Применение корреляции Спирмена и Пирсона. Коэффициент корреляции спирмена

В случаях, если измерения исследуемых признаков проводятся в шкале порядка, или же форма взаимосвязи отличается от линейной, исследование взаимосвязи между двумя случайными величинами осуществляется с помощь ранговых коэффициентов корреляции. Рассмотрим коэффициент ранговой корреляции Спирмена. При его вычислении необходимо ранжировать (упорядочить) варианты выборки. Ранжированием называется группировка экспериментальных данных в определенном порядке, либо по возрастанию, либо по убыванию.

Проведение операции ранжирования осуществляется по следующему алгоритму:

1. Меньшему значению начисляется меньший ранг. Наибольшему значению начисляется ранг, соответствующий количеству ранжируемых значений. Наименьшему значению начисляется ранг равный 1. Например, если n=7, то наибольшее значение получит ранг под номером 7, за исключением случаев, которые предусмотрены вторым правилом.

2. Если несколько значений равны, то им начисляется ранг, представляющий собой среднее значение из тех рангов, которые они получили бы, если бы не были равны. В качестве примера рассмотрим упорядоченную по возрастанию выборку, состоящую из 7 элементов: 22, 23, 25, 25, 25, 28, 30. Значения 22 и 23 встречаются по одному разу, поэтому их ранги соответственно равны R22=1, а R23=2. Значение 25 встречается 3 раза. Если бы эти значения не повторялись, то их ранги были бы равными 3, 4, 5. Поэтому их ранг R25 равен среднему арифметическому 3, 4 и 5: . Значения 28 и 30 не повторяются, поэтому их ранги соответственно равны R28=6, а R30=7. Окончательно имеем следующее соответствие:

3. Общая сумма рангов должна совпадать с расчетной, которая определяется по формуле:

где n - общее количество ранжируемых значений.

Несовпадение реальной и расчетной сумм рангов будет свидетельствовать об ошибке, допущенной при начислении рангов или их суммировании. В этом случае необходимо найти и исправить ошибку.

Коэффициент ранговой корреляции Спирмена является методом, позволяющим определить силу и направленность взаимосвязи между двумя признаками или двумя иерархиями признаков. Применение коэффициента ранговой корреляции имеет ряд ограничений:

  • а) Предполагаемая корреляционная зависимость должна носить монотонный характер.
  • б) Объем каждой из выборок должен быть больше или равен 5. Для определения верхней границы выборки пользуются таблицами критических значений (Таблица 3 Приложения). Максимальное значение n в таблице - 40.
  • в) При проведении анализа вероятна возможность возникновения большого количества одинаковых рангов. В этом случае, необходимо вносить поправку. Наиболее благоприятным является случай когда, обе изучаемые выборки представляют собой две последовательности несовпадающих значений.

Для проведения корреляционного анализа исследователь должен располагать двумя выборками, которые могут быть ранжированы, например:

  • - два признака, измеренные в одной и той же группе испытуемых;
  • - две индивидуальные иерархии признаков, выявленные у двух испытуемых по одному и тому же набору признаков;
  • - две групповые иерархии признаков;
  • - индивидуальная и групповая иерархии признаков.

Расчет начинаем с ранжирования изучаемых показателей отдельно по каждому из признаков.

Проведем анализ случая с двумя признаками, измеренными в одной и той же группе испытуемых. Сначала ранжируют индивидуальные значения по первому признаку, полученные разными испытуемыми, а затем индивидуальные значения по второму признаку. Если меньшим рангам одного показателя соответствуют меньшие ранги другого показателя, а большим рангам одного показателя соответствуют большие ранги другого показателя, то два признака связаны положительно. Если же большим рангам одного показателя соответствуют меньшие ранги другого показателя, то два признака связаны отрицательно. Для нахождения rs, определяем разности между рангами (d) по каждому испытуемому. Чем меньше разности между рангами, тем ближе коэффициент ранговой корреляции rs будет к «+1». Если взаимосвязь отсутствует, то между ними не будет никакого соответствия, следовательно rs окажется близким к нулю. Чем больше разности между рангами испытуемых по двум переменным, тем ближе к «-1» будет значение коэффициента rs. Таким образом, коэффициент ранговой корреляции Спирмена является мерой любой монотонной зависимости между двумя исследуемыми признаками.

