Как происходит обмен воды в организме. Обмен воды

При многих заболеваниях водный обмен в организме имеет решающее значение. Так, при хронической сердечной недостаточности, гипертонической болезни, запущенном атеросклерозе, болезнях мочеполовой системы водный и водно-солевой обмен обычно бывает

нарушен и появляются отеки. Поэтому регуляция водно-солевого обмена имеет важное значение при лечении больного.

Рассмотрим сначала вопрос о нормальном водном обмене в организме человека.

Вода в теле человека может находиться как в свободном, так и в связанном состоянии. Находясь в свободном состоянии, она легко переходит из клеток в межклеточное пространство, в лимфу и плазму крови. Если же вода связана белками, то она прочно удерживается в клетках и тканях. У здорового человека в организме постоянно соблюдается водно-солевой баланс, то есть определенное равновесие воды и солей, находящихся как в связанном, так и в свободном состоянии. При нарушении этого равновесия возникает болезнь.

Водный обмен представляет собой совокупность процессов всасывания питьевой воды, образования воды при окислении жиров, белков и углеводов, распределением ее между внутриклеточным и внеклеточным пространством, с одной стороны, и выделением воды почками, легкими, кожей и кишечником - с другой.

У взросл ого человека, имеющего вес 70 кг, общее содержание воды в организме достигает 50 кг. Из этого количества только 15% приходится на плазму крови и лимфу, остальные 50% составляет вода, находящаяся внутри клеток в связанном состоянии. В состоянии водного равновесия количество потребляемой воды равно количеству воды выделяемой.

Баланс воды складывается из следующих величин: количество питьевой воды - 1000 мл; вода, входящая в

состав пищевых продуктов - 720 мл; вода, образующаяся при окислении жиров, белков и углеводов - 320 мл. В сулеи, при нормальных условиях, человек потребляет до 2,5 л воды. Из этого количества около 1100 мл выделяется через почки, 400-450 мл - через кожу, 300-350 мл - через легкие и около 150 мл - с калом. При изменении условий внешней среды (температура, давление, характер пищи) эти данные могут сильно варьироваться в ту или иную сторону. Однако водно-солевой баланс в организме восстанавливается очень быстро, так: как он является жизненно важным фактором.

Регуляторами водного обмена являются центральная нервная и эндокринная системы. Нарушение функции регуляции водно-солевого обмена может вызвать тяжелые изменения обмена и обусловить либо задержку воды в организме, либо, наоборот, усиленное ее выведение, ведущее к обезвоживанию.

Большое значение для поддержания водного баланса организма имеет состояние сердечно-сосудистой системы и содержание белков в плазме крови. На степень задержки воды в тканях значительное влияние оказывает содержание в клетках и внеклеточной жидкости солей натрия и калия. За счет этих солей в клетках создается определенное осмотическое давление. Солевой состав внутри- и внеклеточной жидкости различен. Если внеклеточная жидкость имеет большое сходство с морской водой и наличие солей в ней может сильно варьироваться, то состав внутриклеточной жидкости почти всегда постоянен и сохраняет свою химическую индивидуальность. Это обусловлено наличием клеточных мембран, которые, удерживая калий, отказываются от натрия и кальция. В клетках обычно преобладают ионы магния, калия, сульфатные группы, а вне клеток - хлор, натрий, кальций и белковые фракции.

Обновлено: 2019-07-09 21:51:20

  • Показания: используется при стенокардии, начальной стадии гипертонической болезни. В народной медицине применяют как смягчительное и отхаркивающее средство.

Ранее уже были рассмотрены биологические функции воды и ее содержание в организме человека. В настоящем разделе мы рассмотрим некоторые конкретные примеры участия воды в обмене веществ.

