МВт. Главное преимущество YAL-1 перед другими средствами противоракетной обороны — это то, что лазерный комплекс теоретически способен уничтожать ракеты на начальном этапе полета. Американские военные не единожды заявляли об успешных испытаниях лазерной установки. Тем не менее, реальная эффективность такого комплекса видится довольно сомнительной, и программа, обошедшаяся в 5 млрд долларов, была свернута в 2011 году. Впрочем, полученные в ней наработки нашли применение в других проектах боевых лазеров.

Щит Моисея и клинок Дядюшки Сэма

Израиль и США — мировые лидеры в области разработки боевых лазерных комплексов. В случае с Израилем создание таких систем обусловлено необходимостью противостоять частым ракетным обстрелам территории страны. В самом деле, если уверенно поражать цели типа баллистической ракеты лазер сможет еще нескоро, то бороться с ракетами малой дальности ему вполне под силу уже сейчас.

Палестинские неуправляемые ракетные снаряды «Кассам»» — источник постоянной головной боли для израильтян, и дополнительной гарантией безопасности должна была стать американо-израильская лазерная система ПРО Nautilus. Основную роль в разработке самого лазера сыграли специалисты американской компании Northrop Grumman. И хотя израильтяне вложили в Nautilus более 400 млн долларов, в 2001 году они вышли из проекта. Официально результаты испытаний ПРО были положительными, но военное руководство Израиля отнеслось к ним скептически, и в итоге американцы остались единственными участниками проекта. Разработка комплекса была продолжена, но до серийного производства дело так и не дошло. Зато опыт, накопленный в процессе испытаний Nautilus, был использован для разработки лазерного комплекса Skyguard.

Системы противоракетной обороны Skyguard и Nautilus построены вокруг высокоэнергетического тактического лазера — THEL (Tactical High Energy Laser). Согласно заявлениям разработчиков, THEL способен эффективно поражать реактивные снаряды, крылатые ракеты, баллистические ракеты малой дальности и беспилотники. При этом THEL может стать не только эффективной, но и весьма экономичной системой ПРО: один выстрел будет стоить всего около 3 тыс. долларов, намного дешевле пуска современной противоракеты. С другой стороны, говорить о реальной экономичности подобных систем можно будет лишь после их принятия на вооружение.

THEL — это химический лазер мощностью около 1 МВт. После обнаружения цели радаром компьютер ориентирует лазерную установку и производит выстрел. В доли секунды лазерный луч заставляет детонировать вражеские ракеты и снаряды. Критики проекта предрекают, что такого результата можно достичь лишь в идеальных погодных условиях. Возможно, именно поэтому ранее вышедшие из проекта Nautilus израильтяне не заинтересовались комплексом Skyguard. Но американские военные называют лазерную установку революцией в области вооружений. По словам разработчиков, серийное производство комплекса может начаться совсем скоро.

Лазер в море

Большой интерес к лазерным системам ПРО проявляет военно-морское ведомство США. По замыслу, лазерные комплексы смогут дополнить привычные средства защиты боевых кораблей, взяв на себя роль современных скорострельных зенитных орудий, таких, как Mark 15. Разработка подобных систем сопряжена с рядом трудностей. Мелкие капли воды во влажном морском воздухе заметно ослабляют энергию лазерного луча, однако эту проблему разработчики обещают решить за счет увеличения мощности лазера.

Одна из последних разработок в этой области — MLD (Maritime Laser Demonstrator). Лазерная установка MLD — всего лишь демонстратор, но в будущем ее концепция может лечь в основу полноценных боевых систем. Комплекс разработан компанией Northrop Grumman. Первоначально мощность установки была небольшой и составила 15 КВт, однако и ей во время испытаний удалось уничтожить надводную мишень — резиновую лодку. Конечно, в будущем специалисты Northrop Grumman намерены увеличить мощность лазера.

На авиасалоне «Фарнборо — 2010» американская компания Raytheon представила на суд общественности собственный концепт боевого лазера LaWS (Laser Weapon System). Эта лазерная установка объединена в единый комплекс с корабельной зенитной пушкой Mark 15 и на испытаниях сумела поразить беспилотник на дистанции около 3 км. Мощность лазерной установки LaWS составляет 50 КВт, чего достаточно, чтобы прожечь 40-миллиметровую стальную пластину.

В 2011 году компании Boeing и ВАЕ Systems начали разработку комплекса TLS (Tactical Laser System), в котором лазерная установка также совмещается со скорострельным 25-миллиметровым артиллерийским орудием. Считается, что эта система сможет эффективно поражать крылатые ракеты, самолеты, вертолеты и небольшие надводные цели на дальности до 3 км. Скорострельность Tactical Laser System должна составить около 180 импульсов в минуту.

Мобильный лазерный комплекс

Другая разработка компании Boeing — HEL-MD (High Energy Laser Mobile Demonstrator) — должна устанавливаться на мобильную платформу — восьмиколесный грузовик. На испытаниях, которые прошли в 2013 году, комплекс HEL-MD успешно поразил учебные мишени. Потенциальными целями для подобной лазерной установки могут стать не только беспилотники, но и артиллерийские снаряды. В скором времени мощность HEL-MD будет доведена до 50 КВт, а в обозримом будущем составит 100 КВт.

Еще один образец мобильного лазера недавно представила немецкая компания Rheinmetall. Лазерный комплекс HEL (High-Energy Laser) установили на бронетранспортер Boxer. Комплекс способен обнаруживать, сопровождать и уничтожать цели — как в воздухе, так и на земле. Мощности достаточно для уничтожения беспилотников и ракет малой дальности.