Рассмотрим случай с двумя индивидуальными иерархиями признаков, выявленными у двух испытуемых по одному и тому же набору признаков. В данной ситуации ранжируют индивидуальные значения, полученные каждым из двух испытуемым по определенной совокупности признаков. Признаку с самым низким значением необходимо присвоить первый ранг; признаку с более высоким значением - второй ранг и т.д. Следует обратить особое внимание на то, чтобы все признаки были измерены в одних и тех же единицах. Например, невозможно ранжировать показатели, если они выражены в различных по «цене» баллах, поскольку невозможно определить, какой из факторов будет занимать первое место по выраженности, пока все значения не будут приведены к единой шкале. Если признаки, имеющие низкие ранги у одного из испытуемых так же имеют низкие ранги у другого, и наоборот, то индивидуальные иерархии связаны положительно.

В случае с двумя групповыми иерархиями признаков, ранжируют средне-групповые значения, полученные в двух группах испытуемых по одинаковому для исследуемых групп, набору признаков. Далее следует придерживаемся алгоритма, приведенного в предыдущих случаях.

Проведем анализ случая с индивидуальной и групповой иерархией признаков. Начинают с того, что ранжируют отдельно индивидуальные значения испытуемого и средне-групповые значения по тому же набору признаков, которые получены, при исключении того испытуемого, который не участвует в средне-групповой иерархии, так как с ней будет сопоставляться его индивидуальная иерархия. Ранговая корреляция позволяет оценить степень согласованности индивидуальной и групповой иерархии признаков.

Рассмотрим, как определяется значимость коэффициента корреляции в перечисленных выше случаях. В случае с двумя признаками она будет определяться объемом выборки. В случае с двумя индивидуальными иерархиями признаков значимость зависит от количества признаков, входящих в иерархию. В двух последних случаях значимость обуславливается числом изучаемых признаков, а не численностью групп. Таким образом, значимость rs во всех случаях определяется числом ранжированных значений n.

При проверке статистической значимости rs пользуются таблицами критических значений коэффициента ранговой корреляции, составленных для различных количеств ранжируемых значений и разных уровней значимости. Если абсолютная величина rs, достигает критического значения или превышает его, то корреляция достоверна.

При рассмотрении первого варианта (случай с двумя признаками, измеренными в одной и той же группе испытуемых) возможны следующие гипотезы.

Н0: Корреляция между переменными x и y не отличается от нуля.

Н1: Корреляция между переменными x и y достоверно отличается от нуля.

Если мы работаем с любым из трех оставшихся случаев, то необходимо выдвинуть другую пару гипотез:

Н0: Корреляция между иерархиями x и y не отличается от нуля.

Н1: Корреляция между иерархиями x и y достоверно отличается от нуля.

Последовательность действий при вычислении коэффициента ранговой корреляции Спирмена rs такова.

  • - Определить, какие два признака или две иерархии признаков будут участвовать в сопоставлении как переменные x и y.
  • - Ранжировать значения переменной x, начисляя ранг 1 наименьшему значению, в соответствии с правилами ранжирования. Поместить ранги в первую колонку таблицы по порядку номеров испытуемых или признаков.
  • - Ранжировать значения переменной y. Поместить ранги во вторую колонку таблицы по порядку номеров испытуемых или признаков.
  • - Вычислить разности d между рангами x и y по каждой строке таблицы. Результаты поместить в следующую колонку таблицы.
  • - Вычислить квадраты разностей (d2). Полученные значения поместить в четвертую колонку таблицы.
  • - Вычислить сумму квадратов разностей? d2.
  • - При возникновении одинаковых рангов вычислить поправки:

где tx - объем каждой группы одинаковых рангов в выборке x;

ty - объем каждой группы одинаковых рангов в выборке y.

