C 32 логарифмические неравенства. Все о логарифмических неравенствах

Определение логарифма проще всего записать математически:

Определение логарифма можно записать и другим способом:

Обратите внимание на ограничения которые накладываются на основание логарифма (a ) и на подлогарифмическое выражение (x ). В дальнейшем эти условия превратятся в важные ограничения для ОДЗ, которые нужно будет учитывать при решении любого уравнения с логарифмами. Итак, теперь кроме стандартных условий приводящих к ограничениям на ОДЗ (положительность выражений под корнями четных степеней, не равенство знаменателя нолю и т.д.) нужно учитывать еще и следующие условия:

  • Подлогарифмическое выражение может быть только положительным .
  • Основание логарифма может быть только положительным и не равным единице .

Обратите внимание, что ни основание логарифма, ни подлогарифмическое выражение не могут быть равными нолю. Обратите также внимание и на то, что само значение логарифма может принимать все возможные значения, т.е. логарифм может быть положительным, отрицательным и равным нолю. У логарифмов есть очень много различных свойств, которые следуют из свойств степеней и определения логарифма. Перечислим их. Итак, свойства логарифмов:

Логарифм произведения:

Логарифм дроби:

Вынесение степени за знак логарифма:

Обратите особо пристальное внимание на те из последних перечисленных свойств, в которых появляется знак модуля после вынесения степени. Не забывайте, что при вынесении четной степени за знак логарифма, под логарифмом или в основании нужно оставить знак модуля.

Другие полезные свойства логарифмов:

Последнее свойство очень часто применяется в сложных логарифмических уравнениях и неравенствах. Его нужно помнить также хорошо, как и все остальные, хотя о нём часто забывают.

Самые простые логарифмические уравнения имеют вид:

А их решение задаётся формулой, которая напрямую следует из определения логарифма:

Другие простейшие логарифмические уравнения, это такие, которые с помощью алгебраических преобразований и приведённых выше формул и свойств логарифмов можно свести к виду:

Решение таких уравнений с учетом ОДЗ выглядит следующим образом:

Некоторые другие логарифмические уравнения с переменной в основании могут быть сведены к виду:

В таких логарифмических уравнениях общий вид решения также напрямую следует из определения логарифма. Только в этом случае имеются дополнительные ограничения для ОДЗ, которые нужно учесть. В итоге, для решения логарифмического уравнения с переменной в основании нужно решать следующую систему:

При решении более сложных логарифмических уравнений, которые нельзя свести к одному из представленных выше уравнений, также активно применяется метод замены переменных . Как обычно, применяя этот метод нужно помнить, что после введения замены уравнение должно упроститься и больше не содержать старой неизвестной. Также нужно не забывать выполнять обратную замену переменных.

Иногда при решении логарифмических уравнений приходится также использовать графический метод . Данный метод состоит в том, чтобы как можно более точно построить на одной координатной плоскости графики функций, которые стоят в левой и правой частях уравнения, а затем найти координаты точек их пересечения по чертежу. Полученные таким образом корни обязательно нужно проверить подстановкой в первоначальное уравнение.

При решении логарифмических уравнений часто также бывает полезен метод группировки . При использовании этого метода главное помнить, что: для того чтобы произведение нескольких множителей было равно нолю, необходимо, чтобы хотя бы один их них равнялся нолю, а остальные существовали . Когда множителями являются логарифмы или скобки с логарифмами, а не просто скобки с переменными как в рациональных уравнениях, то может возникнуть много ошибок. Так как у логарифмов есть много ограничений на ту область, где они существуют.

При решении систем логарифмических уравнений чаще всего приходится использовать либо метод подстановки, либо метод замены переменных. Если есть такая возможность, то при решении систем логарифмических уравнений нужно стремиться к тому, чтобы каждое из уравнений системы по-отдельности привести к такому виду, при котором можно будет осуществить переход от логарифмического уравнения к рациональному.

