Примеры построения фигур в изометрии. Черчение

Для выполнения изометрической проекции любой детали не­обходимо знать правила построения изометрических проекций плоских и объемных геометрических фигур.

Правила построения изометрических проекций геометриче­ских фигур. Построение любой плоской фигуры следует начи­нать с проведения осей изометрических проекций.

При построении изометрической проекции квадрата (рис. 109) из точки О по аксонометрическим осям откладывают в обе сто­роны половину длины стороны квадрата. Через полученные за­сечки проводят прямые, параллельные осям.

При построении изометрической проекции треугольника (рис. 110) по оси X от точки 0 в обе стороны откладывают отрезки, равные половине стороны треугольника. По оси У от точки О откладывают высоту треугольника. Соединяют полученные за­сечки отрезками прямых.

Рис. 109. Прямоугольная и изометрические проекции квадрата



Рис. 110. Прямоугольная и изометрические проекции треугольника

При построении изометрической проекции шестиугольника (рис. 111) из точки О по одной из осей откладывают (в обе сторо­ны) радиус описанной окружности, а по другой - H/2. Через полученные засечки проводят прямые, параллельные одной из осей, и на них откладывают длину стороны шестиугольника. Со­единяют полученные засечки отрезками прямых.


Рис. 111. Прямоугольная и изометрические проекции шестиугольника



Рис. 112. Прямоугольная и изометрические проекции круга

При построении изометрической проекции круга (рис. 112) из точки О по осям координат откладывают отрезки, равные его радиусу. Через полученные засечки проводят прямые, парал­лельные осям, получая аксонометрическую проекцию квадрата. Из вершин 1, 3 проводят дуги CD и KL радиусом 3С. Соединяют точки 2 с 4, 3 с С и 3 с D. В пересечениях прямых получаются центры а и б малых дуг, проведя которые получают овал, заме­няющий аксонометрическую проекцию круга.

Используя описанные построения, можно выполнить аксоно­метрические проекции простых геометрических тел (табл. 10).

10. Изометрические проекции простых геометрических тел



Способы построения изометрической проекции детали:

1. Способ построения изометрической проекции детали от формообразующей грани используется для деталей, форма кото­рых имеет плоскую грань, называемую формообразующей; ши­рина (толщина) детали на всем протяжении одинакова, на боко­вых поверхностях отсутствуют пазы, отверстия и другие элемен­ты. Последовательность построения изометрической проекции заключается в следующем:

1) построение осей изометрической проекции;

2) построение изометрической проекции формообразующей грани;

3) построение проекций остальных граней посредством изо­бражения ребер модели;


Рис. 113. Построение изометрической проекции детали, начиная от фор­мообразующей грани

4) обводка изометрической проекции (рис. 113).

  1. Способ построения изометрической проекции на основе по­следовательного удаления объемов используется в тех случаях, когда отображаемая форма получена в результате удаления из исходной формы каких-либо объемов (рис. 114).
  2. Способ построения изометрической проекции на основе по­следовательного приращения (добавления) объемов применяется для выполнения изометрического изображения детали, форма которой получена из нескольких объемов, соединенных опреде­ленным образом друг с другом (рис. 115).
  3. Комбинированный способ построения изометрической про­екции. Изометрическую проекцию детали, форма которой полу­чена в результате сочетания различных способов формообразо­вания, выполняют, используя комбинированный способ построе­ния (рис. 116).

Аксонометрическую проекцию детали можно выполнять с изображением (рис. 117, а) и без изображения (рис. 117, б) неви­димых частей формы.


Рис. 114. Построение изометрической проекции детали на основе последовательного удаления объемов


Рис. 115 Построение изометрической проекции детали на основе последовательного приращения объемов


Рис. 116. Использование комбинированного способа построения изометрической проекции детали


Рис. 117. Варианты изображения изометрических проекций детали: а - с изображением невидимых частей;
б - без изображения невидимых частей

В этом уроке я вам покажу, как поместить на чертеж изометрическую проекцию модели с вырезом передней четверти. Как это делается я покажу на примере выполнения задания, взятого из учебного пособия С.К. Боголюбова «Индивидуальные задания по курсу черчения». Задание звучит так: по двум данным проекциям построить третью проекцию с применением разрезов, указанных в схеме, изометрическую проекцию учебной модели с вырезом передней четверти.

Приступим к созданию модели. Создайте новую деталь, выполнив команду Файл – Создать.

