Как решить уравнение методом интервалов. Метод интервалов: решение простейших строгих неравенств

На этом уроке мы продолжим решение рациональных неравенств методом интервалов для более сложных неравенств. Рассмотрим решение дробно-линейных и дробно-квадратичных неравенств и сопутствующие задачи.

Теперь возвращаемся к неравенству

Рассмотрим некоторые сопутствующие задачи.

Найти наименьшее решение неравенства.

Найти число натуральных решений неравенства

Найти длину интервалов, составляющих множество решений неравенства.

2. Портал Естественных Наук ().

3. Электронный учебно-методический комплекс для подготовки 10-11 классов к вступительным экзаменам по информатике, математике, русскому языку ().

5. Центр образования «Технология обучения» ().

6. Раздел College.ru по математике ().

1. Мордкович А.Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М. : Мнемозина, 2002.-143 с.: ил. №№ 28(б,в); 29(б,в); 35(а,б); 37(б,в); 38(а).


Метод интервалов является универсальным методом решения неравенств, в частности, он позволяет решать квадратные неравенства с одной переменной. В этой статье мы подробно осветим все нюансы решения квадратных неравенств методом интервалов. Сначала приведем алгоритм, после чего детально разберем готовые решения характерных примеров.

Навигация по странице.

Алгоритм

Первое знакомство с методом интервалов обычно происходит на уроках алгебры, когда учатся решать квадратные неравенства. При этом алгоритм метода интервалов дают в виде, адаптированном именно к решению квадратных неравенств. Отдавая дань простоте, мы тоже дадим его в таком виде, а общий алгоритм метода интервалов Вы можете посмотреть по ссылке в самом начале этой статьи.

Итак, алгоритм решения квадратных неравенств методом интервалов таков:

  • Находим нули квадратного трехчлена a·x 2 +b·x+c из левой части квадратного неравенства.
  • Изображаем и при наличии корней отмечаем их на ней. Причем если решаем строгое неравенство, то отмечаем их пустыми (выколотыми) точками, а если решаем нестрогое неравенство – то обычными точками. Они разбивают координатную ось на промежутки.
  • Определяем, какие знаки имеют значения трехчлена на каждом промежутке (если на первом шаге были найдены нули) или на всей числовой прямой (если нулей нет), как это сделать расскажем чуть ниже. И проставляем над этими промежутками + или − в соответствии с определенными знаками.
  • Если решаем квадратное неравенство со знаком > или ≥, то наносим штриховку над промежутками со знаками +, если же решаем неравенство со знаком < или ≤, то наносим штриховку над промежутками со знаком −. В результате получаем , которое и является искомым решением неравенства.
  • Записываем ответ.

Как и обещали, разъясняем третий шаг озвученного алгоритма. Существует несколько основных подходов, позволяющих находить знаки на промежутках. Будем их изучать на примерах, и начнем с надежного, но не самого быстрого способа, заключающегося в вычислении значений трехчлена в отдельно взятых точках промежутков.

Возьмем трехчлен x 2 +4·x−5 , его корнями являются числа −5 и 1 , они разбивают числовую ось на три промежутка (−∞, −5) , (−5, 1) и (1, +∞) .

Определим знак трехчлена x 2 +4·x−5 на промежутке (1, +∞) . Для этого вычислим значение данного трехчлена при некотором значении x из этого промежутка. Целесообразно брать такое значение переменной, чтобы вычисления были простыми. В нашем случае, например, можно взять x=2 (с этим числом вычисления проводить проще, чем, к примеру, с 1,3 , 74 или ). Подставляем его в трехчлен вместо переменной x , в результате получаем 2 2 +4·2−5=7 . 7 – положительное число, это означает, что любое значение квадратного трехчлена на интервале (1, +∞) будет положительным. Так мы определили знак +.

Для закрепления навыков определим знаки на оставшихся двух промежутках. Начнем со знака на интервале (−5, 1) . Из этого интервала лучше всего взять x=0 и вычислить значение квадратного трехчлена при этом значении переменной, имеем 0 2 +4·0−5=−5 . Так как −5 – отрицательное число, то на этом интервале все значения трехчлена будут отрицательными, следовательно, мы определили знак минус.