Простейшие логарифмические неравенства решаются примерно также как и аналогичные уравнения. Сначала, с помощью алгебраических преобразований и свойств логарифмов, их нужно постараться привести к такому виду, где у логарифмов в левой и правой части неравенства будут одинаковые основания, т.е. получить неравенство вида:

После чего нужно перейти к рациональному неравенству, учитывая, что этот переход должен быть выполнен следующим образом: если основание логарифма больше единицы, то знак неравенства менять не нужно, а если основание логарифма меньше единицы, то нужно поменять знак неравенства на противоположный (это значит поменять "меньше" на "больше" или наоборот). При этом знаки минус на плюс, в обход ранее изученных правил нигде менять не нужно. Запишем математически то, что получим в результате выполнения такого перехода. В случае если основание больше единицы получим:

В случае если основание логарифма меньше единицы поменяем знак неравенства и получим следующую систему:

Как видим при решении логарифмических неравенств как обычно учитывается также и ОДЗ (это третье условие в системах выше). Причем в этом случае есть возможность не требовать положительности обоих подлогарифмических выражений, а достаточно потребовать положительности только меньшего из них.

При решении логарифмических неравенств с переменной в основании логарифма необходимо самостоятельно рассматривать оба варианта (когда основание меньше единицы, и больше единицы) и объединять решения этих случаев в совокупность. При этом нужно не забывать и про ОДЗ, т.е. про то, что и основание и все подлогарифмические выражение должны быть положительными. Таким образом, при решении неравенства вида:

Получим следующую совокупность систем:

Более сложные логарифмические неравенства могут также решаться с помощью замены переменных. Некоторые другие логарифмические неравенства (как и логарифмические уравнения) для решения требуют проведения процедуры логарифмирования обоих частей неравенства или уравнения по одинаковому основанию. Так вот при проведении такой процедуры с логарифмическим неравенствами имеется тонкость. Обратите внимание, что при логарифмировании по основанию большему единицы, знак неравенства не изменяется, а если основание меньше единицы, то знак неравенства изменяется на противоположный.

Если логарифмическое неравенство не может быть сведено к рациональному или решено с помощью замены, то в этом случае нужно применять обобщенный метод интервалов , который состоит в следующем:

  • Определите ОДЗ;
  • Преобразуйте неравенство так, чтобы в правой части был ноль (в левой части, если это возможно, приведите к общему знаменателю, разложите на множители и т.д.);
  • Найдите все корни числителя и знаменателя и нанесите их на числовую ось, причём, если неравенство нестрогое, закрасьте корни числителя, ну а корни знаменателя в любом случае оставьте выколотыми точками;
  • Найдите знак всего выражения на каждом из интервалов, подставляя в преобразованное неравенство число из данного интервала. При этом уже больше нельзя никаким образом чередовать знаки переходя через точки на оси. Определять знак выражения на каждом интервале нужно именно подстановкой значения из интервала в это выражение, и так для каждого интервала. Больше никак нельзя (в этом то и состоит, по большому счету, отличие обобщенного метода интервалов от обычного);
  • Найдите пересечение ОДЗ и удовлетворяющих неравенству промежутков, при этом не потеряйте отдельные точки, удовлетворяющие неравенству (корни числителя в нестрогих неравенствах), и не забудьте исключить из ответа все корни знаменателя во всех неравенствах.
  • Назад
  • Вперёд

Как успешно подготовиться к ЦТ по физике и математике?

Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:

  1. Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.
  2. Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  3. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.

Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

Нашли ошибку?

Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

Цели урока:

Дидактические:

  • 1 уровень – научить решать простейшие логарифмические неравенства, применяя определение логарифма, свойства логарифмов;
  • 2 уровень – решать логарифмические неравенства, выбирая самостоятельно способ решения;
  • 3 уровень – уметь применять знания и умения в нестандартных ситуациях.

Развивающие: развивать память, внимание, логическое мышление, навыки сравнения, уметь обобщать и делать выводы

Воспитательные: воспитывать аккуратность, ответственность за выполняемое задание, взаимопомощь.

Методы обучения: словесный, наглядный, практический, частично-поисковый, самоуправления, контроля.

Формы организации познавательной деятельности учащихся: фронтальный, индивидуальный, работа в парах.

Оборудование: набор тестовых заданий, опорный конспект, чистые листы для решений.

Тип урока: изучение нового материала.

