Как меняется температура с высотой в горах. Атмосфера земли и физические свойства воздуха

Голубая планета...

Эта тема должна была появится на сайте одной из первых. Ведь и вертолеты – атмосферные летательные аппараты. Атмосфера Земли – их, так сказать, среда обитания:-). А физические свойства воздуха как раз и определяют качество этого обитания:-). То есть это одна из основ. И об основе всегда пишут вначале. Но сообразил я об этом только сейчас. Однако лучше, как известно, поздно, чем никогда… Коснемся этого вопроса, в дебри и ненужные сложности однако не залезая:-).

Итак… Атмосфера Земли . Это газовая оболочка нашей голубой планеты. Такое название всем известно. А почему голубая? Просто потому, что «голубая» (а также синяя и фиолетовая) составляющая солнечного света (спектра) наиболее хорошо рассеивается в атмосфере, окрашивая ее тем самым в голубовато-синеватые, иногда с оттенком фиолетового тона (в солнечный день, конечно:-)).

Состав атмосферы Земли.

Состав атмосферы достаточно широк. Перечислять в тексте все составляющие не буду, для этого есть хорошая иллюстрация.Состав всех этих газов практически постоянен, за исключением углекислого газа (СО 2 ). Кроме того в атмосфере обязательно содержится вода в виде паров, взвеси капель или кристаллов льда. Количество воды непостоянно и зависит от температуры и, в меньшей степени, от давления воздуха. Кроме того атмосфера Земли (особенно нынешняя) содержит и определенное количество я бы сказал «всякой гадости»:-). Это SO 2 , NH 3 , CO , HCl , NO , кроме того есть там пары ртути Hg . Правда все это находится там в небольших количествах, слава богу:-).

Атмосферу Земли принято делить на несколько следующих друг за другом по высоте над поверхностью зон.

Первая, самая близкая к земле - это тропосфера . Это самый нижний и, так сказать, основной слой для жизнедеятельности разного вида. В нем содержится 80% массы всего атмосферного воздуха (хотя по объему она составляет всего около 1% всей атмосферы) и около 90% всей атмосферной воды. Основная масса всех ветров, облаков, дождей и снегов 🙂 — оттуда. Тропосфера простирается до высот порядка 18 км в тропических широтах и до 10 км в полярных. Температура воздуха в ней падает с подъемом на высоту примерно 0,65º на каждые 100 м.

Атмосферные зоны.

Зона вторая – стратосфера . Надо сказать, что между тропосферой и стратосферой выделяют еще одну узкую зону – тропопаузу . В ней прекращается падение температуры с высотой. Тропопауза имеет среднюю толщину 1,5- 2 км, но границы ее нечетки и тропосфера часто перекрывает стратосферу.

Так вот стратосфера имеет высоту в среднем от 12 км до 50 км. Температура в ней до 25 км остается неизменной (порядка -57ºС), затем где-то до 40 км повышается примерно до 0ºС и далее до 50 км остается неизменной. Стратосфера – относительно спокойная часть атмосферы земли. Неблагоприятные погодные условия в ней практически отсутствуют. Именно в стратосфере располагается знаменитый озоновый слой на высотах от 15-20 км до 55-60 км.

Далее следует небольшой пограничный слой стратопауза , температура в которой сохраняется около 0ºС, и затем следующая зона мезосфера. Она простирается до высот 80-90 км, и в ней температура падает примерно до 80ºС. В мезосфере обычно становятся видны мелкие метеоры, которые начинают в ней светиться и там же сгорают.

Следующий узкий промежуток – мезопауза и за ней зона термосфера . Ее высота – до 700-800 км. Здесь температура опять начинает повышаться и на высотах порядка 300 км может достигать величин порядка 1200ºС. Далее она остается постоянной. Внутри термосферы до высоты около 400 км расположена ионосфера. Здесь воздух сильно ионизирован из-за воздействия солнечной радиации и обладает большой электропроводностью.