Осталось выяснить знак на промежутке (−∞, −5) . Возьмем x=−6 , подставляем его вместо x , получаем (−6) 2 +4·(−6)−5=7 , следовательно, искомым знаком будет плюс.

Но быстрее расставить знаки позволяют следующие факты:

  • Когда квадратный трехчлен имеет два корня (при положительном дискриминанте), то знаки его значений на промежутках, на которые эти корни разбивают числовую ось, чередуются (как в предыдущем примере). То есть, достаточно определить знак на одном из трех промежутков, и расставить знаки над оставшимися промежутками, чередуя их. В результате возможна одна из двух последовательностей знаков: +, −, + или −, +, −. Более того, можно вообще обойтись без вычисления значения квадратного трехчлена в точке промежутка, а сделать выводы о знаках по значению старшего коэффициента a: если a>0, то имеем последовательность знаков +, −, +, а если a<0 – то −, +, −.
  • Если же квадратный трехчлен имеет один корень (когда дискриминант равен нулю), то этот корень разбивает числовую ось на два промежутка, а знаки над ними будут одинаковыми. То есть, достаточно определить знак над одним из них, а над другим – поставить такой же. При этом получится, либо +, +, либо −, −. Вывод по знакам можно также сделать на основе значения коэффициента a: если a>0 , то будет +, +, а если a<0 , то −, −.
  • Когда квадратный трехчлен корней не имеет, то знаки его значений на всей числовой прямой совпадают как со знаком старшего коэффициента a , так и со знаком свободного члена c . Для примера рассмотрим квадратный трехчлен −4·x 2 −7 , он не имеет корней (его дискриминант отрицательный), и на промежутке (−∞, +∞) его значения отрицательны, так как коэффициент при x 2 есть отрицательное число −4 , и свободный член −7 тоже отрицателен.

Теперь все шаги алгоритма разобраны и остается рассмотреть примеры решения квадратных неравенств с его использованием.

Примеры с решениями

Переходим к практике. Решим несколько квадратных неравенств методом интервалов, затронем основные характерные случаи.

Пример.

Решите неравенство 8·x 2 −4·x−1≥0 .

Решение.

Проведем решение этого квадратного неравенства методом интервалов. Он на первом шаге подразумевает поиск корней квадратного трехчлена 8·x 2 −4·x−1 . Коэффициент при x четный, поэтому удобнее вычислять не дискриминант, а его четвертую часть: D"=(−2) 2 −8·(−1)=12 . Так как он больше нуля, то находим два корня и .

Теперь отмечаем их на координатной прямой. Несложно видеть, что x 1

Дальше по методу интервалов определяем знаки на каждом из трех полученных интервалов. Это удобнее и быстрее всего сделать на основе значения коэффициента при x 2 , он равен 8 , то есть, положителен, следовательно, последовательность знаков будет +, −, +:

Так как мы решаем неравенство со знаком ≥, то изображаем штриховку над промежутками со знаками плюс:

По полученному изображению числового множества не составляет труда описать его аналитически: или так . Так мы решили исходное квадратное неравенство.

Ответ:

или .

Пример.

Выполните решение квадратного неравенства методом интервалов.

Решение.

Находим корни квадратного трехчлена, находящегося в левой части неравенства:

Так как мы решаем строгое неравенство, то на координатной прямой изображаем выколотую точку с координатой 7 :

Теперь определяем знаки на двух полученных промежутках (−∞, 7) и (7, +∞) . Это легко сделать, учитывая, что дискриминант квадратного трехчлена равен нули, а старший коэффициент отрицателен. Имеем знаки −, −:

Так как мы решаем неравенство со знаком <, то изображаем штриховку над интервалами со знаками минус:

Хорошо видно, что решениями являются оба промежутка (−∞, 7) , (7, +∞) .

Ответ:

(−∞, 7)∪(7, +∞) или в другой записи x≠7 .

Пример.

Имеет ли квадратное неравенство x 2 +x+7<0 решения?

Решение.

Для ответа на поставленный вопрос решим данное квадратное неравенство, и коль скоро мы разбираем метод интервалов, то им и воспользуемся. Как обычно, начинаем с поиска корней квадратного трехчлена из левой части. Находим дискриминант: D=1 2 −4·1·7=1−28=−27 , он меньше нуля, значит, действительных корней нет.