Ход урока

1. Организационный момент. Объявляются тема и цели урока, схема проведения урока: каждому ученику выдается оценочный лист, который ученик заполняет в течении урока; для каждой пары учеников – печатные материалы с заданиями, выполнять задания нужно в парах; чистые листы для решений; опорные листы: определение логарифма; график логарифмической функции, ее свойства; свойства логарифмов; алгоритм решения логарифмических неравенств.

Все решения после самооценки сдаются учителю.

Оценочный лист учащегося

2. Актуализация знаний.

Указания учителя. Вспомните определение логарифма, график логарифмической функции и ее свойства. Для этого прочитайте текст на с.88–90, 98–101 учебника “Алгебра и начала анализа 10–11” под редакцией Ш.А Алимова, Ю.М Колягина и др.

Ученикам раздаются листы, на которых записаны: определение логарифма; изображен график логарифмической функции, ее свойства; свойства логарифмов; алгоритм решения логарифмических неравенств, пример решения логарифмического неравенства, сводящегося к квадратному.

3. Изучение нового материала.

Решение логарифмических неравенств основано на монотонности логарифмической функции.

Алгоритм решения логарифмических неравенств:

А) Найти область определения неравенства (подлогарифмическое выражение больше нуля).
Б) Представить (если возможно) левую и правую части неравенства в виде логарифмов по одному и тому же основанию.
В) Определить, возрастающей или убывающей является логарифмическая функция: если t>1, то возрастающая; если 01, то убывающая.
Г) Перейти к более простому неравенству (подлогарифмических выражений), учитывая, что знак неравенства сохранится, если функция возрастает, и изменится, если она убывает.

Учебный элемент № 1.

Цель: закрепить решение простейших логарифмических неравенств

Форма организации познавательной деятельности учащихся: индивидуальная работа.

Задания для самостоятельной работы на 10 минут. Для каждого неравенства имеются несколько вариантов ответов, нужно выбрать верный и проверить по ключу.


КЛЮЧ: 13321, максимальное кол-во баллов – 6 б.

Учебный элемент № 2.

Цель: закрепить решение логарифмических неравенств, применяя свойства логарифмов.

Указания учителя. Вспомните основные свойства логарифмов. Для этого прочитайте текст учебника на с.92, 103–104.

Задания для самостоятельной работы на 10 минут.

КЛЮЧ: 2113, максимальное кол-во баллов – 8 б.

Учебный элемент № 3.

Цель: изучить решение логарифмических неравенств методом сведения к квадратному.

Указания учителя: метод сведения неравенства к квадратному состоит в том, что нужно преобразовать неравенство к такому виду, чтобы некоторую логарифмическую функцию обозначить новой переменной, получив при этом квадратное неравенство относительно этой переменной.

Применим метод интервалов.

Вы прошли первый уровень усвоения материала. Теперь вам придется самостоятельно выбрать метод решения логарифмических уравнений, используя все свои знания и возможности.

Учебный элемент № 4.

Цель: закрепить решение логарифмических неравенств, выбрав самостоятельно рациональный способ решения.

Задания для самостоятельной работы на 10 минут

Учебный элемент № 5.

Указания учителя. Молодцы! Вы освоили решение уравнений второго уровня сложности. Целью дальнейшей вашей работы является применение своих знаний и умений в более сложных и нестандартных ситуациях.

Задания для самостоятельного решения:

Указания учителя. Замечательно, если вы справились со всем заданием. Молодцы!

Оценка за весь урок зависит от числа набранных баллов по всем учебным элементам:

  • если N ≥ 20, то вы получаете оценку “5”,
  • при 16 ≤ N ≤ 19 – оценка “4”,
  • при 8 ≤ N ≤ 15 – оценка “3”,
  • при N < 8 выполнить работу над ошибками к следующему уроку (решения можно взять у учителя).

Оценочные лисы сдать учителю.