Следующая и, вобщем-то, последняя зона – экзосфера . Это так называемая зона рассеяния . Здесь в основном присутствует очень сильно разреженный водород и гелий (с преобладанием водорода). На высотах порядка 3000 км экзосфера переходит в ближнекосмический вакуум.

Вот примерно где-то так. Почему примерно? Потому что слои эти достаточно условны. Возможны различные изменения высоты, состава газов, воды, величины температуры, ионизации и так далее. Кроме того существует еще немало терминов, определяющих строение и состояние атмосферы земли.

Например гомосфера и гетеросфера . В первой атмосферные газы хорошо перемешаны, и их состав достаточно однороден. Вторая расположена выше первой и такого перемешивания там уже практически нет. Газы в ней разделяет гравитация. Граница между этими слоями расположена на высоте 120 км, и называется она турбопауза .

С терминами пожалуй покончим, но обязательно еще добавлю, что условно принято считать, что граница атмосферы расположена на высоте 100 км над уровнем моря. Эта граница называется Линия Кармана .

Добавлю еще две картинки для иллюстрации строения атмосферы. Первая, правда, на немецком, но зато полная и достаточно легка в понимании:-). Ее можно увеличить и хорошо рассмотреть. Вторая показывает изменение температуры атмосферы с высотой.

Строение атмосферы Земли.

Изменение температуры воздуха с высотой.

Современные пилотируемые орбитальные космические аппараты летают на высотах около 300-400 км . Однако это уже не авиация, хотя область, конечно, в определенном смысле близкородственная, и мы о ней еще непременно поговорим:-).

Зона авиации – это тропосфера. Современные атмосферные летательные аппараты могут летать и в нижних слоях стратосферы. Например практический потолок МИГ-25РБ – 23000 м .

Полет в стратосфере.

И именно физические свойства воздуха тропосферы определяют каким будет полет, насколько будет эффективна система управления самолета, как будет влиять на него турбулентность в атмосфере, как будут работать двигатели.

Первое основное свойство – это температура воздуха . В газодинамике она может определяться по шкале Цельсия либо по шкале Кельвина .

Температура t 1 на заданной высоте Н по шкале Цельсия определяется:

t 1 = t — 6,5Н , где t – температура воздуха у земли.

Температура по шкале Кельвина называется абсолютной температурой , ноль по этой шкале – это абсолютный ноль. При абсолютном нуле прекращается тепловое движение молекул. Абсолютный ноль по шкале Кельвина соответствует -273º по шкале Цельсия.

Соответственно температура Т на высоте Н по шкале Кельвина определяется:

T = 273K + t — 6,5H

Давление воздуха . Атмосферное давление измеряется в Паскалях (Н/м 2), в старой системе измерения в атмосферах (атм.). Существует еще такое понятие как барометрическое давление. Это давление, измеренное в миллиметрах ртутного столба при помощи ртутного барометра. Барометрическое давление (давление на уровне моря) равное 760 мм рт. ст. называется стандартным. В физике 1 атм. как раз и равна 760 мм рт.ст.

Плотность воздуха . В аэродинамике чаще всего пользуются таким понятием, как массовая плотность воздуха. Это масса воздуха в 1 м 3 объема. Плотность воздуха с высотой меняется, воздух становится более разреженным.

Влажность воздуха . Показывает количество воды, находящееся в воздухе. Существует понятие «относительная влажность ». Это отношение массы водяного пара к максимально возможной при данной температуре. Понятие 0%, то есть когда воздух совершенно сухой может существовать вобщем-то только в лаборатории. С другой стороны 100%-ная влажность вполне реальна. Это означает, что воздух впитал в себя всю воду, которую мог впитать. Что-то типа абсолютно «полной губки». Высокая относительная влажность снижает плотность воздуха, а малая, соответственно повышает.

В связи с тем, что полеты самолетов происходят при разных атмосферных условиях, то и их полетные и аэродинамические параметры на одном режиме полета могут быть различными. Поэтому для правильной оценки этих параметров введена Международная стандартная атмосфера (МСА) . Она показывает изменение состояния воздуха с подъемом на высоту.