Перспективы

Известный эксперт в области перспективных вооружений Андрей Шалыгин рассказывает: — Лазерное оружие является оружием буквально прямой видимости. Цель нужно обнаружить на прямой линии, навести на нее лазер и устойчиво сопровождать, чтобы успеть передать количество энергии, достаточное для повреждения. Соответственно, загоризонтное поражение невозможно, устойчивое гарантированное поражение на больших дистанциях — тоже невозможно. Для больших дистанций установка должна быть поднята как можно выше. Поражение маневрирующих целей затруднено, поражение экранированных целей затруднено… В цифрах все это выглядит слишком банально, чтобы вообще об этом говорить всерьез, по сравнению даже с примитивными действующими системами ПВО.

Кроме этого существуют два фактора, которые еще более усложняют ситуацию. Энерговооруженность носителя такого оружия в сегодняшних условиях должна быть огромна. Это делает всю систему либо чрезвычайно громоздкой, либо чрезвычайно дорогой, либо имеющей массу других недостатков вроде малого суммарного времени нахождения в боевой готовности, большого времени приведения в боевую готовность, огромной стоимости выстрела и так далее. Вторым существенным фактором,ограничивающим действие лазерного оружия, является оптическая неоднородность среды. В примитивном понимании — любая заурядная непогода с осадками делает применение такого оружия ниже уровня облачности совершенно бесполезным занятием, а защита от него в нижних слоях атмосферы представляется весьма простой.

Поэтому пока не приходится говорить о том, что образцы любого ноу-хау в лазерном оружии в обозримом будущем смогут стать чем-то большим, нежели не самое лучшее оружие ближнего боя для корабельных группировок в хорошую погоду и для авиационных дуэлей, проходящих выше уровня облачности. Как правило, экзотические системы вооружения являются одним из самых эффективных способов «сравнительно честного» зарабатывания денег лоббистами. Поэтому в целях решения тактических задач боевыми единицами в рамках военного искусства можно легко найти десяток-другой гораздо более эффективных, дешевых и простых решений поставленных задач.

Разрабатываемые американцами системы авиационного базирования могут найти весьма ограниченное применение для локальной защиты от средств воздушного нападения выше уровня облачности. Однако стоимость таких решений значительно превышает существующие системы без всяких перспектив ее снижения, а боевые возможности существенно ниже.

С открытием материалов для конструирования сверхпроводящих систем, работающих при температурах, близких к окружающей среде, а также в случае создания компактных мобильных высокоэнергетических источников мощности, лазерные установки будут производиться и в России. Они могут пригодиться для целей ближней ПВО во флоте и применяться на надводных кораблях, для начала — в составе систем на основе таких платформ, как ЗК Пальма или АК-130-176.

В сухопутных войсках такие системы в полностью боеспособном виде известны всему миру еще со времен, когда Чубайс пытался открыто продавать их за границу. Они даже выставлялись с этой целью в рамках МАКС-2003. Например, МЛТК-50 — конверсионная разработка в интересах Газпрома, которая велась Троицким институтом инновационных и термоядерных исследований (ТРИНИТИ) и НИИЭФА имени Ефремова. Его появление на рынке, собственно, и привело к тому, что весь мир сразу внезапно продвинулся вперед в конструировании аналогичных систем. При этом в настоящее время энергетика систем позволяет иметь не сдвоенный, а обычный одиночный автомобильный модуль.

Похоже, что лазерные комплексы — это оружие не завтрашнего и даже не послезавтрашнего дня. Многие критики считают, что разработка лазерных систем — и вовсе пустая трата денег и времени, а крупные оборонные корпорации с помощью таких проектов просто осваивают новые средства. Впрочем, подобная точка зрения справедлива лишь отчасти. Возможно, боевой лазер еще нескоро станет полноценным оружием, но окончательно ставить на нем крест было бы преждевременно.

2610

Американские ВМС испытали в Персидском заливе "активное лазерное оружие" LaWS (Laser Weapons System) и поразили невидимым импульсом . При этом официальный представитель ВМС капитан первого ранга Кристофер Уэлл отметил универсальность установки, высокую точность и низкую себестоимость "выстрела" .

О планах оснащения боевых кораблей новейшим лазерным оружием американцы сообщили еще весной 2013 года. И контр-адмирал Мэтью Кландер тогда : "Новейшие технологии позволяют создавать лазерные лучи, которые могут фиксироваться на цели и не терять ее вне зависимости от движения корабля в условиях сильного ветра и волн. Лазер будет резать цель подобно паяльной лампе. Кроме того, новое оружие сможет "ослеплять" фотокамеры самолетов-разведчиков". Правда, адмирал допустил снижение эффективности лазерного оружия против быстро движущихся целей — сверхзвуковых самолетов и ракет.

Эксперт об испытаниях LaWS: США совмещают для себя "приятное с полезным" США испытали лазерное оружие (LaWS) в Персидском заливе, сообщают СМИ. Военный эксперт Борис Рожин в эфире радио Sputnik выразил мнение, что подобные испытания – это определенный сигнал.

Действительно, боевой лазер максимальной дальности поражения достигает лишь в безвоздушном пространстве, и пафос американских заявлений на эту тему всегда превосходит убедительность испытаний. Читатели, хорошо усвоившие курс школьной физики, скептически отнеслись к новому достижению американской оборонки (свидетельство тому — три сотни комментариев к этой новости на сайте сайт). Эксперты оказались единодушны: подобные испытания и системы пока не угрожают боевым кораблям и самолетам, лазерные пушки слишком зависимы от мощности генератора и расстояния до цели. Упомянутое Кристофером Уэллом "электричество от небольшого штатного генератора" вызывает тем большие сомнения, что лазерную установку разместили на огромном транспортном корабле длиной 173 метра и водоизмещением свыше 16 тысяч тонн.