Потребность организма в воде зависит от многих факторов: температуры окружающей среды, характера деятельности, состава потребляемой пищи. Человек удовлетворяет потребность в воде за счет экзогенных и эндогенных источников. К экзогенным источникам относятся твердая и жидкая пища, питье. Потребление экзогенной воды регулируется чувством жажды, возникающим вследствие повышения осмотического давления плазмы крови и лимфы при усиленном выведении воды из организма, либо при ограничении поступления ее с пищей, а также при избыточном потреблении минеральных солей. Эндогенная вода образуется внутри организма при окислении биологических молекул. При окислении различных веществ синтезируется разное количество эндогенной воды: при окислении 100 г жира образуется 107 г воды; 100 г белка – 41 г; 100 г углеводов – 55 г. Образование эндогенной воды увеличивается во время мышечной работы, а также при охлаждении организма.

Перераспределение воды внутри организма происходит постоянно. Изменение распределения воды между плазмой крови, лимфой, меж- и внутриклеточными жидкостями происходит при интенсивной мышечной работе, требующей большого количества энергии в виде АТФ. Напряженная работа мышц приводит к увеличению в клетках и межклеточной жидкости концентрации молочной кислоты и катионов Ка+, что обуславливает усиленный приток воды в клетки и межклеточную жидкость, а содержание воды в плазме крови наоборот снижается.

Выделение воды из организма происходит с мочой (1,5–1,6 л в сутки), потом (0,5–0,6 л), выдыхаемым воздухом (0,4 л), калом (0,2 л). Потери воды с потом и выдыхаемым воздухом значительно увеличиваются при длительной мышечной работе. На состояние организма пагубно влияет как недостаток, так и избыток воды. При излишке воды увеличивается нагрузка на сердце и почки, происходит вымывание из организма необходимых органических и минеральных веществ. При недостатке воды повышается вязкость крови, что затрудняет работу сердца, может задерживаться выведение продуктов обмена, высокая концентрация которых приводит к нарушению метаболизма.

Вода играет значительную роль в метаболизме углеводов, липидов и белков. Как было показано выше, основным путем распада белков, полисахаридов и липидов является гидролиз, протекающий при участии соответствующих ферментов, относящихся к классу гидролаз. Для аминокислот характерно гидролитическое дезаминирование с образованием оксикислот, а гидролиз аспарагина и глугамина приводит к образованию аспарагановой и глутаминовой кислот, соответственно. Основополагающее значение в энергетическом обмене имеет гидролиз макроэргической связи в молекуле АТФ (в трансляции – гидролиз ГТФ).

Второй процесс, где вода играет роль субстрата – это реакции гидратации, связанные сприсоединением воды по месту разрыва двойной связи. Примеры реакций гидратации можно найти в любом виде обмена. Не обходятся без участия воды и некоторые биосинтетические процессы. Например, прямое аминирование оксикетокислот, прежде всего a-кетоглутаровой кислоты, синтез высших жирных кислот и другие процессы.

Некоторые катионы оказывают специфическое влияние на задержку и выведение воды из клеток и тканей организма. Катионы Nа+, например, вызывают задержку воды, а катионы К+ и Са2+, наоборот – выведение воды из клеток и тканей организма.

Почки – орган, на уровне которого происходит гормональная регуляция водного обмена. С одной стороны, диуретический гормон, выделяемый передней долей гипофиза, способствует усиленному выведению воды из организма с мочой (диурез), с другой – антидиуретический гормон (вазопрессин), образуемый задней долей гипофиза, повышает всасывание воды в почечных канальцах, сокращая тем самым диурез.

С водным обменом очень тесно связан минеральный обмен, к рассмотрению которого мы обратимся в следующем разделе.

Для нормального течения обменных процессов внутри орга­низма, как в условиях нормы, так и при патологии, необходим должный общий объем водной среды.

Общий объем воды у новорожденного составляет 80% массы тела, у взрослого человека - 50-60%, колебания зависят от типа телосложения, пола и возраста.

Из этой величины 40% приходится на внутриклеточный (интрацеллюлярный) и 20% на внеклеточный (экстрацеллюлярный) объемы.