За основные приняты параметры состояния воздуха при нулевой влажности:

давление P = 760 мм рт. ст. (101,3 кПА);

температура t = +15°C (288 К);

массовая плотность ρ = 1,225 kg/m 3 ;

Для МСА принято (как уже было сказано выше:-)), что температура падает в тропосфере на 0,65º на каждые 100 метров высоты.

Стандартная атмосфера (пример до 10000 м).

Таблицы МСА используются при градуировании приборов, а также для штурманских и инженерных расчетов.

Физические свойства воздуха включают в себя также такие понятия как инертность, вязкость и сжимаемость.

Инертность — свойство воздуха, характеризующее его способность сопротивляться изменению состояния покоя или равномерного прямолинейного движения. Мерой инертности является массовая плотность воздуха. Чем она выше, тем выше инертность и сила сопротивления среды при движении в ней самолета.

Вязкость . Определяет сопротивление трения об воздух при движении самолета.

Сжимаемость определяет изменение плотности воздуха при изменении давления. На малых скоростях движения летательного аппарата (до 450 км/ч) изменения давления при обтекании его воздушным потоком не происходит, но при больших скоростях начинает проявляться эффект сжимаемости. Особенно сказывается его влияние на сверхзвуке. Это отдельная область аэродинамики и тема для отдельной статьи:-).

Ну вот кажется пока все… Пора закончить это слегка нудноватое перечисление, без которого однако не обойтись:-). Атмосфера Земли , ее параметры, физические свойства воздуха также важны для летательного аппарата, как и параметры самого аппарата, и о них нельзя было не упомянуть.

Пока, до следующих встреч и более интересных тем 🙂 …

P.S. На сладкое предлагаю посмотреть ролик снятый из кабины спарки МИГ-25ПУ при его полете в стратосферу. Снимал, видимо, турист, у которого есть деньги для таких полетов:-). Снято в основном все через лобовое стекло. Обратите внимание на цвет неба…

Изменение температуры воздуха с высотой

Задание 1. Определите, какую температуру будет иметь воздушная масса, не насыщенная водяным паром и поднимающаяся адиабатически на высоте 500, 1000, 1500 м, если у поверхности земли её температура была 15є.

Температура изменяется на 1° при подъеме массы воздуха на каждые 100 м. Эта величина называется сухоадиабатическим градиентом температуры. При подъеме насыщенного водяным паром воздуха скорость его охлаждения несколько уменьшается, так как при этом происходит конденсация водяного пара, при которой выделяется скрытая теплота парообразования (600 кал на 1 г сконденсированной воды), идущая на нагревание этого поднимающегося воздуха. Адиабатический процесс, происходящий внутри поднимающегося насыщенного воздуха, называется влажноадиабатическим. Величина понижения (повышения) температуры на каждые 100 м в поднимающейся влажной насыщенной массе воздуха называется влажноадиабатическим градиентом температуры г в , а график изменения температуры с высотой в подобном процессе носит название влажной адиабаты. В отличие от сухоадиабатического градиента г а влажноадиабатический градиент г в - величина переменная, зависящая от температуры и давления, и лежит в пределах от 0,3° до 0,9° на 100 м высоты (в среднем 0,6° на 100 м.). Чем больше конденсируется влаги при подъеме воздуха, тем меньше величина влажноадиабатического градиента; с уменьшением количества влаги его величина приближается к сухоадиабатическому градиенту.

Вертикальный градиент температуры на высоте 500 метров должен быть = 12 є. Вертикальный градиент температуры на высоте 1000 метров должен быть = 9 є. Вертикальный градиент температуры на высоте 1500 метров должен быть = 6 є. Но, как только воздух начнет подниматься, он будет становиться холоднее окружающего, причем с высотой разница температур увеличивается.

Но холодный воздух, как более тяжелый, стремится опуститься, т.е. занять первоначальное положение. Поскольку воздух ненасыщенный, то при его подъеме температура должна понижаться на 1°С на 100 м.