Вычислить коэффициент ранговой корреляции в зависимости от наличия или отсутствия одинаковых рангов. При отсутствии одинаковых рангов коэффициент ранговой корреляции rs рассчитать по формуле:

При наличии одинаковых рангов коэффициент ранговой корреляции rs рассчитать по формуле:

где?d2 - сумма квадратов разностей между рангами;

Tx и Ty - поправки на одинаковые ранги;

n - количество испытуемых или признаков, участвовавших в ранжировании.

Определить по таблице 3 Приложения критические значения rs, для данного количества испытуемых n. Достоверное отличие от нуля коэффициента корреляции будет наблюдаться при условии, если rs не меньше критического значения.

Калькулятор ниже вычисляет коэффициент ранговой корреляции Спирмена между двумя случайными величинами. Теоретическая часть, чтобы не отвлекаться от калькулятора, традиционно размещается под ним.

add import_export mode_edit delete

Изменения случайных величин

arrow_upward arrow_downward X arrow_upward arrow_downward Y
Размер страницы: 5 10 20 50 100 chevron_left chevron_right

Изменения случайных величин

Импортировать данные Ошибка импорта

Для разделения полей можно использовать один из этих символов: Tab, ";" или "," Пример: -50.5;-50.5

Импортировать Назад Отменить

Метод расчета коэффициента ранговой корреляции Спирмена на самом деле описывается очень просто. Это тот же самый Коэффициент корреляции Пирсона , только рассчитанный не для самих результатов измерений случайных величин, а для их ранговых значений .

То есть,

Осталось только разобраться, что такое ранговые значения и для чего все это нужно.

Если элементы вариационного ряда расположить в порядке возрастания или убывания, то рангом элемента будет являться его номер в этом упорядоченном ряду.

Например, пусть у нас есть вариационный ряд {17,26,5,14,21}. Отсортируем его элементы в порядке убывания {26,21,17,14,5}. 26 имеет ранг 1, 21 - ранг 2 и т.д. Вариационный ряд ранговых значений будет выглядеть следующим образом {3,1,5,4,2}.

То есть, при расчете коэффициента Спирмена исходные вариационные ряды преобразуются в вариационные ряды ранговых значений, после чего к ним применяется формула Пирсона.

Есть одна тонкость - ранг повторяющихся значений берется как среднее из рангов. То есть для ряда {17, 15, 14, 15} ряд ранговых значений будет выглядеть как {1, 2.5, 4, 2.5}, так как первый элемент равный 15 имеет ранг 2, а второй - ранг 3, и .

Если же повторяющихся значений нет, то есть все значения ранговых рядов - числа из диапазона от 1 до n, формулу Пирсона можно упростить до

Ну и кстати, эта формула чаще всего и приводится как формула расчета коэффицента Спирмена.

В чем же суть перехода от самих значений к их ранговым значениям?
А суть в том, что исследуя корреляцию ранговых значений можно установить насколько хорошо зависимость двух переменных описывается монотонной функцией.

Знак коэффициента указывает на направление связи между переменными. Если знак положительный, то значения Y имеют тенденцию увеличиваться при увеличении значений X; если знак отрицательный, то значения Y имеют тенденцию уменьшаться при увеличении значений X. Если коэффициент равен 0, то никакой тенденции нет. Если же коэффициент равен 1 или -1, то зависимость между X и Y имеет вид монотонной функции - то есть, при увеличении X, Y также увеличивается, либо наоборот, при увеличении X, Y уменьшается.

То есть, в отличие от коэффициента корреляции Пирсона, который может выявить только линейную зависимость одной переменной от другой, коэффициент корреляции Спирмена может выявить монотонную зависимость, там, где непосредственная линейная связь не выявляется.