Военный эксперт: испытание LaWS рассчитано на впечатлительных инвесторов Военные США сбили беспилотник с помощью системы лазерного оружия (LaWS) на учениях в Персидском заливе. Военный эксперт Алексей Леонков в эфире радио Sputnik выразил мнение, что применение данного вида оружия имеет ограничения.

Система лазерного оружия (LaWS) на транспорт-доке USS Ponce впервые была испытана в Персидском заливе в 2014-м , и прогресс с тех пор не очевиден. Сегодня нет ответов на целый ряд принципиальных вопросов. Какова мощность лазерной установки? На каком расстоянии поражена цель? Из какого материала сделан беспилотник? Имел ли он отражающее покрытие и с какой скоростью летел? Исключена ли маркетинговая мистификация?

Преимущества лазерного оружия — скорость и точность, возможность "ослепления" цели, отсутствие демаскирующих эффектов в виде огня и дыма, относительная дешевизна выстрела (боекомплект определяется только мощностью источника энергии). Луч не имеет массы и не требует баллистических поправок. Почему же удобные боевые лазеры еще не вытеснили традиционные системы вооружений?

Ключевой недостаток — высокий уровень энергопотребления. А если когда-нибудь появится компактный и неиссякаемый источник энергии, не исчезнет рефракция — лазерный луч в атмосфере расширяется и теряет фокусировку (снижается его температура). Поэтому дистанция боевого применения ограничивается тремя-пятью километрами (длина волны и прочие фокусы особой роли не играют). И даже на этом расстоянии непогода (дождь, туман) или отражающее покрытие цели (зеркало отражает лазерный луч независимо от уровня мощности) превращают сверхоружие в бесполезную игрушку.

Впечатляющей бессмыслицей выглядит, к примеру, американский боевой лазер воздушного базирования , "противоракетная мечта" стоимостью 5,3 миллиарда долларов. Проект закрыли, несмотря на действующий прототип YAL-1А, размещенный на самолете Boeing-747-400F. Система разрабатывалась для уничтожения баллистических ракет противника. Лазер вроде бы успешно испытали, но максимальная дальность "стрельбы" оказалась неприемлемой для реальных боевых условий.

Киловаттная гонка

Несмотря на тернистый путь лазерного луча в земной атмосфере, можно предположить, что в ближайшие годы тактическое лазерное оружие будет принято на вооружение в нескольких странах мира. Так, американцы намерены установить лазерные пушки на истребителе F-35, на авианосце Gerald R. Ford и эсминцах класса Zumwalt.

Боевые лазерные системы настойчиво разрабатывают британские, немецкие, индийские, китайские, японские и, конечно, российские специалисты. Заместитель министра обороны России Юрий Борисов в 2016 году заявил о принятии на вооружение , которые могут быть размещены на самолетах, колесных и гусеничных боевых машинах, а также на кораблях ВМФ. Продолжаются испытания российского лазерного комплекса воздушного базирования (носитель — транспортный самолет Ил-76). Возможно, лазерное вооружение получит .

Лазерную систему ПРО Nautilus в конце 90-х годов совместно разрабатывали американские и израильские специалисты. Однако Израиль вышел из этой программы. Американцы использовали опыт для создания лазерной ПРО Skyguard (испытания начались в 2008 году). Позднее в США компаниями Boeing и ВАЕ Systems разрабатывалась новая оборонительная система TLS, которая, по замыслу разработчиков, должна поражать крылатые ракеты, вертолеты, самолеты и надводные цели на дистанциях до пяти километров. Компания Lockheed Martin в 2012 году представила компактный лазерный комплекс ПВО ADAM для уничтожения БПЛА, снарядов, ракет и мин на дистанциях до пяти километров.

© Фото: Lockheed Martin Corporation


Кстати, неновая российская сверхзвуковая противокорабельная ракета П-700 "Гранит" пролетает эту зону лазерного обстрела примерно за шесть секунд.

США в 2013 году испытали лазерную систему мощностью 10 киловатт, вроде бы сбили несколько мин и беспилотник. В нынешнем году планировали испытать установку мощностью в 50 киловатт. Возможно, к 2020 году появится и 100-киловаттный образец. Однако для поражения в атмосфере баллистических и крылатых ракет необходима мощность в сотни раз большая.

На оружейной выставке в Сингапуре в 2014 году Израиль презентовал боевой лазерный комплекс Iron Beam, предназначенный для поражения снарядов, ракет и мин на дистанции до двух километров. Можно заметить, что во всех примерах дальнобойность лазерных систем не оправдывает капиталовложений. И в среднесрочной перспективе создание дальнобойного атмосферного лазера выглядит маловероятным.

Боевыми лазерами человечество занимается с начала 1960-х. И Советский Союз в этой гонке не уступал США. Испытания советских боевых лазеров проводились на полигоне Сары-Шаган в Казахстане. По информации из открытых источников, в 1982 году установка поразила радиоуправляемую мишень. Самоходные комплексы "Сжатие" и "Сангвин" разрабатывались для выведения из строя оптико-электронных систем бронетехники и вертолетов противника соответственно. Состоялась попытка вывода на околоземную орбиту боевой лазерной станции "Скиф" для уничтожения американских спутников наведения .

Как бы то ни было, лазерные разработки нашли применение в самых разных сферах науки и техники (проигрыватели компакт-дисков, приборы определения точного расстояния, голография, хирургия, металлообработка). И возможно, нынешние "атмосферные" усилия специалистов-оборонщиков будут иметь непредсказуемый полезный результат для мирных землян.