Внутриклеточная жидкость является составной органической частью протоплазмы. По сравнению с внеклеточным сектором, внут­ри клетки отмечаются более высокий уровень белка и калия и менее низкий уровень натрия. Такая разность концентрации ионов созда­ется функционированием калиево-натриевого насоса, обеспечиваю­щего биоэлектрический потенциал, необходимый для возбудимости нервно-мышечных структур. Вода, поступившая из плазмы внутрь клетки, включается во все биохимические процессы и выделяется из нее в виде обменной воды; на весь этот цикл уходит 9-10 суток. У детей грудного возраста данный цикл, в силу более интенсивных окислительно-восстановительных процессов, составляет 5 суток.

Вода внеклеточного объема распределяется по трем водным сек­торам: внутрисосудистый, интерстициальный н трансцеллюлярный.

1. Внутрисосудистый сектор состоит из плазменного объема и воды, связанной в эритроцитах. Кроме обычного обмена вновь по­ступающей в эритроциты воды на обменную воду (см. выше), часть воды из эритроцитов может выделяться при дегидратации, а при гипергидратации происходит обратный процесс. Если учесть, что масса эритроцитов составляет до 30 мг/кг массы тела, то объем воды, связанной в эритроцитах будет примерно равным 2100 мл. Прини­мая во внимание длительность обменных процессов водой между эритроцитами и плазмой, объем воды, связанный в эритроцитах, следует учитывать как необменный.

Объем плазмы у взрослого человека составляет 3,5-5% массы тела. Данный сектор отличается высоким содержанием белка, что определя­ет соответствующее онкотическое давление и является наиболее мо­бильным в обменных процессах. При лечении шоковых состояний любой этиологии этот сектор требует самого пристального внимания.

2. Интерстициальный сектор содержит до 15% воды от массы тела. Жидкость данного сектора состоит из воды межклеточного пространства и лимфы, циркулирующей между двумя полупрони­цаемыми мембранами: клеточной и капиллярной. Данные мембра­
ны легко проницаемы для воды и электролитов и менее проницае­мы для белков плазмы. Интерстициальная жидкость является свя­зующим звеном между внутриклеточным и внутрисосудистым сек­тором, участвует в поддержании гомеостаза, через нее в клетки по­ступают электролиты, кислород, питательные вещества и происхо­дит обратное движение отработанных продуктов обмена к выдели­тельным органам. От плазмы крови интерстициальная жидкость от­личается значительно меньшим содержанием белка. Острую крово- потерю организм компенсирует, прежде всего, за счет привлечения в сосудистое русло интерстициальной жидкости. Данный сектор может выполнять роль своеобразного буфера. После восполнения ОЦК переливанием больших количеств кристаллоидных растворов, последние уходят в интерстициальное пространство.

3. Трансцеллюлярный сектор представляет собой жидкость, со­держащуюся внутри желудочно-кишечного тракта и других замкну­тых полостей (например, плевральная полость). Объем данного сек­тора периодически меняется в зависимости от количества пищева­рительных соков, количества и качества пищи, состояния выдели­тельных функций организма и т. д. Содержание воды в отдельных секторах тела представлено на рис. 3.

Общ, л я масса тем


а - внутрисосудистая жидкость,

б - интерстициальная жидкость, в - внутриклеточная жидкость.

Поддержание гомеостаза возможно только при соблюдении строгого баланса поступления и выделения воды из организма. Пре­вышение первого над вторым в условиях нормы характерно только для новорожденных (до 15-22 мл/сут.) и у детей в возрасте до 1 года (3-5 мл/сут). Суточная потребность в воде у взрослого

человека составляет 2-3 л, однако данная величина, в зависимости от конкретных условий (например, длительная тяжелая физиче­ская работа при высокой температуре воздуха), может резко воз­растать и доходить до 10 л/24 ч и более. Дети потребляют большее количество воды на единицу массы по сравнению со взрослыми; это связано с интенсивностью происходящих в их организме окис­лительно-восстановительных процессов.