Поэтому, просто изображаем координатную прямую, не отмечая на ней никаких точек:

Теперь определяем знак значений квадратного трехчлена. При D<0 он совпадает со знаком коэффициента при x 2 , то есть, со знаком числа 1 , оно положительное, следовательно, имеем знак +:

Мы решаем неравенство со знаком <, поэтому штриховку следует изобразить над промежутками со знаком −, но таковых нет, и в силу этого штриховку не наносим, а чертеж сохраняет свой вид.

В результате мы имеем пустое множество, а это значит, что исходное квадратное неравенство решений не имеет.

Ответ:

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.
  • Мордкович А. Г. Алгебра и начала математического анализа. 11 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений (профильный уровень) / А. Г. Мордкович, П. В. Семенов. - 2-е изд., стер. - М.: Мнемозина, 2008. - 287 с.: ил. ISBN 978-5-346-01027-2.

Как решать неравенства методом интервалов (алгоритм с примерами)

Пример . (задание из ОГЭ) Решите неравенство методом интервалов \((x-7)^2< \sqrt{11}(x-7)\)
Решение:

Ответ : \((7;7+\sqrt{11})\)

Пример . Решите неравенство методом интервалов \(≥0\)
Решение:

\(\frac{(4-x)^3 (x+6)(6-x)^4}{(x+7,5)}\) \(≥0\)

Здесь на первый взгляд все кажется нормальным, а неравенство изначально приведенным к нужному виду. Но это не так – ведь в первой и третьей скобке числителя икс стоит со знаком минус.

Преобразовываем скобки, с учетом того, что четвертая степень - четная (т.е. уберет знак минус), а третья – нечетная (т.е. не уберет).
\((4-x)^3=(-x+4)^3=(-(x-4))^3=-(x-4)^3\)
\((6-x)^4=(-x+6)^4=(-(x-6))^4=(x-6)^4\)
Вот так. Теперь возвращаем скобки «на место» уже преобразованными.

\(\frac{-(x-4)^3 (x+6)(x-6)^4}{(x+7,5)}\) \(≥0\)

Теперь все скобки выглядят как надо (первым идет иск без знака и только потом число). Но перед числителем появился минус. Убираем его, умножая неравенство на \(-1\), не забыв при этом перевернуть знак сравнения

\(\frac{(x-4)^3 (x+6)(x-6)^4}{(x+7,5)}\) \(≤0\)

Готово. Вот теперь неравенство выглядит как надо. Можно применять метод интервалов.

\(x=4;\) \(x=-6;\) \(x=6;\) \(x=-7,5\)

Расставим точки на оси, знаки и закрасим нужные промежутки.

В промежутке от \(4\) до \(6\), знак не надо менять, потому что скобка \((x-6)\) в четной степени (см. пункт 4 алгоритма). Флажок будет напоминанием о том, что шестерка - тоже решение неравенства.
Запишем ответ.

Ответ : \((-∞;7,5]∪[-6;4]∪\left\{6\right\}\)

Пример. (Задание из ОГЭ) Решите неравенство методом интервалов \(x^2 (-x^2-64)≤64(-x^2-64)\)
Решение:

\(x^2 (-x^2-64)≤64(-x^2-64)\)

Слева и справа есть одинаковые – это явно не случайно. Первое желание – поделить на \(-x^2-64\), но это ошибка, т.к. есть шанс потерять корень. Вместо этого перенесем \(64(-x^2-64)\) в левую сторону

\(x^2 (-x^2-64)-64(-x^2-64)≤0\)

\((-x^2-64)(x^2-64)≤0\)

Вынесем минус в первой скобки и разложим на множители вторую

\(-(x^2+64)(x-8)(x+8)≤0\)

Обратите внимание: \(x^2\) либо равно нулю, либо больше нуля. Значит, \(x^2+64\) – однозначно положительно при любом значении икса, то есть это выражение никак не влияет на знак левой части. Поэтому можно смело делить обе части неравенства на это выражение.
Поделим неравенство так же на \(-1\) , чтобы избавиться от минуса.

\((x-8)(x+8)≥0\)

Теперь можно применять метод интервалов

\(x=8;\) \(x=-8\)

Запишем ответ

Ответ : \((-∞;-8]∪}