5. Домашнее задание: если вы набрали не более 15 б – выполните работу над ошибками (решения можно взять у учителя), если вы набрали более 15 б – выполните творческое задание по теме “Логарифмические неравенства”.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Введение

Логарифмы были придуманы для ускорения и упрощения вычислений. Идея логарифма, т. е. идея выражать числа в виде степени одного и того же основания, принадлежит Михаилу Штифелю. Но во времена Штифеля математика была не столь развита и идея логарифма не нашла своего развития. Логарифмы были изобретены позже одновременно и независимо друг от друга шотландским учёным Джоном Непером(1550-1617) и швейцарцем Иобстом Бюрги(1552-1632) Первым опубликовал работу Непер в 1614г. под названием «Описание удивительной таблицы логарифмов», теория логарифмов Непера была дана в достаточно полном объёме, способ вычисления логарифмов дан наиболее простой, поэтому заслуги Непера в изобретении логарифмов больше, чем у Бюрги. Бюрги работал над таблицами одновременно с Непером, но долгое время держал их в секрете и опубликовал лишь в 1620г. Идеей логарифма Непер овладел около1594г. хотя таблицы опубликовал через 20 лет. Вначале он называл свои логарифмы «искусственными числами» и уже потом предложил эти «искусственные числа» называть одним словом «логарифм», который в переводе с греческого- «соотнесённые числа», взятые одно из арифметической прогресси, а другое из специально подобранной к ней геометрической прогресси. Первые таблицы на русском языке были изданы в1703г. при участии замечательного педагога 18в. Л. Ф Магницкого. В развитии теории логарифмов большое значение имели работы петербургского академика Леонарда Эйлера. Он первым стал рассматривать логарифмирование как действие, обратное возведению в степень, он ввёл в употребление термины «основание логарифма» и «мантисса» Бригс составил таблицы логарифмов с основанием 10. Десятичные таблицы более удобны для практического употребления, теория их проще, чем у логарифмов Непера. Поэтому десятичные логарифмы иногда называют бригсовыми. Термин «характеристика» ввёл Бригс.

В те далекие времена, когда мудрецы впервые стали задумываться о равенствах содержащих неизвестные величины, наверное, еще не было ни монет, ни кошельков. Но зато были кучи, а также горшки, корзины, которые прекрасно подходили на роль тайников-хранилищ, вмещающих неизвестное количество предметов. В древних математических задачах Междуречья, Индии, Китая, Греции неизвестные величины выражали число павлинов в саду, количество быков в стаде, совокупность вещей, учитываемых при разделе имущества. Хорошо обученные науке счета писцы, чиновники и посвященные в тайные знания жрецы довольно успешно справлялись с такими задачами.

Дошедшие до нас источники свидетельствуют, что древние ученые владели какими-то общими приемами решения задач с неизвестными величинами. Однако ни в одном папирусе, ни в одной глиняной табличке не дано описания этих приемов. Авторы лишь изредка снабжали свои числовые выкладки скупыми комментариями типа: "Смотри!", "Делай так!", "Ты правильно нашел". В этом смысле исключением является "Арифметика" греческого математика Диофанта Александрийского (III в.) – собрание задач на составление уравнений с систематическим изложением их решений.

Однако первым руководством по решению задач, получившим широкую известность, стал труд багдадского ученого IX в. Мухаммеда бен Мусы аль-Хорезми. Слово "аль-джебр" из арабского названия этого трактата – "Китаб аль-джебер валь-мукабала" ("Книга о восстановлении и противопоставлении") – со временем превратилось в хорошо знакомое всем слово "алгебра", а само сочинение аль-Хорезми послужило отправной точкой в становлении науки о решении уравнений.

Логарифмические уравнения и неравенства

1. Логарифмические уравнения

Уравнение, содержащее неизвестное под знаком логарифма или в его основании, называется логарифмическим уравнением.

Простейшим логарифмическим уравнением является уравнение вида

log a x = b . (1)

Утверждение 1. Если a > 0, a ≠ 1, уравнение (1) при любом действительном b имеет единственное решение x = a b .

Пример 1. Решить уравнения:

a) log 2 x = 3, b) log 3 x = -1, c)

Решение. Используя утверждение 1, получим a) x = 2 3 или x = 8; b) x = 3 -1 или x = 1 / 3 ; c)

или x = 1.

Приведем основные свойства логарифма.

Р1. Основное логарифмическое тождество:

где a > 0, a ≠ 1 и b > 0.