Поэтому, температура воздушной массы на высоте 500 метров будет = 10°С. Поэтому, температура воздушной массы на высоте 1000 метров будет = 5°С. Поэтому, температура воздушной массы на высоте 1500 метров будет = 0°С.

Определение высоты уровней конденсации и сублимации

Задание 1. Определите высоту уровня конденсации и сублимации поднимающегося адиабатически воздуха, не насыщенного водяным паром, если известны его температура (Т) и упругость водяного пара (е); Т = 18є, е = 13,6 гПа.

Температура поднимающегося воздуха, не насыщенного водяным паром, изменяется каждые 100 метров на 1є. Вначале - по кривой зависимости максимальной упругости паров от температуры воздуха необходимо найти точку росы (ф). Затем определить разницу между температурой воздуха и точкой росы (Т - ф). Умножив эту величину на 100 м, найдите величину уровня конденсации. Для определения уровня сублимации надо найти разницу температур от точки росы до температуры сублимации и помножить эту разницу на 200 м.

Уровень конденсации - уровень, до которого нужно подняться, чтобы содержащийся в воздухе водяной пар при адиабатическом подъёме достиг состояния насыщения (или 100 % относительной влажности). Высота, на которой водяной пар в поднимающемся воздухе становится насыщенным можно найти по формуле: , где T - температура воздуха; ф - точка росы.

ф = 2,064 (по таблице)

18 є - 2,064 = 15,936 є х 122 = 1994м высота насыщения водяного пара.

Сублимация наступает при температуре - 10є.

2,064 - (-10) = 12,064 х 200 = 2413м уровень сублимации.

Задание 2 (Б). Воздух, имеющий температуру 12єС и относительную влажность 80%, переваливает через горы высотой 1500 м. На какой высоте начнется образование облаков? Каковы температура и относительная влажность воздуха на вершине хребта и за хребтом?

Если известна относительная влажность воздуха r, то высоту уровня конденсации можно определить по формуле Ипполитова: h=22 (100-r) h = 22 (100-80) = 440м начало образования слоистых облаков.

Процесс образования облака начинается с того, что некоторая масса достаточно влажного воздуха поднимается вверх. По мере подъема будет происходить расширение воздуха. Это расширение можно считать адиабатным, так как воздух поднимается быстро, и при достаточно большом его объеме теплообмен между рассматриваемым воздухом и окружающей средой за время подъема попросту не успевает произойти.

При адиабатном расширении газа его температура понижается. Значит, поднимающийся вверх влажный воздух будет охлаждаться. Когда температура охлаждающегося воздуха понизится до точки росы, станет возможным процесс конденсации пара, содержащегося в воздухе. При наличии в атмосфере достаточного количества ядер конденсации этот процесс начинается. Если ядер конденсации в атмосфере мало, конденсация начинается не при температуре, равной точке росы, а при более низких температурах.

Достигнув высоты 440м, поднимающийся влажный воздух охладится, начнется конденсация водяных паров. Высота 440м нижняя граница формирующегося облака. Продолжающий поступать снизу воздух проходит сквозь эту границу, и процесс конденсации паров будет происходить выше указанной границы - облако начнет развиваться в высоту. Вертикальное развитие облака прекратится тогда, когда воздух перестанет подниматься; при этом сформируется верхняя граница облака.

Температура на вершине хребта +3 єС и относительная влажность воздуха 100%.

местное время сухоадиабатический градиент

Температура воздуха в целом в тропосфере уменьшается в среднем на 0,6 °С на каждые 100 м высоты. Однако в нижнем слое (до 100-150 м) распределение температуры может быть различным: она может увеличиваться, оставаться постоянной или уменьшаться.

Когда температура с удалением от деятельной поверхности уменьшается, такое распределение, как отмечалось в разд. 3.4, называется инсоляцией. В воздухе над сушей это бывает в теплое время года в дневные часы при ясной погоде. При инсоляции создаются благоприятные условия для развития тепловой конвекции (см. разд. 4.1) и образования облаков.