В апреле этого года в США на базе Fort Sill испытали боевой лазер (High Energy Laser Mobile Test Truck, HELMTT) мощностью в 10 киловатт. В учениях принимали участие 8 джипов, включая командный центр, созданный на одном из них, то есть отрабатывалась система управления и применения лазерного оружия в полевых условиях. Также тестировали лазер мощностью в 2 киловатта, установленный на бронемашине Stryker. Сообщения о данных новых учениях просочились в широкую прессу только в мае. В ходе учений уничтожались беспилотники, артиллерийские снаряды и минометные снаряды.

Что было?

Это, конечно, не первое испытание. В 2013 году прошли испытания наземного лазера для уничтожения воздушных целей. Боевой лазер (High Energy Laser Mobile Demonstrator, HEL MD) мощностью в 10 киловатт уничтожил сотню минометных снарядов и несколько беспилотников.

В 2014 году HEL MD тестировали с автомобиля Oshkosh в условиях плохой погоды и лазер смог поразить около 150 целей. По заявлениям военных, беспилотники поражались лазером даже в дождь, хотя конкретные детали этих испытаний неизвестны. В этом же году на борту корабля USS Ponce было протестировано лазерное оружие мощностью в 33 киловатта.

В 2015 году установка мощностью в 2 киловатта компании Boeing сбила в воздухе свободно летящий БПЛА за 10-15 секунд, а стационарный БПЛА за 2 секунды. По некоторым данным, на расстоянии в полтора километра лазером сбивается БПЛА, летящий на скорости до 130 км/ч.

Что дальше?

В 2017 году армией США запланированы испытания наземной лазерной установки HEL MD с мощностью в 50 киловатт.

К 2020 году мощность этой наземной установки планируется увеличить до 100 киловатт.

К 2020 году лазерные установки будут и на самолетах ВВС США.

К 2021 году США хотят довести до практического применения лазерное оружие воздушного базирования для перехвата баллистических ракет. В разработке системы ПРО мощностью в 1 мегаватт. Boeing, кстати, пообещал, что скоро его лазеры будут поражать цели в воздухе на расстоянии в 35 километров.

И в 2023-2025 годах в США первые оборонительные и наступательные боевые лазерные установки должны встать в строй на земле, море и в воздухе.

Планов у американцев — громадье. ВВС жаждет заполучить к 2020 году лазер мощностью 150 киловатт на самолетах AC-130, чтобы прожигать в целях «дыры размером с пивную банку», а потом начать устанавливать лазеры и на самолетах B-1 и B-2. В Lockheed Martin в 2015 году объявили, что на F-35 могут быть установлены лазерные пушки.

Есть идея устанавливать лазеры ближнего действия на вертолетах прикрытия, которые обеспечивают безопасность десантирования солдат.

ВМС думают об установке крупных лазерных пушек на авианосцах USS Gerald R Ford и кораблях Zumwalt.

Морпехи хотят к 2017 году иметь мобильные лазерные установки мощностью в 30 киловатт на своих джипах или грузовиках, чтобы сбивать беспилотники противника на поле боя, а разработчики обещают им уже и 60 киловатт.

Что с финансированием проектов?

Пик вложений в разработки лазерного оружия в США пришелся на 1989 год, когда в программы влили около 2,4 миллиардов долларов. С тех пор ежегодные затраты по теме были значительно ниже. В 2007 году на военные лазеры ушло 961 миллионов долларов, а в 2014 году — уже всего лишь 344 миллиона.

Стоимость лазерной установки на борту корабля USS Ponce составила 40 миллионов долларов, и это без учета расходов на шестилетнюю разработку. Но отмечается, что скоро цена лазерного оружия значительно упадет по мере его распространения и массового производства. И даже при существующих ценах на лазерные установки — это все равно в разы дешевле, чем трата дорогостоящих ракет для уничтожения целей.

Сегодня Пентагон запрашивает 90,3 миллиона долларов на 2017 финансовый год только на создание лазерного оружия воздушного базирования для перехвата баллистических ракет. В целом американские военные считают, что для развития боевых лазеров стране необходимо тратить 1,3 миллиардов долларов в год.

Плюсы и минусы

Плюсы лазерного оружия: скорость применения, практически неограниченное количество «выстрелов», постоянное наведение на цель, цена одного «выстрела» составляет менее 10 долларов, бесшумность, невидимость, не нужно рассчитывать поправку на ветер как для других боеприпасов, компенсировать отдачу и т.п.

Тем не менее очевидны и минусы подобного оружия: энергозатратность, потеря энергии с увеличением расстояния до цели, потеря энергии в плохих погодных условиях, необходимость системы охлаждения лазерной установки, легкость защиты от лазеров с помощью отражающих поверхностей.

Последнее, кстати, не подтвердилось при реальных испытаниях. Даже мельчайшая пыль на отражающей поверхности таких покрытий сжигалась лазером и приводила наоборот к еще более быстрому разрушению защиты и поражению всей цели.

Наиболее реалистичная сфера применения военных лазеров сегодня — оборонительные действия на коротких расстояниях. В 2014 году в США опросили экспертов по национальной безопасности. Около 50% экспертов не ожидали введения в строй лазерного оружия в вооруженных силах США в ближайшие два десятилетия.

Лирика

Любопытно, что существует международный Дополнительный Протокол от 13 октября 1995 года — «Протокол IV об ослепляющем лазерном оружии к Конвенции ООН 1980 года о запрещении или ограничении применения конкретных видов обычного оружия, которые могут считаться наносящими чрезмерные повреждения или имеющими неизбирательное действие».