Присвойте ей наименование. Для этого выполните команду Файл — Свойства модели. На вкладке Список свойств в графе Наименование введите Стойка.

Установите ориентацию Изометрия XYZ.

Для создания первого эскиза выберите плоскость ZX и нажмите на панели инструментов Текущее состояние . Создайте эскиз, как показано на рисунке ниже. Нанесите размеры.

Выдавите эскиз в прямом направлении на 10 мм.

XY.

Выдавите его от средней плоскости на 50 мм.

Создайте следующий эскиз на плоскости XY.

Выдавите его от средней плоскости на 35 мм.

Выберите указанную поверхность и создайте на ней эскиз.

Вырежьте выдавливанием в прямом направлении через все.

На указанной поверхности создайте эскиз отверстия.

Создайте отверстие с помощью команды Вырезать выдавливанием .

Создайте эскиз для последнего элемента на плоскости XY.

Выполните команду Вырезать выдавливанием по двум направлениям. Через все в каждом направлении.

И так деталь готова. Но пока все еще нет возможности показать ее в изометрии с вырезом одной четверти. Для этого создадим новое исполнение детали. Что такое исполнения и для чего их применяют я рассказывал в одном из прошлых уроков . До появления в Компас-3D исполнений для показа на чертеже изометрии с вырезом приходилось создавать копию модели, в копии делать вырез и уже с нее создавать вид, что не совсем удобно. Сейчас можно обойтись без этого. И так, откройте Менеджер документа и создайте зависимое исполнение. Назначьте его текущим и нажмите ОК.

На плоскости ZX создайте эскиз.

Выполните Сечение по эскизу в обратном направлении.

Исполнение готово. Текущее исполнение можно сменить в окне на панели Текущее состояние.

Создайте новый чертеж. В Менеджере документа установите формат А3, горизонтальную ориентацию. Нажмите кнопку Стандартные виды на панели инструментов Виды. В окне открытия выберите сохраненную модель. Обратите внимание, что окно Исполнение должно быть пустым, это означает что виды будут создаваться с базового исполнения. Ориентацию главного вида установите Спереди.

Укажите точку привязки вида. После этого необходимо создать вид с исполнения. На панели Виды нажмите кнопку Произвольный вид . В окне Исполнение выберите исполнение -01, в качестве ориентации главного вида выберите Изометрия XYZ

Останется только нанести штриховку, размеры и создать необходимые разрезы, в соответствии со схемой в задании.

P.S. Для тех, кто хочет стать Мастером КОМПАС-3D! Новый обучающий видеокурс позволит вам легко и быстро освоить систему КОМПАС-3D с нуля до уровня опытного пользователя.

Для наглядного изображения предметов (изделий или их составных частей) рекомендуется применять аксонометрические проекции, выбирая в каждом отдельном случае наиболее подходящую из них.

Сущность метода аксонометрического проецирования заключается в том, что заданный предмет вместе с координатной системой, к которой он отнесен в пространстве, параллельным пучком лучей проецируется на некоторую плоскость. Направление проецирования на аксонометрическую плоскость не совпадает ни с одной из координатных осей и не параллельно ни одной из координатных плоскостей.

Все виды аксонометрических проекций характеризуются двумя параметрами: направлением аксонометрических осей и коэффициентами искажения по этим осям. Под коэффициентом искажения понимается отношение величины изображения в аксонометрической проекции к величине изображения в ортогональной проекции.

В зависимости от соотношения коэффициентов искажения аксонометрические проекции подразделяются на:

Изометрические, когда все три коэффициента искажения одинаковы (k x =k y =k z);

Диметрические, когда коэффициенты искажения одинаковы по двум осям, а третий не равен им (k x = k z ≠k y);

Триметрические, когда все три коэффициенты искажения не равны между собой (k x ≠k y ≠k z).

В зависимости от направления проецирующих лучей аксонометрические проекции подразделяются на прямоугольные и косоугольные. Если проецирующие лучи перпендикулярны аксонометрической плоскости проекций, то такая проекция называется прямоугольной. К прямоугольным аксонометрическим проекциям относятся изометрическая и диметрическая. Если проецирующие лучи направлены под углом к аксонометрической плоскости проекций, то такая проекция называется косоугольной. К косоугольным аксонометрическим проекциям относятся фронтальная изометрическая, горизонтальная изометрическая и фронтальная диметрическая проекции.

В прямоугольной изометрии углы между осями равны 120°. Действительный коэффициент искажения по аксонометрическим осям равен 0,82, но на практике для удобства построения показатель принимают равным 1. Вследствие этого аксонометрическое изображение получается увеличенным в раза.