Когда температура воздуха с высотой не меняется, такое состояние называется «изотермия». Изотермия температуры наблюдается в пасмурную тихую погоду.

Если температура воздуха увеличивается с удалением от поверхности, такое распределение температуры называют инверсией.

В зависимости от условий образования инверсий в приземном слое атмосферы их подразделяют на радиационные и адвективные.

Радиационные инверсии возникают при радиационном выхолаживании деятельной поверхности. Такие инверсии в теплый период года образуются ночью, а зимой наблюдаются также и днем. Поэтому радиационные инверсии подразделяют на ночные (летние) и зимние.

Ночные инверсии устанавливаются при ясной тихой погоде после перехода радиационного баланса через ноль за 1,0... 1,5 ч до захода Солнца. В течение ночи они усиливаются и перед восходом Солнца достигают наибольшей мощности. После восхода Солнца деятельная поверхность и воздух прогреваются, что разрушает инверсию. Высота слоя инверсии чаще всего составляет несколько десятков метров, но при определенных условиях (например, в замкнутых долинах, окруженных значительными возвышениями) может достигать 200 м и более. Этому способствует сток охлажденного воздуха со склонов в долину. Облачность ослабляет инверсию, а ветер скоростью более

2,5...3,0 м/с разрушает ее. Под пологом густого травостоя, посева, а также сада летом инверсии наблюдаются и днем (рис. 4.4, б).

Ночные радиационные инверсии весной и осенью, а местами и летом могут вызывать снижение температуры поверхности почвы и воздуха до отрицательных значений (заморозки), что вызывает повреждение культурных растений.

Зимние инверсии возникают в ясную тихую погоду в условиях короткого дня, когда охлаждение деятельной поверхности непрерывно

Рис. 4.4.

1 - ночью; 2 - днем увеличивается с каждым днем. Они могут сохраняться несколько недель, немного ослабевая днем и снова усиливаясь ночью.

Особенно усиливаются радиационные инверсии при резко неоднородном рельефе местности. Охлаждающийся воздух стекает в низины и котловины, где ослабленное турбулентное перемешивание способствует его дальнейшему охлаждению. Радиационные инверсии, связанные с особенностями рельефа местности, принято называть орографическими. Они опасны для плодовых деревьев и ягодных кустарников, так как температура воздуха при таких инверсиях может понижаться до критической.

Адвективные инверсии образуются при адвекции теплого воздуха на холодную подстилающую поверхность, которая охлаждает прилегающие к ней слои надвигающегося воздуха. К этим инверсиям относят также и снежные инверсии. Они возникают при адвекции воздуха, имеющего температуру выше О °С, на поверхность, покрытую снегом. Понижение температуры в самом нижнем слое в этом случае связано с затратами тепла на таяние снега.

Солнечные лучи, падающие на поверхность земли, нагревают ее. Нагревание же воздуха происходит снизу вверх, т. е. от земной поверхности.

Передача тепла от нижних слоев воздуха в верхние происходит главным образом благодаря подъему теплого, нагретого воздуха вверх и опусканию холодного вниз. Этот процесс нагрева воздуха называется конвекцией .

В других случаях передача тепла вверх происходит благодаря динамической турбулентности . Так называются беспорядочные вихри, возникающие в воздухе вследствие трения его о земную поверхность при горизонтальном перемещении или при трении разных слоев воздуха между собой.

Конвекцию иногда называют термической турбулентностью. Конвекцию и турбулентность объединяют иногда общим названием - обмен .

Охлаждение нижних слоев атмосферы происходит иначе, чем нагревание. Земная поверхность непрерывно теряет тепло в окружающую ее атмосферу путем излучения не видимых для глаза тепловых лучей. Особенно сильно охлаждение становится после захода солнца (в ночные часы). Благодаря теплопроводности прилегающие к земле воздушные массы также постепенно охлаждаются, передавая затем это охлаждение вышележащим слоям воздуха; при этом наиболее интенсивно охлаждаются самые низкие слои.