В организм вода поступает в виде питьевой воды (800-1700 мл и воды, содержащейся в пище (700-1000 мл); кроме этого, пример­но 200-300 мл воды образуется в тканях при окислительно-восста­новительных процессах. Помимо принятой экзогенной жидкости (2-3 л), внутри организма в течение суток происходит передвиже­ние больших количеств (до 8 л) пищеварительных соков; в просвет ЖКТ выделяется до 1,5 л слюны, 2,5 л желудочного сока, 0,5 л жел­чи, 0,5-0,7 л панкреатического сока и 2-3 л кишечного сока. Весь этот объем (8 л) в сочетании с вновь поступившей водой (2-3 л) полностью всасывается, за исключением небольшого количества воды (150-200 мл), выделяемой с калом. Следует подчеркнуть, что все перемещения воды в организме тесно связаны с электролитным об­меном. Суточная потребность в воде представлена в табл. 5.

Выделение жидкости из организма идет через почки (до 1,5 л), легкие (0,5 л) и кожу (0,5 л). Почечная система, в основном, регули­рует состав и объем жидкостей, выделение через кожу и легкие, от­ражает состояние тепловой регуляции.

Почки являются главным регуляторным органом водного и элек­тролитного обмена в организме. В течение суток через клубочки коркового вещества почек фильтруется до 900 л крови, из образую­щихся 180 л первичного ультрафильтрата более 99% подвергается обратной реабсорбции и менее 1% жидкости выделяется в виде мочи. Ее количество зависит от объема внеклеточной жидкости и содер­жащегося в ней уровня натрия. Чем их больше, тем интенсивней диурез. Контроль за состоянием выделительной функции почек яв­ляется одним из ключевых моментов при лечении различных экс­тремальных состояний.

2. С. А. Сумин

Всегда нужно помнить, что фильтрационная функция почек прекращается при уменьшении давления в а. гепаПя до 80 и менее мм рт. ст., а если этот период будет продолжаться от 1 часа и более, у больного возможно развитие преренальной формы ОПН.

В нормальных условиях через кожные покровы за сутки выде­ляется около 500 мл жидкости, возрастание температуры тела на каждый ГС сопровождается дополнительной потерей 500 мл/24 ч воды. Усиленное потоотделение может отмечаться при коллаптоид- ных состояниях, интоксикации, поражении центра терморегуляции и т. д. До 20% теплоотдачи организм осуществляет через потоотде­ление, это объясняет возникновение гипертермического синдрома у детей грудного возраста при чрезмерном укутывании.

Пот представляет собой гипотоническую жидкость, содержа­щую в своем составе растворенные вещества. Содержание электро­литов в секрете потовых желез зависит от уровня гормонов коры надпочечников: при их недостаточности возрастает выделение с по­том ионов натрия. Содержание натрия и хлора в поте возрастает пропорционально скорости потоотделения. При длительной физи­ческой работе в условиях жаркого и сухого климата суточное пото­отделение может превысить 10 л.

Выделение воды через легкие составляет в среднем 500 мл/24 ч. При мышечной нагрузке или одышке легочная вентиляция возрас­тает в 3-5 и более раз; прямо пропорционально данной величине увеличивается выделение воды через легкие, потери электролитов в данном случае не происходит.

Существует тесная взаимосвязь между количеством жидкости в различных секторах организма, состоянием периферического кро­вообращения, проницаемостью капилляров и соотношением колло­идно-осмотического и гидростатического давлений. Схематически данная взаимосвязь представлена на рис. 4.

Примечание.

Давление, вызванное силой тяжести, дейст­вующей на жидкость, называется гидроста­тическим давлением. Оно равно произведе­нию плотности жидко­сти на ускорение сво­бодного падения и на глубину погружения. (Элементарный учеб­ник физики: Учебное пособие, в 3-х т. / Под ред. Г. С. Ландсберга. Т. 1. Механика. Теп­
лота. Молекулярная физика. 10-е изд., перераб. - М.: Наука. Главная ре­дакция физико-математической литературы, 1985. - С. 190).