Изометрические оси изображены на рисунке 57.


Рисунок 57

Построение изометрических осей можно выполнить при помощи циркуля (рисунок 58). Для этого сначала проводят горизонтальную линию и перпендикулярно к ней проводят ось Z. Из точки пересечения оси Z с горизонтальной линией (точка О) проводят вспомогательную окружность произвольным радиусом, которая пересекает ось Z в точке А. Из точки А этим же радиусом проводят вторую окружность до пересечения с первой в точках В и С. Полученную точку В соединяют с точкой О - получают направление оси Х. Таким же образом соединяют точку С с точкой О - получают направление оси Y.


Рисунок 58

Построение изометрической проекции шестиугольника представлено на рисунке 59. Для этого необходимо отложить по оси X радиус описанной окружности шестиугольника в обе стороны относительно начала координат. Затем, по оси Y отложить величину размера под ключ, из полученных точек провести линии параллельно оси X и отложить по ним величину стороны шестиугольника.


Рисунок 59

Построение окружности в прямоугольной изометрической проекции

Наиболее сложной плоской фигурой для вычерчивания в аксонометрии является окружность. Как известно, окружность в изометрии проецируется в эллипс, но построение эллипса довольно сложно, поэтому ГОСТ 2.317-69 рекомендует вместо эллипсов применять овалы. Существует несколько способов построения изометрических овалов. Рассмотрим один из наиболее распространенных.

Размер большой оси эллипса 1,22d, малой 0,7d, где d - диаметр той окружности, изометрия которой строится. На рисунке 60 показан графический способ определения большой и малой осей изометрического эллипса. Для определения малой оси эллипса соединяют точки С и D. Из точек С и D, как из центров, проводят дуги радиусов, равных СD, до взаимного их пересечения. Отрезок АВ - большая ось эллипса.


Рисунок 60

Установив направление большой и малой осей овала в зависимости от того, какой координатной плоскости принадлежит окружность, по размерам большой и малой оси проводят две концентрические окружности, в пересечении которых с осями намечают точки О 1 , О 2 , О 3 , О 4 , являющиеся центрами дуг овала (рисунок 61).

Для определения точек сопряжения проводят линии центров, соединяя О 1 , О 2 , О 3 , О 4 . из полученных центров О 1 , О 2 , О 3 , О 4 проводят дуги радиусами R и R 1 . размеры радиусов видны на чертеже.


Рисунок 61

Направление осей эллипса или овала зависит от положения проецируемой окружности. Существует следующее правило: большая ось эллипса всегда перпендикулярна к той аксонометрической оси, которая на данную плоскость проецируется в точку, а малая ось совпадает с направлением этой оси (рисунок 62).


Рисунок 62

Штриховка и изометрической проекции

Линии штриховки сечений в изометрической проекции, согласно ГОСТ 2.317-69, должны иметь направление, параллельное или только большим диагоналям квадрата, или только малым.

Прямоугольной диметрией называется аксонометрическая проекция с равными показателями искажения по двум осям X и Z, а по оси Y показатель искажения в два раза меньше.

По ГОСТ 2.317-69 применяют в прямоугольной диметрии ось Z, расположенную вертикально, ось Х наклонную под углом 7°, а ось Y-под углом 41° к линии горизонта. Показатели искажения по осям X и Z равны 0,94, а по оси Y-0,47. Обычно применяют приведенные коэффициенты k x =k z =1, k y =0,5, т.е. по осям X и Z или по направлениям им параллельным, откладывают действительные размеры, а по оси Y размеры уменьшают в два раза.

Для построения осей диметрии пользуются способом, указанным на рисунке 63, который заключается в следующем:

На горизонтальной прямой, проходящей через точку О, откладывают в обе стороны восемь равных произвольных отрезков. Из конечных точек этих отрезков вниз по вертикали откладывают слева один такой же отрезок, а справа - семь. Полученные точки соединяют с точкой О и получают направление аксонометрических осей X и Y в прямоугольной диметрии.


Рисунок 63

Построение диметрической проекции шестиугольника

Рассмотрим построение в диметрии правильного шестиугольника, расположенного в плоскости П 1 (рисунок 64).