В зависимости от солнечного нагрева температура нижних слоев воздуха изменяется в течение года и суток, достигая максимума около 13-14 часов. Суточный ход температуры воз духа в разные дни для одного и того же места непостоянен; его величина зависит главным образом от состояния погоды. Таким образом, изменения температуры нижних слоев воздуха связаны с изменениями температуры земной (подстилающей) поверхности.

Изменения температуры воздуха происходят также и от вертикальных перемещений его.

Известно, что воздух при расширении охлаждается, при сжатии - нагревается. В атмосфере при восходящем движении воздух, попадая в области более низкого давления, расширяется и охлаждается, и, наоборот, при нисходящем движении воздух, сжимаясь, нагревается. Изменения температуры воздуха при его вертикальных движениях в значительной степени обусловливают образование и разрушение облаков.

Температура воздуха с высотой обычно понижается. Изменение средней температуры с высотой над Европой летом и зимой приведено в таблице "Средние температуры воздуха над Европой".

Уменьшение температуры с высотой характеризуется вертикальным температурным градиентом . Так называется изменение температуры на каждые 100 м высоты. Для технических и аэронавигационных расчетов вертикальный температурный градиент принимают равным 0,6. Нужно иметь в виду, что это величина непостоянная. Может случиться, что в каком-либо слое воздуха температура с высотой не будет изменяться. Такие слои называются слоями изотермии .

Весьма часто в атмосфере наблюдается явление, когда в некотором слое температура с высотой даже возрастает. Такие слои атмосферы называются слоями инверсии . Инверсии возникают от различных причин. Одной из них является охлаждение подстилающей поверхности путем излучения в ночное или зимнее время при ясном небе. Иногда, в случае штиля или слабого ветра, приземные слон воздуха также охлаждаются и становятся холоднее вышележащих слоев. В результате на высоте воздух оказывается более теплым, чем внизу. Такие инверсии называются радиационными . Сильные радиационные инверсии наблюдаются обычно над снежным покровом и особенно в горных котловинах, я также при штиле. Слои инверсии простираются до высоты нескольких десятков или сотен метров.

Инверсии возникают также вследствие перемещения (адвекции) теплого воздуха на холодную подстилающую поверхность. Это так называемые адвективные инверсии . Высота этих инверсии - несколько сот метров.

Кроме этих инверсий, наблюдаются инверсии фронтальные и инверсии сжатия. Фронтальные инверсии возникают при натекании теплых воздушных масс на более холодные. Инверсии сжатия возникают при опускании воздуха из верхних слоев атмосферы. При этом опускающийся воздух нагревается иногда настолько сильно, что нижележащие слои его оказываются более холодными.

Инверсии температуры наблюдаются на различных высотах тропосферы, наиболее часто-на высотах около 1 км. Толщина инверсионного слоя может колебаться от нескольких десятков, до нескольких сотен метров. Разность температур при инверсии может достигать 15-20°.

Слои инверсий играют большую роль в погоде. Вследствие того что воздух в слое инверсии теплее нижележащего слоя, воздух нижних слоев не может подняться. Следовательно, слои инверсий задерживают вертикальные движения в нижележащем слое воздуха. При полете под слоем инверсии обычно наблюдается рему («болтанка»). Выше же слоя инверсии полет самолета обычно происходит нормально. Под слоями инверсий развиваются так называемые волнистые облака.

Температура воздуха оказывает влияние на технику пилотирования и эксплуатацию материальной части. При температурах у земли ниже -20° застывает масло, поэтому заливать его приходится в подогретом состоянии. В полете при низких температурах интенсивно охлаждается вода в охлаждающей системе мотора. При повышенных же температурах (выше+30°) может получиться перегрев мотора. Температура воздуха влияет также и на работоспособность экипажа самолета. При низкой температуре, доходящей в стратосфере до -56°, требуется специальное обмундирование для экипажа.

Температура воздуха имеет весьма большое значение для прогноза погоды.