Осмотическим называется давление на раствор, отделенный от чистого растворителя полупроницаемой мембраной, при котором прекращается ос­мос, т. е. самопроизвольное проникновение молекул растворителя через эту мембрану, и зависит от числа осмотически активных частиц (ионов и недис- социированных молекул), которые находятся в определенном объеме.

Коллоидно-осмотическим или онкотическим, называется давление на раствор, обусловленное коллоидными веществами, основу которых состав­ляют альбумины, обеспечивающие около 80-85% онкотического давления. Нормальная величина онкотического давления плазмы около 25 мм рт. ст.

В начальной части капилляра внутрисосудистая жидкость от­личается от интерстициальной увеличенным содержанием белка, а следовательно, и большим КОД. Это, по законам осмоса (см. выше), создает условия для притока жидкости из интерстиция в капилляр. В то же время, ГД крови в начальной части капилляра значительно больше, чем в интерстиции, что обеспечивает выход жидкости из капилляра. Суммарный результат этих противонаправленных дейст­вий в начальной части капилляра выражается в преобладании отто­ка над притоком. В конечной части капилляра ГД крови уменьша­ется, а КОД остается без изменения, в результате этого отток жид­кости уменьшается и преобладает ее приток. В условиях нормы про­цессы обмена жидкостью между сосудистым руслом и интерстици­альным пространством строго сбалансированы.

Вода составляет основу всех биологических жидкостей: крови, лимфы, спинномозговой жидкости, мочи, соков пищеварительного аппарата, межклеточной жидкости.

Организм животных состоит на 60-70% из воды, которая подразделяется на внутриклеточную и внеклеточную. Наибольшее количество воды содержится внутри клеток. Внеклеточная жидкость включает плазму крови, межклеточную жидкость и лимфу. Основу внеклеточной и внутриклеточной воды составляет свободная вода. Вода, входящая в состав коллоидных систем, называется связанной. Благодаря действию ферментов вода включается в многочисленные биохимические реакции: гидролиз, гидратацию, синтез всех органических веществ, процессы клеточного дыхания. Вода служит средой, в которой происходят все биохимические реакции организма. Вода используется в организме для образования различных секретов и теряется с потом, фекалиями, парами выдыхаемого воздуха, мочой.

У здорового животного в организме существует водное равновесие. В водном обмене принимают участие почки, легкие, кожа, желудочно-кишечный тракт, эндокринные железы. Почки служат главным органом регуляции водного обмена. В условиях недостатка воды они выделяют мало мочи, но она сильно концентрирована. При избытке воды почки выводят большое количество разбавленной мочи. Способность почек изменять концентрацию мочи нарушается при тяжелых почечных заболеваниях.

Легкие выделяют воду в виде водяного пара. Это происходит в результате того, что воздух в альвеолах при температуре тела насыщен водяными парами. Количество воды, выводимой через легкие, зависит от обмена, частоты дыхания и температуры тела. При усиленной мышечной деятельности, лихорадках, возбуждении увеличивается объем дыхания и соответственно возрастает количество выводимой воды.

Через кожу потеря воды происходит путем испарения и выделения пота. Испарение воды кожей зависит от разницы температур тела и внешней среды. Пот представляет собой секрет потовых желез. Потоотделение происходит периодически и связано с повышением температуры воздуха. Способность организма выделять пот разного состава является приспособительной реакцией. При высокой температуре окружающего воздуха у животных с недостаточной акклиматизацией выделяется пот, состав которого приближается к составу плазмы крови.

Определенное количество воды образуется в организме в процессе окисления некоторых веществ. Например, при окислении 100 г жира образуется 87 мл воды. Лошади потребляют в сутки в среднем 40-50 л воды, крупный рогатый скот - 40-90 л, свиньи - 10-20 л.