Р2. Логарифм произведения положительных сомножителей равен сумме логарифмов этих сомножителей:

log a N 1 ·N 2 = log a N 1 + log a N 2 (a > 0, a ≠ 1, N 1 > 0, N 2 > 0).


Замечание. Если N 1 ·N 2 > 0, тогда свойство P2 примет вид

log a N 1 ·N 2 = log a |N 1 | + log a |N 2 | (a > 0, a ≠ 1, N 1 ·N 2 > 0).

Р3. Логарифм частного двух положительных чисел равен разности логарифмов делимого и делителя

(a > 0, a ≠ 1, N 1 > 0, N 2 > 0).

Замечание. Если

, (что равносильно N 1 N 2 > 0) тогда свойство P3 примет вид (a > 0, a ≠ 1, N 1 N 2 > 0).

P4. Логарифм степени положительного числа равен произведению показателя степени на логарифм этого числа:

log a N k = k log a N (a > 0, a ≠ 1, N > 0).

Замечание. Если k - четное число (k = 2s ), то

log a N 2s = 2s log a |N | (a > 0, a ≠ 1, N ≠ 0).

P5. Формула перехода к другому основанию:

(a > 0, a ≠ 1, b > 0, b ≠ 1, N > 0),

в частности, если N = b , получим

(a > 0, a ≠ 1, b > 0, b ≠ 1). (2)

Используя свойства P4 и P5, легко получить следующие свойства

(a > 0, a ≠ 1, b > 0, c ≠ 0), (3) (a > 0, a ≠ 1, b > 0, c ≠ 0), (4) (a > 0, a ≠ 1, b > 0, c ≠ 0), (5)

и, если в (5) c - четное число (c = 2n ), имеет место

(b > 0, a ≠ 0, |a | ≠ 1). (6)

Перечислим и основные свойства логарифмической функции f (x ) = log a x :

1. Область определения логарифмической функции есть множество положительных чисел.

2. Область значений логарифмической функции - множество действительных чисел.

3. При a > 1 логарифмическая функция строго возрастает (0 < x 1 < x 2 log a x 1 < log a x 2), а при 0 < a < 1, - строго убывает (0 < x 1 < x 2 log a x 1 > log a x 2).

4. log a 1 = 0 и log a a = 1 (a > 0, a ≠ 1).

5. Если a > 1, то логарифмическая функция отрицательна при x (0;1) и положительна при x (1;+∞), а если 0 < a < 1, то логарифмическая функция положительна при x  (0;1) и отрицательна при x (1;+∞).

6. Если a > 1, то логарифмическая функция выпукла вверх, а если a (0;1) - выпукла вниз.

Следующие утверждения (см., например, ) используются при решении логарифмических уравнений.

С ними находятся внутри логарифмов.

Примеры:

\(\log_3⁡x≥\log_3⁡9\)
\(\log_3⁡ {(x^2-3)}< \log_3⁡{(2x)}\)
\(\log_{x+1}⁡{(x^2+3x-7)}>2\)
\(\lg^2⁡{(x+1)}+10≤11 \lg⁡{(x+1)}\)

Как решать логарифмические неравенства:

Любое логарифмическое неравенство нужно стремиться привести к виду \(\log_a⁡{f(x)} ˅ \log_a{⁡g(x)}\) (символ \(˅\) означает любой из ). Такой вид позволяет избавиться от логарифмов и их оснований, сделав переход к неравенству выражений под логарифмами, то есть к виду \(f(x) ˅ g(x)\).

Но при выполнении этого перехода есть одна очень важная тонкость:
\(-\) если - число и оно больше 1 - знак неравенства при переходе остается прежним,
\(-\) если основание - число большее 0, но меньшее 1 (лежит между нулем и единицей), то знак неравенства должен меняться на противоположный, т.е.