Измерение температуры воздуха во время полета на самолете производится при помощи электрических термометров, прикрепляемых на самолете. При измерении температуры воздуха необходимо иметь в виду, что вследствие больших скоростей современных самолетов термометры дают ошибки. Большие скорости самолетов вызывают повышение температуры самого термометра, обусловленное трением его резервуара о воздух и влиянием нагрева вследствие сжатия воздуха. Нагревание от трения с повышением скорости полета самолета возрастает и выражается следующими величинами:

Скорость в км/час............. 100 200 З00 400 500 600

Нагревание от трения....... 0°,34 1°,37 3°.1 5°,5 8°,6 12°,б

Нагревание же от сжатия выражается следующими величинами:

Скорость в км/час............. 100 200 300 400 500 600

Нагревание от сжатия....... 0°,39 1°,55 3°,5 5°,2 9°,7 14°,0

Искажения показаний термометра, установленного на самолете, при полете в облаках на 30 % меньше приведенных выше величин, вследствие того что часть тепла, возникающего при трении и сжатии, расходуется на испарение воды, сконденсированной в воздухе в виде капель.

Открытый урок

по природоведению в 5

коррекционном классе

Изменение температуры воздуха с высот

Разработала

учитель Шувалова О.Т.

Цель урока:

Сформировать знания об измерение температуры воздуха с высотой, познакомить с процессом образования облаков, видами осадков.

Ход урока

1. Организационный момент

Наличие учебника, рабочей тетради, дневника, ручки.

2. Проверка знаний учащихся

Мы изучаем тему:воздух

Прежде, чем приступим к изучению нового материала, вспомним пройденный материал, что мы знаем о воздухе?

Фронтальный опрос

    Состав воздуха

    Откуда эти газы появляются в воздухе азот, кислород, углекислый газ, примеси.

    Свойство воздуха: занимает пространство, сжимаемость, упругость.

    Вес воздуха?

    Атмосферное давление, изменение его с высотой.

Нагревание воздуха.

3. Изучение нового материала

Мы знаем, что нагретый воздух поднимается вверх. А что происходит с нагретым воздухом дальше, мы знаем?

Как вы думайте, температура воздуха будет уменьшаться с высотой?

Тема урока: изменение температуры воздуха с высотой.

Цель урока: выяснить, как изменяется температура воздуха с высотой и каковы результаты этих изменений.

Отрывок из книги шведской писательницы «чудесное путешествие Нильса с дикими гусями» об одноглазом тролле, который решил «построю дом поближе к солнцу - пусть оно меня греет». И тролль принялся за работу. Он собирал повсюду камни и громоздил их друг на друга. Скоро гора их камней поднялась чуть не до самых туч.

Вот теперь, хватит! - сказал тролль. Теперь я построю себе дом на вершине этой горы. Буду жить у самого солнца под боком. Уж рядом с солнцем не замерзну! И тролль пошел на гору. Только что такое? Чем выше он идет, тем холоднее становиться. Добрался до вершины.

«ну – думает,- отсюда до солнца рукой подать!». А у самого от холода, зуб на зуб не попадает. Тролль этот был упрямый: если уже ему в голову западает, ничем не выбьешь. Решил на горе построить дом, и построил. Солнце как будто близко, а холод все равно до костей пробирает. Так этот глупый тролль и замерз.

Объясните, почему замерз упрямый тролль.

Вывод: чем ближе к земной поверхности воздух, тем он теплее, а с высотой становиться холоднее.

При подъеме на высоту 1500м температура воздуха поднимается на 8градусов. Поэтому за бортом самолёта на высоте 1000м температура воздуха- 25 градусов, а у поверхности земли в это же время термометр показывает 27градусов.

В чем же здесь дело?

Нижние слои воздуха, нагреваясь, расширяются, уменьшают свою плотность и, поднимаясь вверх, переносят тепло в верхние слои атмосферы. Значит, тепло, поступающее от поверхности земли, плохо сохраняется. Вот по этому-то и становится не теплее, а холоднее за бортом самолета, вот почему замерз упрямый тролль.