Рисунок 64

На оси Х откладываем отрезок равный величине b , чтобы его середина находилась в точке О, а по оси Y - отрезок а , размер которого уменьшен вдвое. Через полученные точки 1 и 2 проводим прямые параллельно оси ОХ, на которых откладываем отрезки равные стороне шестиугольника в натуральную величину с серединой в точках 1 и 2. Полученные вершины соединяем. На рисунке 65а изображен в диметрии шестиугольник, расположенный параллельно фронтальной плоскости, а на рисунке 66б -параллельно профильной плоскости проекции.


Рисунок 65

Построение окружности в диметрии

В прямоугольной диметрии все окружности изображаются эллипсами,

Длина большой оси для всех эллипсов одинакова и равна 1,06d. Величина малой оси различна: для фронтальной плоскости равна 0,95d , для горизонтальной и профильной плоскостей - 0,35 d.

На практике эллипс заменяется четырехцентровым овалом. Рассмотрим построение овала, заменяющего проекцию окружности, лежащей в горизонтальной и профильной плоскостях (рисунок 66).

Через точку О - начало аксонометрических осей, проводим две взаимно перпендикулярные прямые и откладываем на горизонтальной линии величину большой оси АВ=1,06d , а на вертикальной линии величину малой оси СD=0,35d. Вверх и вниз от О по вертикали откладываем отрезки ОО 1 и ОО 2 , равные по величине 1,06d. Точки О 1 и О 2 являются центром больших дуг овала. Для определения еще двух центров (О 3 и О 4) откладываем на горизонтальной прямой от точек А и В отрезки АО 3 и ВО 4 , равные ¼ величины малой оси эллипса, то есть d.


Рисунок 66

Затем, из точек О1 и О2 проводим дуги, радиус которых равен расстоянию до точек С и D, а из точек О3 и О4 - радиусом до точек А и В (рисунок 67).


Рисунок 67

Построение овала, заменяющего эллипс, от окружности, расположенной в плоскости П 2 , рассмотрим на рисунке 68. Проводим оси диметрии: Х, Y, Z. Малая ось эллипса совпадает с направлением оси Y, а большая перпендикулярна к ней. На осях Х и Z от начала откладываем величину радиуса окружности и получаем точки M, N, K, L, являющиеся точками сопряжения дуг овала. Из точек M и N проводим горизонтальные прямые, которые в пересечении с осью Y и перпендикуляром к ней дают точки О 1 , О 2, О 3, О 4 - центры дуг овала (рисунок 68).

Из центров О 3 и О 4 описывают дугу радиусом R 2 =О 3 М, а из центров О 1 и О 2 - дуги радиусом R 1 = О 2 N


Рисунок 68

Штриховка а прямоугольной диметрии

Линии штриховки разрезов и сечений в аксонометрических проекциях выполняются параллельно одной из диагоналей квадрата, стороны которого расположены в соответствующих плоскостях параллельно аксонометрическим осям (рисунок 69).


Рисунок 69

  1. Какие виды аксонометрических проекций вы знаете?
  2. Под каким углом расположены оси в изометрии?
  3. Какую фигуру представляет изометрическая проекция окружности?
  4. Как расположена большая ось эллипса для окружности, принадлежащей профильной плоскости проекций?
  5. Какие приняты коэффициенты искажения по осям X, Y, Z для построения диметрической проекции?
  6. Под какими углами расположены оси в диметрии?
  7. Какой фигурой будет являться диметрическая проекция квадрата?
  8. Как построить диметрическую проекцию окружности, расположенной во фронтальной проскости проекций?
  9. Основные правила нанесения штриховки в аксонометрических проекциях.

Начнем с того, что определимся с направлением осей в изометрии.

Возьмем для примера не очень сложную деталь. Это параллелепипед 50х60х80мм, имеющий сквозное вертикальное отверстие диаметром 20 мм и сквозное прямоугольное отверстие 50х30мм.

Начнем построение изометрии с вычерчивания верхней грани фигуры. Расчертим на требуемой нам высоте тонкими линиями оси Х и У. Из получившегося центра отложим вдоль оси Х 25 мм (половина от 50) и через эту точку проведем отрезок параллельный оси У длиной 60 мм. Отложим по оси У 30 мм (половина от 60) и через полученную точку проведем отрезок параллельный оси Х длиной 50 мм. Достроим фигуру.

Мы получили верхнюю грань фигуры.