Примеры:

\(\log_2⁡{(8-x)}<1\)
ОДЗ: \(8-x>0\)
\(-x>-8\)
\(x<8\)

Решение:
\(\log\)\(_2\) \((8-x)<\log\)\(_2\) \({2}\)
\(8-x\)\(<\) \(2\)
\(8-2 \(x>6\)
Ответ: \((6;8)\)

\(\log\)\(_{0,5⁡}\) \((2x-4)\)≥\(\log\)\(_{0,5}\) ⁡\({(x+1)}\)
ОДЗ: \(\begin{cases}2x-4>0\\x+1 > 0\end{cases}\)
\(\begin{cases}2x>4\\x > -1\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}x>2\\x > -1\end{cases}\) \(\Leftrightarrow\) \(x\in(2;\infty)\)

Решение:
\(2x-4\)\(≤\) \(x+1\)
\(2x-x≤4+1\)
\(x≤5\)
Ответ: \((2;5]\)

Очень важно! В любом неравенстве переход от вида \(\log_a{⁡f(x)} ˅ \log_a⁡{g(x)}\) к сравнению выражений под логарифмами можно делать только если:


Пример . Решить неравенство: \(\log\)\(≤-1\)

Решение:

\(\log\)\(_{\frac{1}{3}}⁡{\frac{3x-2}{2x-3}}\) \(≤-1\)

Выпишем ОДЗ.

ОДЗ: \(\frac{3x-2}{2x-3}\) \(>0\)

\(⁡\frac{3x-2-3(2x-3)}{2x-3}\) \(≥\) \(0\)

Раскрываем скобки, приводим .

\(⁡\frac{-3x+7}{2x-3}\) \(≥\) \(0\)

Умножаем неравенство на \(-1\), не забыв при этом перевернуть знак сравнения.

\(⁡\frac{3x-7}{2x-3}\) \(≤\) \(0\)

\(⁡\frac{3(x-\frac{7}{3})}{2(x-\frac{3}{2})}\) \(≤\) \(0\)

Построим числовую ось и отметим на ней точки \(\frac{7}{3}\) и \(\frac{3}{2}\) . Обратите внимание, точка из знаменателя – выколота, несмотря на то, что неравенство нестрогое. Дело в том, что эта точка не будет решением, так как при подстановке в неравенство приведет нас к делению на ноль.


\(x∈(\)\(\frac{3}{2}\) \(;\)\(\frac{7}{3}]\)

Теперь на ту же числовую ось наносим ОДЗ и записываем в ответ тот промежуток, который попадает в ОДЗ.


Записываем окончательный ответ.

Ответ: \(x∈(\)\(\frac{3}{2}\) \(;\)\(\frac{7}{3}]\)

Пример . Решить неравенство: \(\log^2_3⁡x-\log_3⁡x-2>0\)

Решение:

\(\log^2_3⁡x-\log_3⁡x-2>0\)

Выпишем ОДЗ.

ОДЗ: \(x>0\)

Приступим к решению.

Решение: \(\log^2_3⁡x-\log_3⁡x-2>0\)

Перед нами типичное квадратно-логарифмическое неравенство. Делаем .

\(t=\log_3⁡x\)
\(t^2-t-2>0\)

Раскладываем левую часть неравенства на .

\(D=1+8=9\)
\(t_1= \frac{1+3}{2}=2\)
\(t_2=\frac{1-3}{2}=-1\)
\((t+1)(t-2)>0\)

Теперь нужно вернуться к исходной переменной – иксу. Для этого перейдем к , имеющей такое же решение, и сделаем обратную замену.

\(\left[ \begin{gathered} t>2 \\ t<-1 \end{gathered} \right.\) \(\Leftrightarrow\) \(\left[ \begin{gathered} \log_3⁡x>2 \\ \log_3⁡x<-1 \end{gathered} \right.\)

Преобразовываем \(2=\log_3⁡9\), \(-1=\log_3⁡\frac{1}{3}\).

\(\left[ \begin{gathered} \log_3⁡x>\log_39 \\ \log_3⁡x<\log_3\frac{1}{3} \end{gathered} \right.\)

Делаем переход к сравнению аргументов. Основания у логарифмов больше \(1\), поэтому знак неравенств не меняется.

\(\left[ \begin{gathered} x>9 \\ x<\frac{1}{3} \end{gathered} \right.\)

Соединим решение неравенства и ОДЗ на одном рисунке.


Запишем ответ.

Ответ: \((0; \frac{1}{3})∪(9;∞)\)