Регуляцию водно-солевого обмена осуществляет гипоталамус, находящийся в промежуточном мозге. В гипоталамусе находятся центр жажды и специальные рецепторы. Эти структуры связаны с осморецепторами. Осморецепторы - это клетки, высокочувствительные к изменениям осмотического давления внутренней среды. Осморецепторы расположены в гипоталамусе, а также в кровеносных сосудах печени, почек, селезенке, пищеварительном тракте, в сино- каротидной рефлексогенной зоне. Часть осморецепторов относится к механорецепторам, так как они реагируют на изменение объема клетки при поступлении или выходе из нее жидкости в случае изменения осмотического давления среды. Другие осморецепторы являются хеморецепторами и регистрируют концентрацию определенных ионов. Среди таких рецепторов важное значение имеют специализированные Na-рецепторы, а также кальций- и магний-рецепторы. Осморецепторы, воспринимая изменения осмотического давления, передают информацию в гипоталамус, регулирующий секрецию гормонов гипофизом.

Информация об осмотическом давлении поступает в гипоталамус не только от осморецепторов, но и от волюморецепторов - рецепторов, реагирующих на изменение объема внутрисосудистой и внутриклеточной жидкости. Эти рецепторы локализуются в предсердиях, правом желудочке, полых венах. Импульсы от волюморецепторов поступают в ЦНС по афферентным волокнам блуждающего нерва.

Осмотическое давление - диффузионное давление, обеспечивающее движение растворителя через полупроницаемую мембрану. В норме оно у животных и человека составляет 7,6 атм (7,6 10 5 Па). Отклонение значения этого параметра от нормы опасно для жизни. Поэтому в организме сформировались надежные механизмы регуляции осмотического давления, количества солей и воды.

При обезвоживании организма увеличивается концентрация осмотически активных веществ в плазме крови, повышается осмотическое давление, возбуждаются осморецепторы и тормозится продукция адренокортикотропного гормона (АКТГ), усиливается секреция антидиуретического гормона. Данный гормон повышает реабсорбцию воды в петле Генле, тормозит процессы обратного всасывания солей, одновременно повышая фильтрацию в мальпигиевых клубочках. Это приводит к удержанию воды в тканях, выведению солей из организма и нормализации осмотического давления жидкостей.

При избыточном содержании воды в организме (гипергидратация) концентрация растворенных осмотически активных веществ в крови снижается и ее осмотическое давление падает. Образование антидиуретического гормона (АДГ) уменьшается, а АКТГ, наоборот, усиливается. Адренокортикотропный гормон стимулирует функцию клубочковой зоны коры надпочечников, где вырабатываются мине- ралокортикоиды, а также пучковой зоны, продуцирующей глюкокортикоиды.

Из минералокортикоидов наиболее активным является альдосте- рон, а из глюкокортикоидов - кортизон. Эти гормоны сужают просвет выносящих сосудов, тормозят реабсорбцию воды и повышают реабсорбцию солей.

Поддержание оптимального осмотического давления крови связано с определенным питьевым поведением, вызванным жаждой.

Жажда у животных возникает при уменьшении содержания воды в организме или при увеличении концентрации натрия и связана с раздражением многих рецепторов. Во время питья вода очень быстро уменьшает жажду вследствие уменьшения потока импульсов от осморецепторов желудочно-кишечного тракта в питьевой центр. Затем вода всасывается и попадает в общий кровоток, внутренняя среда вновь становится изотоничной и возникает истинное водное насыщение.

Вода составляет около 75% биомассы Земли, однако ее содержание в разных видах живых организмов, различных их тканях и органах колеблется в широких границах. Так, биологические жидкости (кровь, лимфа, слюна, пасока деревьев) содержат 88-99% воды, в то время как в костной ткани животных, древесине растений ее значительно меньше -- 20--45%, в зерне злаковых (воздушно-сухое состояние) -- 12--14%. Своеобразными рекордсменами по содержанию воды являются медузы -- до 99,8%.

У бактерий на воду приходится 75--85% массы клетки, у спор --40% и меньше. Чем моложе организм или орган, тем выше в нем содержание воды. Например, у 4-месячного эмриона человека воды содержится 94%, у новорожденного ребенка - 74%, у взрослого человека -- около 67%

В молодых листьях травянистых растении количество воды колеблется в переделах 85-90%, а в старых 70--80%.