Поясню на примере. Предположим, что мы исследуем функцию y=10/x.
У нас есть следующие результаты измерений X и Y
{{1,10}, {5,2}, {10,1}, {20,0.5}, {100,0.1}}
Для этих данных коэффициент корреляции Пирсона равен -0.4686, то есть связь слабая либо отсутствует. А вот коэффициент корреляции Спирмена строго равен -1, что как бы намекает исследователю, что Y имеет строгую отрицательную монотонную зависимость от X.

​ Коэффициент ранговой корреляции Спирмена – это непараметрический метод, который используется с целью статистического изучения связи между явлениями. В этом случае определяется фактическая степень параллелизма между двумя количественными рядами изучаемых признаков и дается оценка тесноты установленной связи с помощью количественно выраженного коэффициента.

1. История разработки коэффициента ранговой корреляции

Данный критерий был разработан и предложен для проведения корреляционного анализа в 1904 году Чарльзом Эдвардом Спирменом , английским психологом, профессором Лондонского и Честерфилдского университетов.

2. Для чего используется коэффициент Спирмена?

Коэффициент ранговой корреляции Спирмена используется для выявления и оценки тесноты связи между двумя рядами сопоставляемых количественных показателей . В том случае, если ранги показателей, упорядоченных по степени возрастания или убывания, в большинстве случаев совпадают (большему значению одного показателя соответствует большее значение другого показателя - например, при сопоставлении роста пациента и его массы тела ), делается вывод о наличии прямой корреляционной связи. Если ранги показателей имеют противоположную направленность (большему значению одного показателя соответствует меньшее значение другого - например, при сопоставлении возраста и частоты сердечных сокращений ), то говорят об обратной связи между показателями.

    Коэффициент корреляции Спирмена обладает следующими свойствами:
  1. Коэффициент корреляции может принимать значения от минус единицы до единицы, причем при rs=1 имеет место строго прямая связь, а при rs= -1 – строго обратная связь.
  2. Если коэффициент корреляции отрицательный, то имеет место обратная связь, если положительный, то – прямая связь.
  3. Если коэффициент корреляции равен нулю, то связь между величинами практически отсутствует.
  4. Чем ближе модуль коэффициента корреляции к единице, тем более сильной является связь между измеряемыми величинами.

3. В каких случаях можно использовать коэффициент Спирмена?

В связи с тем, что коэффициент является методом непараметрического анализа , проверка на нормальность распределения не требуется.

Сопоставляемые показатели могут быть измерены как в непрерывной шкале (например, число эритроцитов в 1 мкл крови), так и в порядковой (например, баллы экспертной оценки от 1 до 5).

Эффективность и качество оценки методом Спирмена снижается, если разница между различными значениями какой-либо из измеряемых величин достаточно велика. Не рекомендуется использовать коэффициент Спирмена, если имеет место неравномерное распределение значений измеряемой величины.

4. Как рассчитать коэффициент Спирмена?

Расчет коэффициента ранговой корреляции Спирмена включает следующие этапы:

5. Как интерпретировать значение коэффициента Спирмена?

При использовании коэффициента ранговой корреляции условно оценивают тесноту связи между признаками, считая значения коэффициента равные 0,3 и менее - показателями слабой тесноты связи; значения более 0,4, но менее 0,7 - показателями умеренной тесноты связи, а значения 0,7 и более - показателями высокой тесноты связи.

Статистическая значимость полученного коэффициента оценивается при помощи t-критерия Стьюдента. Если расчитанное значение t-критерия меньше табличного при заданном числе степеней свободы, статистическая значимость наблюдаемой взаимосвязи - отсутствует. Если больше, то корреляционная связь считается статистически значимой.

Корреляция Пирсона есть мера линейной связи между двумя переменными. Она позволяет определить, насколько пропорциональна изменчивость двух переменных. Если переменные пропорциональны друг другу, то графически связь между ними можно представить в виде прямой линии с положительным (прямая пропорция) или отрицательным (обратная пропорция) наклоном.