Не хватает только отверстия диаметром 20 мм. Построим это отверстие. В изометрии окружность изображается особым образом - в виде эллипса. Это связано с тем, что мы смотрим на нее под углом. Изображение окружностей на всех трех плоскостях я описал в отдельном уроке , а пока лишь скажу, что в изометрии окружности проецируются в эллипсы с размерами осей a=1,22D и b=0,71D. Эллипсы, обозначающие окружности на горизонтальных плоскостях в изометрии изображаются с осью а расположенной горизонтально, а ось b - вертикально. При этом расстояние между точками расположенными на оси Х или У равно диаметру окружности (смотри размер 20 мм).

Теперь, из трех углов нашей верхней грани начертим вниз вертикальные ребра - по 80 мм и соединим их в нижних точках. Фигура почти полностью начерчена - не хватает только прямоугольного сквозного отверстия.

Чтобы начертить его опустим вспомогательный отрезок 15 мм из центра ребра верхней грани (указан голубым цветом). Через полученную точку проводим отрезок 30 мм параллельный верхней грани (и оси Х). Из крайних точек чертим вертикальные ребра отверстия - по 50 мм. Замыкаем снизу и проводим внутреннее ребро отверстия, оно параллельно оси У.

На этом простая изометрическая проекция может считаться завершенной. Но как правило, в курсе инженерной графики выполняется изометрия с вырезом одной четверти. Чаще всего, это четверть нижняя левая на виде сверху - в этом случае получается наиболее интересный с точки зрения наблюдателя разрез (конечно же все зависит от изначальной правильности компоновки чертежа, но чаще всего это так). На нашем примере эта четверть обозначена красными линиями. Удалим ее.

Как видим из получившегося чертежа, сечения полностью повторяют контур разрезов на видах (смотри соответствие плоскостей обозначенных цифрой 1), но при этом они вычерчены параллельно изометрическим осям. Сечение же второй плоскостью повторяет разрез выполненный на виде слева (в данном примере этот вид мы не чертили).

Надеюсь, этот урок оказался полезным, и построение изометрии вам уже не кажется чем-то совершенно неведомым. Возможно, некоторые шаги придется прочитать по два, а то и по три раза, но в конечном итоге понимание должно будет прийти. Удачи вам в учебе!

Как начертить окружность в изометрии?

Как вы наверняка знаете, при построении изометрии окружность изображается в виде эллипса. Причем вполне конкретного: длина большой оси эллипса AB=1.22*D, а длина малой оси CD=0.71*D (где D - диаметр той самой исходной окружности, которую мы хотим начертить в изометрической проекции). Как начертить эллипс зная длину осей? Об этом я рассказывал в отдельном уроке . Там рассматривалось построение больших эллипсов. Если же исходная окружность имеет диаметр где-то до 60-80 мм, то скорее всего мы сможем начертить ее и без лишних построений, используя 8 опорных точек. Рассмотрим следующий рисунок:

Это фрагмент изометрии детали, полный чертеж которой можно увидеть ниже. Но сейчас мы говорим о построении эллипса в изометрии. На данном рисунке AB - большая ось эллипса (коэффициент 1.22), CD - малая ось (коэффициент 0.71). На рисунке половина короткой оси (ОD) попала в вырезанную четверть и отсутствует - используется полуось СО (не забудьте об этом, когда будете откладывать значения по короткой оси - полуось - имеет длину равную половине короткой оси). Итак, мы уже имеем 4 (3) точки. Теперь отложим по двум оставшимся изометрическим осям точки 1,2,3 и 4 - на расстоянии равном радиусу исходной окружности (таким образом 12=34=D). Через полученные восемь точек уже можно провести достаточно ровный эллипс, либо аккуратно от руки, либо по лекалу.

Для лучшего понимания направления осей эллипсов в зависимости от того, какое направление имеет циллиндр, рассмотрим три разных отверстия в детали, имеющей форму параллелепипеда. Отверстие - тот же цилиндр, только из воздуха:) Но для нас это особого значения не имеет. Полагаю, что ориентируясь на эти примеры вы без труда сможете правильно расположить оси своих эллипсов. Если же обобщить, то получится так: большая ось эллипса перпендикулярна той оси, вокруг которой образован цилиндр (конус).

Рассмотрите рис. 92. На нем дана фронтальная диметрическая проекция куба с вписанными в его грани окружностями.

Окружности, расположенные на плоскостях, перпендикулярных к осям х и z, изображаются эллипсами. Передняя грань куба, перпендикулярная к оси у, проецируется без искажения, и окружность, расположенная на ней, изображается без искажения, т. е. описывается циркулем. Поэтому фронтальная диметрическая проекция удобна для изображения предметов с криволинейными очертаниями, подооных представленными на рис. 93.