Демонстрация карточки: горы низкие и высокие.

Какие вы видите различия?

Почему вершины высоких гор покрыты снегом, а у подножия гор снега нет? Появление ледников и вечных снегов на вершинах гор связано с изменением температуры воздуха с высотой, климат становится суровей, соответственно изменяется и растительный мир. На самом верху, вблизи высокогорных вершин царство холода, снега и льда. Горные вершины и в тропиках покрыты вечным снегом. Границы вечных снегов в горах называют снеговой линией.

Демонстрация таблицы: горы.

Посмотрите карточку с изображением различных гор. Везде ли высота снеговой линии одинаковая? С чем это связано? Высота снеговой линии различна. В северных районах она ниже, а в южных выше. Эта линия не начерчена на горе. Какое мы можем дать определение понятию «снеговая линия».

Снеговая линия - это линия, выше которой снег не тает даже летом. Ниже снеговой линии проходит зона, отличающаяся скудной растительностью, далее происходит закономерная смена состава растительности по мере приближения к подножию горы.

Что мы видим на небе каждый день?

Почему образуются облака на небе?

Нагретый воздух, поднимаясь, уносит не видимый для глаза водяной пар в более высокий слой атмосферы. По мере удаления от земной поверхности температура воздуха падает, водяной пар в нем охлаждается, образуются мельчайшие капельки воды. Их скопление и приводит к образованию облака.

ВИДЫ ОБЛАКОВ:

    Перистые

    Слоистые

    Кучевые

Демонстрация карточки с видами облаков.

Перистые облака -самые высокие и тонкие. Они плывут очень высоко над землей, где всегда холодно. Это красивые и холодные облака. Сквозь них просвечивает голубое небо. Они похожи на длинные перья сказочных птиц. Поэтому их называют перистые.

Слоистые облака - сплошные, бледно-серые. Они застилают небо однообразным серым покрывалом. Такие облака приносят ненастье: снег, моросящий дождь на несколько дней.

Дождевые кучевые облака - большие и темные они мчатся друг за другом словно наперегонки. Иногда ветер несет их так низко, что, кажется, облака задевают крыши.

Редкие кучевые облака - самые красивые. Они напоминают горы с ослепительно белыми вершинами. А ними интересно наблюдать. Бегут по небу веселые кучевые облака, постоянно изменяются. Они похожи то на зверей, то на людей, то на каких -то сказочных существ.

Демонстрация карточки с различными видами облаков.

Определите, какие облака изображены на картинках?

При определенных состояниях атмосферного воздуха из облаков выпадают осадки.

Какие вам известны осадки?

Дождь, снег, град, роса и другие.

Мельчайшие капельки воды, из которых состоят облака, сливаясь друг с другом, постепенно увеличиваются, становятся тяжелыми и падают на землю. Летом идет дождь, зимой -снег.

Из чего состоит снег?

Снег состоит из ледяных кристалликов разной формы - снежинок, в основном шестилучевых звездочек, выпадает из облаков при температуре воздуха ниже ноля градусов.

Нередко в теплое время года во время ливня выпадает град - атмосферные осадки в виде кусочков льда, чаще всего неправильной формы.

Как образуется град в атмосфере?

Капельки воды, попадая на большую высоту, замерзают, на них нарастают ледяные кристаллы. Падая вниз, они сталкиваются с каплями переохлажденной воды и увеличиваются в размерах. Град способен нанести большой ущерб. Он выбивает посевы, оголяет леса, сбивая листву, губит птиц.

4.Итого урока.

Что нового вы узнали на уроке о воздухе?

1.Уменьшение температуры воздуха с высотой.

2.Снеговая линия.

3.Виды осадков.

5.Задание на дом.

Выучить записи в тетради. Наблюдение за облаками с зарисовкой их в тетрадь.

6.Закрепление пройденного.

Самостоятельная работа с текстом. Заполнить пропуски в тексте, используя слова для справок.