На практике связь между двумя переменными, если она есть, является вероятностной и графически выглядит как облако рассеивания эллипсоидной формы. Этот эллипсоид, однако, можно представить (аппроксимировать) в виде прямой линии, или линии регрессии. Линия регрессии - это прямая, построенная методом наименьших квадратов: сумма квадратов расстояний (вычисленных по оси Y) от каждой точки графика рассеивания до прямой является минимальной

Особое значение для оценки точности предсказания имеет дисперсия оценок зависимой переменной. По сути, дисперсия оценок зависимой переменной Y - это та часть ее полной дисперсии, которая обусловлена влиянием независимой переменной X. Иначе говоря, отношение дисперсии оценок зависимой переменной к ее истинной дисперсии равно квадрату коэффициента корреляции.

Квадрат коэффициента корреляции зависимой и независимой переменных представляет долю дисперсии зависимой переменной, обусловленной влиянием независимой переменной, и называется коэффициентом детерминации. Коэффициент детерминации, таким образом, показывает, в какой степени изменчивость одной переменной обусловлена (детерминирована) влиянием другой переменной.

Коэффициент детерминации обладает важным преимуществом по сравнению с коэффициентом корреляции. Корреляция __________не является линейной функцией связи между двумя переменными. Поэтому, среднее арифметическое коэффициентов корреляции для нескольких выборок не совпадает с корреляцией, вычисленной сразу для всех испытуемых из этих выборок (т.е. коэффициент корреляции не аддитивен). Напротив, коэффициент детерминации отражает связь линейно и поэтому является аддитивным: допускается его усреднение для нескольких выборок.

Дополнительную информацию о силе связи дает значение коэффициента корреляции в квадрате - коэффициент детерминации: это часть дисперсии одной переменной, которая может быть объяснена влиянием другой переменной. В отличие от коэффициента корреляции коэффициент детерминации линейно возрастает с увеличением силы связи.

Коэффициенты корреляции Спирмена и τ-Кендалла (ранговые корреляции)

Если обе переменные, между которыми изучается связь, представлены в порядковой шкале, или одна из них - в порядковой, а другая - в метрической, то применяются ранговые коэффициенты корреляции: Спирмена или τ-Кенделла. И тот, и другой коэффициент требует для своего применения предварительного ранжирования обеих переменных.

Коэффициент ранговой корреляции Спирмена - это непараметрический метод, который используется с целью статистического изучения связи между явлениями. В этом случае определяется фактическая степень параллелизма между двумя количественными рядами изучаемых признаков и дается оценка тесноты установленной связи с помощью количественно выраженного коэффициента.

Если члены группы численностью были ранжированы сначала по переменной x, затем – по переменной y, то корреляцию между переменными x и y можно получить, просто вычислив коэффициент Пирсона для двух рядов рангов. При условии отсутствия связей в рангах (т.е. отсутствия повторяющихся рангов) по той и другой переменной, формула для Пирсона может быть существенно упрощена в вычислительном отношении и преобразована в формулу, известную как Спирмена.

Мощность коэффициента ранговой корреляции Спирмена несколько уступает мощности параметрического коэффициента корреляции.

Коэффицент ранговой корреляции целесообразно применять при наличии небольшого количества наблюдений. Данный метод может быть использован не только для количественно выраженных данных, но также и в случаях, когда регистрируемые значения определяются описательными признаками различной интенсивности.

Коэффициент ранговой корреляции Спирмена при большом количестве одинаковых рангов по одной или обеим сопоставляемым переменным дает огрубленные значения. В идеале оба коррелируемых ряда должны представлять собой две последовательности несовпадающих значений.

Альтернативу корреляции Спирмена для рангов представляет корреляция τ-Кендалла. В основе корреляции, предложенной М.Кендаллом, лежит идея о том, что о направлении связи можно судить, попарно сравнивая между собой испытуемых: если у пары испытуемых изменение по x совпадает по направлению с изменением по y, то это свидетельствует о положительной связи, если не совпадает - то об отрицательной связи.