Построение фронтальной диметрической проекции плоской детали с цилиндрическим отверстием . Фронтальную диметрическую проекцию плоской детали с цилиндрическим отверстием выполняют следующим образом.

1. Строят очертания передней грани детали, пользуясь циркулем (рис. 94, а).

2. Через центры окружности и дуг параллельно оси у проводят прямые, на которых откладывают половину толщины детали. Получают центры окружности и дуг, расположенных на задней поверхности детали (рис. 94, б). Из этих центров проводят окружность и дуги, радиусы которых должны быть равны радиусам окружности и дуг передней грани.

3. Проводят касательные к дугам. Удаляют лишние линии и обводят видимый контур (рис. 94, в).

Изометрические проекции окружностей. Квадрат в изометрической проекции проецируется в ромб. Окружности, вписанные в квадраты, например, расположенные на гранях куба (рис. 95), в изометрической проекции изображаются эллипсами. На практике эллипсы заменяют овалами, которые вычерчивают четырьмя дугами окружностей.

Построение овала, вписанного в ромб.

1. Строят ромб со стороной, равной диаметру изображаемой окружности (рис. 96, а). Для этого через точку О проводят изометрические оси х и у и на них от точки О откладывают отрезки, равные радиусу изображаемой окружности. Через точки a, w, с и d проводят прямые, параллельные осям; получают ромб. Большая ось овала располагается на большой диагонали ромба.

2. Вписывают в ромб овал. Для этого из вершин тупых углов (точек А и В) описывают дуги радиусом R, равным расстоянию от вершины тупого угла (точек А и В) до точек a, b или с, d соответственно. Через точки В и а, В и b проводят прямые (рис. 96, б); пересечение этих прямых с большей диагональю ромба дает точки С и D, которые будут центрами малых дуг; радиус R 1 малых дуг равен Са (Db). Дугами этого радиуса сопрягают большие дуги овала. Так строят овал, лежащий в плоскости, перпендикулярной к оси z (овал 1 на рис. 95). Овалы, находящиеся в плоскостях, перпендикулярных к осям х (овал 3) и у (овал 2), строят так же, как овал 1., только построение овала 3 ведут на осях у и z (рис. 97, а), а овала 2 (см. рис. 95) - на осях х и z (рис. 97, б).

Построение изометрической проекции детали с цилиндрическим отверстием.

Как применить рассмотренные построения на практике?

Дана изометрическая проекция детали (рис. 98, а). Нужно изобразить сквозное цилиндрическое отверстие, просверленное перпендикулярно передней грани.

Построения выполняет следующим образом.

1. Находят положение центра отверстия на передней грани детали. Через найденный центр проводят изометрические оси. (Для определения их направления удобно воспользоваться изображением куба на рис. 95.) На осях от центра откладывают отрезки, равные радиусу изображаемой окружности (рис. 98, а).

2. Строят ромб, сторона которого равна диаметру изображаемой окружности; проводят большую диагональ ромба (рис. 98, б).

3. Описывают большие дуги овала; находят центры для малых дуг (рис. 98, в).

4. Проводят малые дуги (рис. 98, г).

5. Строят такой же овал на задней грани детали и проводят касательные к обоим овалам (рис. 98, д).

Ответьте на вопросы


1. Какими фигурами изображаются во фронтальной диме-трической проекции окружности, расположенные на плоскостях, перпендикулярных к осям х и у?

2. Искажается ли во фронтальной диметрической проекции окружность, если ее плоскость перпендикулярна оси у?

3. При изображении каких деталей удобно применять фронтальную диметрическую проекцию?

4. Какими фигурами изображаются в изометрической проекции окружности, расположенные на плоскостях, перпендикулярных к осям х, у, z?

5. Какими фигурами в практике заменяют эллипсы, изображающие окружности в изометрической проекции?

6. Из каких элементов состоит овал?

7. Чему равны диаметры окружностей, изображенных овалами, вписанными в ромбы на рис. 95, если стороны этих ромбов равны 40 мм?

Задания к § 13 и 14

Упражнение 42


На рис. 99 проведены оси для построения трех ромбов, изображающих квадраты в изометрической проекции. Рассмотрите рис. 95 и запишите, на какой грани куба - верхней, правой боковой или левой боковой будет расположен каждый ромб, построенный на осях, данных на рис. 99. Какой оси (х, у или z) будет перпендикулярна плоскость каждого ромба?