Протокол, который уже подписали 107 стран, запрещает применять лазерное оружие, специально предназначенное для использования в боевых действиях исключительно или в том числе для того, чтобы причинить постоянную слепоту органам зрения человека, не использующего оптические приборы.

То есть, во время войны лазерами формально нельзя даже ослеплять живую силу противника, не говоря уже об его физическом уничтожении. О степени гуманности лазерного оружия уже разворачиваются дискуссии, наподобие споров о моральности применения ударных беспилотников.

Разработчики HEL MD говорят, что так как лазерный «выстрел» происходит бесшумно, то в систему придется встраивать звуковое сопровождение, чтобы сами операторы и находящиеся рядом могли понимать, что оружие активировано. Для этих целей будут подобраны звуковые эффекты из фильмов «Звездные войны» и «Звездный путь».

Илья Плеханов

Первый лазер был продемонстрирован публике в 1960 году, и западные журналисты сразу же прозвали его «лучом смерти». Вот уже более полувека ученые и инженеры США, СССР, а теперь и России ведут разработки лазерного оружия. На эти проекты потрачены десятки миллиардов долларов и рублей.

Время от времени появляются сообщения об успешных испытаниях лазерных вооружений. Один из последних примеров: в августе 2014 года на военном корабле США Ponce в Персидском заливе была испытана лазерная пушка LaWS мощностью 30 кВт, которая сожгла мотор на надувной лодке и сбила беспилотник. Заметим, что в нашей стране беспилотники лазером сбивали еще 40 лет назад. Тем не менее реального лазерного оружия нет ни в России, ни в США. Почему?
Вот несколько историй про лазерные пистолеты, ружья и танки, которые так и не стали массовыми.
1. Пистолет космонавта
На определенном этапе развития советской космической программы у военных возник закономерный, с их точки зрения, вопрос: чем будут сражаться советские космонавты, если дело дойдет до абордажа и рукопашной схватки в космосе. Ответом стало индивидуальное лазерное оружие самообороны космонавта. Этот артефакт ныне хранится в музее Военной академии ракетных войск стратегического назначения, где лазерный пистолет и был разработан в 1984 году.
В аварийном запасе космонавтов вообще-то есть огнестрельное оружие: трехствольный пистолет ТП-82. Однако предназначен он для использования на земле против диких зверей в случае аварийной посадки. (Американцы, кстати, ограничились вооружением своих астронавтов специальными ножами Astro 17.) Однако в космосе обычный пистолет использовать затруднительно: во-первых, отдача от выстрела в невесомости представляет собой большую проблему для стреляющего, а самое главное - пуля, пробившая обшивку корабля, убьет не только противника, но и обладателя пистолета. Идеальным оружием для космоса выглядит луч лазера, но для него нужен очень мощный источник энергии. И тогда конструкторы предложили использовать для накачки лазера пиротехническую лампу-вспышку. Такая лампа изготавливалась в виде патрона калибром 10 мм, что позволило сделать лазерное оружие в габаритах обычного пистолета. Магазин содержал 8 патронов. Был сделан образец и в виде револьвера с барабаном на 6 патронов. Энергия его излучения была сравнима с энергией пули пневматической винтовки. Луч мог повредить глаза или оптические приборы на расстоянии до 20 м, но при этом не пробивал обшивку. Оружие было испытано и изготовлено в 1984 году, однако до серийного производства и принятия на вооружение дело так и не дошло: началась разрядка международных отношений, и сугубо военные пилотируемые программы были закрыты.
2. Ослепительные перспективы
4 апреля 1997 года вертолет канадских ВВС, сопровождавший выход американской атомной подводной лодки «Огайо» в пограничном между США и Канадой проливе Хуан-де-Фука, приблизился к российскому сухогрузу «Капитан Ман». На борту вертолета, кроме пилота-канадца Патрика Барнса, находился в качестве наблюдателя офицер ВМФ США Джек Дейли. Им показались подозрительными антенны на «Капитане Мане» и сам факт появления российского судна в проливе в момент выхода подводного атомохода. Решено было провести облет и фотографирование корабля. Во время этой операции пилот и наблюдатель зафиксировали вспышку на борту судна и почувствовали сильную резь в глазах.
Врачи констатировали ожог сетчатки глаза как у пилота, так и у наблюдателя. Прибывший в порт сухогруз был тщательно обыскан: несколько десятков представителей ФБР и береговой охраны США в течение 18 часов осматривали корабль, но никаких следов лазерного оружия не нашли. Оба пострадавших, кстати, из-за проблем со здоровьем вынуждены были уйти с военной службы, а американец позже даже подал в суд на Дальневосточное пароходство, которому принадлежал «Капитан Ман». Адвокаты утверждали, что Дейли стал жертвой «жестокой атаки иностранного государства на американской территории». Однако доказать, что воздействие произошло именно с борта российского судна, не удалось. Яркая точка, зафиксированная на одном из снимков, могла быть отблеском от иллюминатора.
Ослепляющее оружие разрабатывалось во многих странах. Китай, к примеру, в 1995 году демонстрировал лазерное ружье ZM-87, способное полностью лишить зрения противника на расстоянии в несколько километров. Однако в том же 1995 года была подписана международная конвенция, запрещающая использовать лазер для необратимого ослепления людей. Для временного ослепления - пожалуйста. К примеру, на вооружении МВД России вполне официально стоит специальный лазерный фонарь «Поток», вызывающий временную потерю зрения при воздействии на расстоянии 30 м. В США разработана лазерная винтовка PHASR. Великобритания применяла слепящие ружья Dazzler против аргентинских летчиков во время Фолклендской войны. В октябре 1998-го лазер повредил зрение экипажа американского вертолета в Боснии. Было зафиксировано использование лазера в отношении вертолетов США со стороны Северной Кореи, после чего американские пилоты стали надевать специальные защитные маски. Впрочем, грань тут очень шаткая. Оружие, вызывающее временную слепоту на дистанции 10 км, выжжет глаза со 100 м. Есть и еще одна лазейка: не запрещено использовать лазер против оптических систем, а уж если кто-то смотрит в окуляр с другой стороны - его проблемы.
3. Лазерный танк
В Военно-техническом музее в подмосковной Ивановке можно увидеть удивительный экспонат. Внешне он напоминает лазерную «Катюшу» с 12 оптическими «стволами» на шасси самоходной гаубицы «Мста». Воинская часть, передавшая этот образец вооружения музею, даже не знала назначения этой техники. Между тем речь идет о самоходном лазерном комплексе 1К17 «Сжатие». Кстати, его создатель НПО «Астрофизика», один из основных разработчиков лазерного оружия в России, до сих пор отказывается давать информацию по этому оружию, поскольку гриф секретности с него еще не снят.
У любой современной боевой техники, будь то артсистема, танк или вертолет, есть одно уязвимое место - оптика. Не надо крушить броню, достаточно повредить хрупкие оптические системы, и противник становится беспомощным. Лазер - отличное средство для этого. Первое подобное устройство в СССР испытывали еще в 1982 году: самоходный лазерный комплекс 1К11 «Стилет» на шасси гусеничного минного заградителя был призван выводить из строя оптико-электронные системы наведения танков и самоходок. Обнаружив цель радаром, «Стилет» посредством лазерного зондирования находил оптическое оборудование по бликующим линзам, а затем поражал его лазерным импульсом, выжигая фотоэлементы.
В 1983 году был создан другой комплекс - «Сангвин». Он устанавливался на шасси зенитной самоходной установки «Шилка» и предназначался для поражения оптико-электронных систем вертолетов. На дистанции до 8 км лазер полностью выводил из строя прицелы, а на большем расстоянии ослеплял их на десятки минут.