На практике для определения тесноты связи двух признаков часто применяется коэффициент ранговой корреляции Спирмена (Р). Значения каждого признака ранжируются по степени возрастания (от 1 до n), затем определяется разница (d) между рангами, соответствующими одному наблюдению.

Пример №1 . Зависимость между объемом промышленной продукции и инвестициями в основной капитал по 10 областям одного из федеральных округов РФ в 2003 году характеризуется следующими данными.
Вычислите ранговые коэффициенты корреляции Спирмена и Кендэла . Проверить их значимость при α=0,05. Сформулируйте вывод о зависимости между объемом промышленной продукции и инвестициями в основной капитал по рассматриваемым областям РФ.

Присвоим ранги признаку Y и фактору X . Найдем сумму разности квадратов d 2 .
Используя калькулятор , вычислим коэффициент ранговой корреляции Спирмена:

X Y ранг X, d x ранг Y, d y (d x - d y) 2
1.3 300 1 2 1
1.8 1335 2 12 100
2.4 250 3 1 4
3.4 946 4 8 16
4.8 670 5 7 4
5.1 400 6 4 4
6.3 380 7 3 16
7.5 450 8 5 9
7.8 500 9 6 9
17.5 1582 10 16 36
18.3 1216 11 9 4
22.5 1435 12 14 4
24.9 1445 13 15 4
25.8 1820 14 19 25
28.5 1246 15 10 25
33.4 1435 16 14 4
42.4 1800 17 18 1
45 1360 18 13 25
50.4 1256 19 11 64
54.8 1700 20 17 9
364

Связь между признаком Y фактором X сильная и прямая.

Оценка коэффициента ранговой корреляции Спирмена



По таблице Стьюдента находим Tтабл.
T табл = (18;0.05) = 1.734
Поскольку Tнабл > Tтабл, то отклоняем гипотезу о равенстве нулю коэффициента ранговой корреляции. Другими словами, коэффициента ранговой корреляции Спирмена статистически - значим.

Интервальная оценка для коэффициента ранговой корреляции (доверительный интервал)
Доверительный интервал для коэффициента ранговой корреляции Спирмена: p(0.5431;0.9095).

Пример №2 . Исходные данные.

5 4
3 4
1 3
3 1
6 6
2 2
Так как в матрице имеются связанные ранги (одинаковый ранговый номер) 1-го ряда, произведем их переформирование. Переформирование рангов производиться без изменения важности ранга, то есть между ранговыми номерами должны сохраниться соответствующие соотношения (больше, меньше или равно). Также не рекомендуется ставить ранг выше 1 и ниже значения равного количеству параметров (в данном случае n = 6). Переформирование рангов производится в табл.
Новые ранги
1 1 1
2 2 2
3 3 3.5
4 3 3.5
5 5 5
6 6 6
Так как в матрице имеются связанные ранги 2-го ряда, произведем их переформирование. Переформирование рангов производится в табл.
Номера мест в упорядоченном ряду Расположение факторов по оценке эксперта Новые ранги
1 1 1
2 2 2
3 3 3
4 4 4.5
5 4 4.5
6 6 6
Матрица рангов.
ранг X, d x ранг Y, d y (d x - d y) 2
5 4.5 0.25
3.5 4.5 1
1 3 4
3.5 1 6.25
6 6 0
2 2 0
21 21 11.5
Поскольку среди значений признаков х и у встречается несколько одинаковых, т.е. образуются связанные ранги, то в таком случае коэффициент Спирмена вычисляется как:

где


j - номера связок по порядку для признака х;
А j - число одинаковых рангов в j-й связке по х;
k - номера связок по порядку для признака у;
В k - число одинаковых рангов в k-й связке по у.
A = [(2 3 -2)]/12 = 0.5
B = [(2 3 -2)]/12 = 0.5
D = A + B = 0.5 + 0.5 = 1

Связь между признаком Y и фактором X умеренная и прямая.