Большую часть воды в организме (у человека до 2/3) составляет внутриклеточная вода; меньшую часть (у человека около 1/3)-внеклеточная вода, которая разделена на субкомпартменты: интерстициальная, синовиальная и др. Распределение воды в теле человека неравномерно, наименьшее количество ее содержат кости (45% и жировая ткань, наибольшее -- кровь (92%), моча (83%), слюна 99%, пот (97%).

Вода в живом организме может быть в свободной и связанной форме. Если и водном растворе содержатся ионы какого-либо электролита, то вокруг них ориентируются диполи воды, так как ионы обладают зарядом. Вокруг катионов диполи воды располагаются своими отрицательно заряженными концами, вокруг анионов -- положительно заряженными. Такое связывание воды называется электростатической гидратацией.

Высокомолекулярные соединения тоже гидратируются, если содержат полярные, ионогенные группировки (карбоксикпьные, альдегидные, спиртовые, аминогруппы и др.). При этом гидратная оболочка может быть не сплошной, а только вокруг полярных групп. Степень гидратации различных ионов и молекул не одинакова, зависит от размеров частиц и величины их заряда. Чем выше удельная плотность заряда (больше заряд и меньше размеры), тем сильнее гидратация. Молекулы воды располагаются при гидратации тремя слоями:

1) непосредственно около иона, строго упорядочены и ориентированы сильным электрополем;

2) слой воды на некотором отдалении от иона, ориентированность молекул воды меньшая;

3) далеко отстоящие от иона молекулы воды с обычной структурой

Благодаря гидратации ионов и молекул часть воды в организме находится в связанном состоянии. Водородные связи макромолекул удерживают часть молекул воды.

Вокруг молекул белка, например, слой строго структурированной воды достигает толщины 1--2 нм и составляет до 30% массы гидратированной белковой молекулы. Следующий слой гидратационной воды -- до 10 нм, и вода еще сохраняет в нем некоторую ориентацию. Кроме того, вода входит в третичную структуру ряда макромолекул и надмолекулярных структур. Помимо того, что вода связана непосредственно на молекулярном уровне, она входит и в состав субклеточных рибосом, лизосом, мембран митохондрий, эндоплазматического ретикулума, ядерной оболочки. Воду, связанную субклеточными образованиями, называют иммобильной водой. Слабосвязанная вода может служить растворителем, замерзает при температурах, близких к О0 С. Прочносвязанная вода почти не способна быть растворителем, она замерзает при темперах значительно ниже 0°С.

Велика и многообразна роль воды в жизни любого организма. Прежде всего она заключается в том, что вода является основной средой протекания жизненных процессов. В этом отношении очень важны уникальные свойства воды как растворителя. Присутствие в молекуле воды двух атомов водорода и двух необобщенных электронных пар обуславливает образование 4 водородных связей которые придают воде исключительную растворяющую способность. Это свойство позволило воде стать универсальной и доминирую щей дисперсионной средой в биологических системах. Другое важное свойство воды -- полярность ее молекул, способность к диссоциации. Благодаря этому свойству она активирует диссоциацию других веществ, особенно слабых электролитов, которые широко представлены в биологических системах. В чистом виде слабые электролиты находятся в недиссоциированном состоянии. При растворенни в воде они диссоциируют и становятся реакционно-активными, что часто является условием их биологической активности.

Будучи основой внутренней среды в клетках и участвуя непосредственно в формировании клеточных структур, вода в значительной мере определяет их активность. Так, от степени набухания митохондрий зависит интенсивность протекающих в них процессов окислительного фосфорилирования, от насыщения водой рибосом-- активность биосинтеза белка. Обезвоживание листьев растений снижает интенсивность фотосинтеза вследствие неблагоприятных конформационных изменений ферментов хлоропластов, участвующих в темновой фазе фотосинтеза (другая причина- закрывание устьиц). Только при определенной степени оводненности белки и нуклеиновые кислоты полностью проявляют свою биологическую активность.