Самоходный лазерный комплекс 1К17 «Сжатие» стал дальнейшим развитием подобной системы. От лазера определенной частоты оптику можно защитить фильтром. У «Сжатия» было 12 лазеров с разной длиной волны. 12 фильтров надеть на оптику невозможно. В 1990 году комплекс был выпущен в единственном экземпляре, прошел испытания и даже был рекомендован к принятию на вооружение, однако космическая стоимость не позволила начать его серийное производство. Ведь для одного комплекса требовалось вырастить 30 кг искусственных кристаллов. При этом эффективность лазерного оружия в реальном бою вызывала у военных очень большие сомнения.
4. Лазерное оружие «Газпрома»
21 июня 1991 года на скважине № 321 Карачаганакского нефтегазоконденсатного месторождения вспыхнул пожар. Языки пламени взлетали на 300 метров. Сбить огонь мешали металлоконструкции буровой установки. Чтобы уничтожить их, привлекли танк, но два дня пальбы ни к чему не привели: точности выстрелов оказалось недостаточной для уничтожения массивных металлических опор. Пожар не могли погасить три месяца. Именно тогда специалисты по ликвидации аварий стали наводить справки: а нет ли в стране более эффективного оружия?
Прошло 20 лет. 17 июля 2011 года похожая авария произошла на Западно-Таркосалинском месторождении в Ямало-Ненецком автономном округе. На ликвидацию металлоконструкций потребовалось всего 30 часов. Толстенные балки и трубы были срезаны Мобильным лазерным технологическим комплексом мощностью 20 кВт (МЛТК-20).
Еще более мощный вариант этой системы - МЛТК-50, способный резать сталь толщиной 120 мм на расстоянии 30 м, был продемонстрирован еще в 2003 году на авиашоу МАКС, генеральным спонсором которого, кстати, является ВТБ. Комплекс представлял собой установку, смонтированную на грузовике и прицепе: на одном - собственно лазер, на втором - авиационный двигатель, который снабжает лазер энергией. Западные специалисты задумчиво переглядывались при виде МЛТК-50. Уж больно она им что-то напоминала. Да, собственно, ее истинное происхождение никто особенно и не скрывал. Создателем «технологического комплекса по ликвидации аварий», который предлагали любому желающему за 2 млн долларов, являлся… концерн ПВО «Алмаз-Антей», с которым ВТБ связывает длительное сотрудничество. Среди рекламных материалов была раскадровка видеосъемки, на которой луч лазера сбивал беспилотник. Документ под названием «Испытания воздействия лазерного излучения на аэродинамическую мишень» датирован 1976 годом.
МЛТК, по сути, это и есть лазерная зенитка с демонтированной системой наведения. Почему же этот комплекс до сих пор не стоит на вооружение нашей армии? Чтобы ответить на этот вопрос, для начала давайте разберемся, а, собственно, о какой мощи идет речь? Что такое мощность в 50 кВт, которой обладает лазер МЛТК-50? Это приблизительно в два раза меньше, чем мощность выстрела… довоенного авиационного пулемета ШКАС, который устанавливали на истребитель И-15. При этом для обеспечения лазера энергией приходится возить с собой авиационную турбину в грузовике, не говоря о запасах топлива для нее. А ШКАС весил всего 11 кг.
Лазер стреляет дальше? В хорошую погоду - да. Недаром американцы испытывали свое лазерное орудие именно в Персидском заливе. А что будет, к примеру, в снежную бурю в Северной Атлантике? Лазерный луч очень чувствителен к пыли, аэрозолям и атмосферным осадкам. А что произойдет на реальном поле боя, окутанном дымом от взрывов? Долго ли протянет в сражении боевая машина, вооруженная приличного размера телескопом, пусть и покрашенным в зеленый цвет? Да и в хорошую погоду дальность действия лазерного луча оказывается вовсе не беспредельной. Военно-морской вариант и российским военным представлялся весьма перспективным направлением использования лазерного оружия: базирование на корабле давало комплексу необходимую мобильность, а размеры судна позволяли разместить на борту достаточно мощные генераторы. В рамках советской программы «Айдар» экспериментальную лазерную установку разместили на сухогрузе «Диксон», а энергетику ей обеспечивали три двигателя от самолета Ту-154.
Испытания прошли летом 1980 года: стреляли по мишени на берегу на расстоянии 4 км. Лазер попал в мишень, однако выяснилось, что до цели дошло только 5% энергии излучения. Все остальное поглотил влажный морской воздух. В результате всевозможных ухищрений в конце концов удалось добиться того, что луч прожигал обшивку самолета на расстоянии 400 м. В 1985 году программу «Айдар» закрыли.
5. Терра инкогнита
10 октября 1984 года на американском многоразовом корабле «Челленджер», который пролетал на высоте 365 км над озером Балхаш, внезапно отключилась связь, в работе оборудования возникли сбои, а астронавты почувствовали недомогание. Так проявила себя работа лазерного локатора 5Н26/ЛЭ-1, испытания которого проводились на полигоне Сары-Шаган. Этот проект впоследствии получил известность под названием «Терра». Его целью было создание мощного лазера ПРО, способного сбивать боеголовки баллистических ракет. Однако по «Челенджеру» в тот день отработал всего лишь локатор, предназначенный для сканирования космических объектов и боеголовок, а не оружие для их уничтожения.