Вода непосредственно участвует в ряде биохимических реакций, прежде всего -- в гидролитических. Важную роль она играет в процессах теплорегуляции, ее испарение через поверхность тела животных и растений снижает температуру, предотвращает перегрев. Вода характеризуется очень высокой теплотой парообразования и теплоемкостью, это обеспечивает надежную стабилизацию температуры организма. Вода определяет легкость протекания обменных процессов между организмом и средой: например, увлажненность стенок клеток корневых волосков способствует растворению и поглощению питательных солей корнями. Малая вязкость воды обеспечивает высокую скорость движения по кровеносным и лимфатическим сосудам, по флоэме и ксилеме растений. Большое значение воды в процессах жизнедеятельности объясняет, почему животные переносят отсутствие воды хуже, чем отсутствие пищи. Например, голуби без пищи погибают через 2 недели, а без воды -- через 5 дней, мыши без воды погибают в 10 раз быстрее, чем без пищи.

В обычных условиях взрослый человек теряет в сутки 1500 мл воды, 600 мл удаляется через кожу в виде пота, 500 мл -- с мочой, 400 мл -- с выдыхаемым воздухом. Основная масса воды потребляется с пищей. Так как при полном окислении белков, жиров и углеводов в количествах, обеспечивающих выделение энергии, равное 8400 кДж/сут, образуется 350 мл воды, то потребление воды должно составлять 1150 мл. Вода, образующаяся при обмене белков, жиров и углеводов, получила название эндогенной воды.

Очень энергично обмен воды осуществляется в растениях: в жаркий день через лист проходит количество воды, в два раза превышающее его массу. Предел потери воды, при котором нет еще видимых резких нарушений жизненных процессов, зависит от вида организма.

Так, мышечная ткань лягушки может терять воду с 80 до 20% без существенных отрицательных явлений.

Тело же человека может перенести снижение содержания воды не более чем на 10%. Растения тоже очень чувствительны к потере воды; только в семенах и спорах жизнь сохраняется при очень низком содержании воды (около 10%)-

проникновение воды в клетку и обратно осуществляется через поры клеточных мембран. Механизм этого процесса исследован недостаточно. Существует ряд точек зрения на этот процесс. По мнению одних ученых, перенос воды осуществляется за счет свободной диффузии, другие -- придают решающее значение осмотическим явлениям, третьи -- считают этот процесс активным, что обусловлено взаимодействием дипольных молекул с полярными веществами мембран.

В регуляции обмена воды у человека и животных первостепенное значение имеют импульсы, возникающие в коре головного мозга. Поступление воды в организм регулируется чувством жажды, она возникает в результате рефлекторного возбуждения соответствующих участков коры головного мозга при первых признаках изменения осмотического давления плазмы крови.

Исследованиями выдающихся советских физиологов Л. А. Орбели и К. М. Быкова доказана регулирующая роль высших отделов центральной нервной системы в процессах водного и минерального обмена: при мнимом питье у животного с фистулой в пищеводе вода не попадает в желудок, однако сам акт питья способствует удалению воды из кровяного русла, что наблюдается при нормальном приеме воды. Сильные эмоциональные переживания нередко сопровождаются усиленным выделением мочи, а иногда приводят наоборот, к анурии -- задержке мочеотделения.

Гормоны гипофиза оказывают существенное влияние па баланс воды. Диуретический гормон передней доли гипофиза обеспечивает выведение воды а его антагонист вазопрессин (гормон задней доли гипофиза) удерживает воду, обеспечивая обратное всасывание ее в почечных канальцах. Катионы Na удерживают воду в клетках и тканях, К и Са способствуют ее выведению. Всасывание воды начинается в желудке, однако основная масса её всасывается в кишечнике. Ряд тканей и органов при избыточном поступлении воды могут служить ее депо. У человека и животных это кожа и печень, у растении -- межклеточное пространство. Уровень испарения воды у растений регулируется в основном устьичным аппаратом.