Тем не менее американцы быстро поняли, что их корабль подвергся какому-то воздействию с территории СССР, и заявили протест. Больше высокоэнергетические средства локации для сопровождения американских пилотируемых кораблей не применялись. Локатор ЛЭ-1 во множестве экспериментов подтвердил свою работоспособность. Его точность по дальности составляла 10 м на расстоянии 400 км. А вот с боевым лазером дело не заладилось. Для уничтожения боеголовки нужно было излучение очень большой мощности, а у лазера очень низкий КПД: для генерации излучения мощностью 5 МВт нужна энергия в 50 МВт, а это мощность атомного ледокола.
В попытке решить эту проблему для накачки было предложено использовать энергию взрыва, который создавал ударную волну в ксеноне в так называемом фотодиссационном лазере. Эти устройства собирались из стандартных секций длиной 3 м. Наращивая длину, можно было получить мощность в 100 раз большую, чем у любого известного в то время лазера. Понятно, что такое устройство было одноразовым. Для получения нужной мощности необходимо было взорвать около 30 т взрывчатого вещества, поэтому генератор боевого излучения должен был располагаться не ближе 1 км от собственной системы наведения. Для передачи излучения на это расстояние предполагалось использовать подземный туннель. В конце концов от этой схемы отказались в пользу лазера другого типа, мощность которого довели до 500 кВт. С его помощью была поражена мишень размером с советскую пятикопеечную монету, правда на близком расстоянии. Увы, для поражения боеголовок ракет этого оказалась недостаточно. Итог «Терры» подвел нобелевский лауреат академик Николай Басов, научный руководитель этого проекта: «Мы твердо установили, что никто не сможет сбить боеголовку баллистической ракеты лазерным лучом». Программа была закрыта.
Над лазерным оружием работал и академик Александр Прохоров – другой советский ученый, получивший вместе с Николаем Басовым и американцем Чарлзом Таунсом в 1964 году Нобелевскую премию по физике за фундаментальные работы, приведшие к изобретению лазера. Его проект назывался «Омега» и предусматривал создание лазерного комплекса ПВО, который по мощности будет равен суммарной кинетической энергии типовой боевой части ракеты «земля – воздух». 22 сентября 1982 года комплекс 73Т6 «Омега-2М» поразил лазером радиоуправляемую мишень. По результатам этих исследований был создан мобильный вариант, однако на вооружение его так и не приняли. Причина проста. По совокупности боевых качеств лазерная система так и не смогла превзойти ракетные зенитные комплексы. Кому нужна зенитка, которой мешают облака?
6. Космический лазер
15 мая 1987 года состоялся первый старт советской сверхтяжелой ракеты «Энергия». В первом полете вместо «Бурана» она несла огромный черный объект с двумя надписями: «Мир-2» и «Полюс». Первая из них никакого отношения к объекту не имела и являлась, в сущности, маскировкой или, если хотите, рекламой советской пилотируемой станции нового поколения. А вторая надпись – «Полюс» – была несекретным обозначением программы создания лазерной боевой станции 17Ф19 «Скиф». Запущенный в 1987 году объект назывался «Скиф-ДМ», то есть динамический макет.
Боевая станция «Скиф» была ответом на американскую программу «Звездных войн» – Стратегическую оборонную инициативу (СОИ), предполагавшую уничтожение советских ядерных ракет посредством космических лазеров с ядерной накачкой. Наш «Скиф» не предназначался для истребления ракет. Его целью были спутники наведения, без которых система СОИ становилась «слепой». На «Скифе» предполагалось использовать газодинамический лазер РД-0600 мощностью 100 кВт. Однако при его применении в космосе возникали проблемы: для его накачки расходовалось большое количество рабочего тела – углекислого газа. Истечение этого газа дестабилизировало спутник, поэтому для космического применения была разработана система безмоментного выхлопа. Ее проверка и была главной задачей «Скифа-ДМ». Испытания маскировались под геофизический эксперимент по изучению взаимодействия искусственных газовых образований с ионосферой Земли.
Увы, сразу после отделения от «Энергии» станция диаметром 4 м, длиной 37 м и массой 77 т потеряла ориентацию и утонула в Тихом океане. Есть версия, что «Скиф» был погублен нарочно. За три дня до запуска Михаил Горбачев заявил, что СССР не будет выводить оружие в космос. Формально «Скиф-ДМ» не имел оружия на борту, но его испытания ставили главу государства в неловкое положение. Естественно, появилась версия о намеренности этой ошибки. Однако знакомство с техническими подробностями оснований для подобной интерпретации событий не дает. Ошибка в программе появилась задолго до заявлений Горбачева. Разумеется, можно сказать, что ошибку не стали исправлять нарочно. Но и это не так. О ней просто никто не знал. Ошибка была зафиксирована при наземных предстартовых испытаниях, однако времени на расшифровку этих данных до старта уже не было. Впрочем, даже успешный полет ничего не решил бы в судьбе «Скифа». Американцы закрыли свою программу СОИ, а мы отказались от вывода лазерного оружия в космос.
Никто не против мирного космоса, но уговорить мировые державы прекратить гонку вооружений можно только одним способом: продемонстрировав, что отказываться от оружия им придется не в одностороннем порядке.
Что же мы получаем в итоге? Ни одна разработка по лазерному оружию в нашей стране так и не дала реального результата? Не все так печально.
7. Лазер воздушного базирования
Одной из самых эффектных лазерных программ США стало создание системы воздушного базирования YAL-1а: на Boeing-747-400F был установлен лазер, с помощью которого предполагалось сбивать ракеты на активном участке траектории. Система была создана и успешно испытана, однако дальность ее действия оказалось всего 250 км, а подлететь на такое расстояние к стартующей ракете на Boeing-747 нереально даже в войне с Ираном. Проблема в том, что лазерный луч в атмосфере расширяется из-за рефракции: на расстоянии 100 км в результате рассеивания в воздухе радиус пятна уже достигает 20 м. Энергия лазерного луча, размазанная на такой площади, не опасна для ракеты. За счет использования адаптивной оптики американцам удалось сфокусировать луч до размеров баскетбольного мяча на дальности 250 км, но не более. Кроме того, современные российские ракеты используют нехитрые приемы борьбы с лазерным воздействием: они вращаются в полете, то есть луч не может греть одно и то же пятно постоянно. Наши ракеты совершают судорожные маневры, которые невозможно просчитать заранее. Наконец, используется теплозащитное покрытие. Все это делает YAL-1а бесполезным в качества средства ПРО. Его лазер слишком слаб для этого.
Мощность лазера НЕL, установленного на YAL-1a, составляет, страшно подумать, 1 МВт! Это меньше, чем мощность выстрела обычной авиационной пушки. При этом стоимость каждой такой «пушки» размером с Boeing-747 составляет около 1 млрд долларов. Что мешает увеличить мощность? Кроме известной проблемы с генераторами, для которых и при 1 МВт нужен огромный транспортный самолет, при более интенсивном излучении начинает плавиться оптика. В итоге американцы программу, на которую было потрачено, по разным оценкам, от 7 до 13 млрд долларов, в 2011 году закрыли как бесперспективную.
Лазер воздушного базирования создавался и в СССР. Но с одним существенным отличием. Он предназначался для поражения спутников, которые являются гораздо более адекватной целью для подобного оружия. Во-первых, если стрелять вверх, а не вниз, то плотные слои атмосферы не рассеивают луч. Во-вторых, для вывода из строя спутника не нужно очень большой мощности излучения – достаточно повредить его датчики ориентации и целевую оптику.
Носителем противоспутниковой лазерной системы А-60 стал транспортный Ил-76МД. В носовой его части установлен лазер наведения, а боевой лазер выдвигается вверх в виде башенки, которая в «нерабочее время» скрывается под створками в верхней части фюзеляжа. Первый полет летающая лаборатория 1А совершила в 1981 году. Второй экземпляр – 1А2 – взлетел в 1991 году. Есть сведения, что первая лаборатория сгорела в 1989 году во время наземных экспериментов на аэродроме Чкаловский. Вторая машина по-прежнему используется для испытаний.
По имеющимся сведениям, на А-60 используется тот же лазер РД-0600, который предполагалось применять и на боевой станции «Скиф» и который к 2011 году прошел полный цикл испытаний. Его масса – 760 кг. А для его накачки используются два турбореактивных двигателя АИ-24 массой 600 кг каждый. Мощность – 100 кВт. Работы в этом направлении засекречены, однако сообщалось, что 28 августа 2009 года лазер А-60 поразил спутник на высоте 1500 км. Любопытно, что это был геофизический японский спутник Ajisal, на котором расположены отражающие элементы, позволяющие легко определять его местоположение в космосе. От этих элементов и был получен отраженный сигнал. Ajisal не имел оптики на борту и от выстрела А-60 не пострадал. А вот разведывательный спутник при таком воздействии будет выведен из строя.
Лазеры активно используются в военном деле в системах прицеливания, разведки и связи. Однако боевой лазер пока не дает реального преимущества по сравнению с обычным оружием. Создавать громадные установки для уничтожения беспилотников и моторных лодок, причем исключительно в хорошую погоду, – слишком дорогое удовольствие. От уже готовой и испытанной совместно с США лазерной системы ПВО отказался, к примеру, Израиль в пользу комплекса «Железный купол» с обычными ракетами.
Лазер – это не оружие поля боя. Это оружие демонстрации своего превосходства. Американцы вольны тратить на это деньги. Но в России ситуация иная, поэтому лазерное оружие будет использоваться только там, где оно действительно эффективно.