Полипропилен (ПП). Справочник свойств и обзор сфер применения

В настоящее время широко используются в различных отраслях промышленности, а также в повседневной жизни. Именно поэтому во многих ситуациях необходимо предварительно подбирать полимер под определенные температурные показатели их эксплуатации.

Например, температура плавления полиэтилена составляет диапазон от 105 до 135 градусов, поэтому можно заранее выявить те сферы производства, где этот материал будет уместен к использованию.

Особенности полимеров

Каждый пластик имеет как минимум одну температуру, которая дает возможность оценить условия его непосредственной эксплуатации. Например, полиолефины, к которым относятся пластики и пластмассы, имеют невысокие значения температур плавления.

В градусах зависит от плотности, а эксплуатация данного материала допускается при параметрах от -60 до 1000 градусов.

Помимо полиэтилена, к полиолефинам относится полипропилен. Температура плавления дает возможность применять этот материал при низких температурах, хрупкость материал приобретает только при -140 градусах.

Плавление полипропилена наблюдается в диапазоне температур от 164 до 170 градусов. От -8°С данный полимер становится хрупким.

Пластик на базе темплена способен выдержать температурные параметры 180-200 градусов.

Рабочая температура эксплуатации пластиков на базе полиэтилена и полипропилена составляет диапазон от -70 до +70 градусов.

Среди пластиков, имеющих высокую температуру плавления, выделим полиамиды и фторопласты, а также ниплон. К примеру, размягчение капролона происходит при температуре 190-200 градусов, плавление данной пластической массы происходит в диапазоне 215-220°С. Невысокая температура плавления полиэтилена и полипропилена делает эти материалы востребованными в химическом производстве.

Особенности полипропилена

Данный материал является веществом, получаемым в результате реакции термопластичным полимером. Процесс осуществляется с использованием металлокомплексных катализаторов.

Условия для получения данного материала аналогичны тем, при которых можно изготавливать полиэтилен низкого давления. В зависимости от выбранного катализатора можно получать любой тип полимера, а также его смесь.

Одной из важнейших характеристик свойств этого материала является температура, при которой данный полимер начинает плавиться. При обычных условиях он является белым порошком (либо гранулами), находится в пределах до 0, 5 г/см³.

В зависимости от молекулярной структуры принято подразделять полипропилен на несколько видов:

  • атактический;
  • синдиотактический;
  • изотактический.

У стереоизомеров существуют отличия в механических, физических, химических свойствах. К примеру, для атактического полипропилена характерна высокая текучесть, материал сходен с каучуком по внешним параметрам.

Данный материал неплохо растворяется в диэтиловом эфире. У изотактического полипропилена есть некоторые отличия по свойствам: плотности, устойчивости к химическим реагентам.

Физико-химические параметры

Температура плавления полиэтилена, полипропилена имеет высокие показатели, поэтому данные материалы в настоящее время получили широкое распространение. Полипропилен тверже, у него выше показатели стойкости к истиранию, он отлично выдерживает температурные перепады. Его размягчение начинается с 140 градусов, несмотря на то, что показатель температуры плавления составляет 140°С.

Данный полимер не подвергается коррозионному растрескиванию, отличается устойчивостью к ультрафиолетовому облучению и кислороду. При добавлении к полимеру стабилизаторов подобные свойства снижаются.

В настоящее время в промышленных отраслях применяют разнообразные виды полипропилена и полиэтилена.

Полипропилен обладает неплохой химической устойчивостью. Например, при помещении его в органические растворители, возникает лишь незначительное его набухание.

В случае повышении температуры до 100 градусов, материал может растворяться в ароматических углеводородах.

Наличие в молекуле третичных углеродных атомов объясняет стойкость полимера к повышенным температурам и влиянию прямых солнечных лучей.

При отметке 170 градусов происходит плавление материала, теряется его форма, а также основные технические характеристики. Современные отопительные системы не рассчитаны на подобные значения температур, поэтому вполне можно использовать полипропиленовые трубы.

При кратковременном изменении уровня температуры изделие способно сохранить свои характеристики. При длительной эксплуатации изделия из полипропилена при показателях температуры больше 100 градусов существенно сократится срок их максимальной эксплуатации.

Специалисты советуют покупать армированные изделия, которые в минимальной степени подвергаются деформациям при повышении температуры. Дополнительная изоляция и внутренний алюминиевый либо стекловолокнистый слой помогут защитить изделие от расширения, увеличат срок его эксплуатации.

Отличия полиэтилена от полипропилена

Температура плавления полиэтилена незначительно отличается от Оба материала в случае нагревания размягчаются, затем плавятся. Они устойчивы к механическим деформациям, являются отличными диэлектриками (не проводят электрический ток), обладают незначительным весом, не способны вступать во взаимодействие со щелочами и растворителями. Несмотря на многочисленное сходство, есть между этими материалы и некоторые отличия.

Так как температура плавления полиэтилена имеет меньшее значение, он менее стоек к воздействию ультрафиолетового излучения.

Обе пластмассы находятся в твердом агрегатном состоянии, не имеют запаха, вкуса, цвета. Полиэтилен низкого давления обладает токсичными свойствами, пропилен абсолютно безопасен для человека.

Температура плавления находится в диапазоне от 103 до 137 градусов. Материалы используют при изготовлении косметических средств, бытовой химии, декоративных вазонов, посуды.

Отличия полимеров

В качестве основных отличительных характеристик полиэтилена и полипропилена выделим их устойчивость к загрязнению, а также прочность. У этого материала отличные теплоизоляционные характеристики. Полипропилен лидирует по этим показателям, поэтому он применяется в настоящее время в больших объемах, чем вспененный полиэтилен, температура плавления которого имеет меньшее значение.

Сшитый полиэтилен

Температура плавления сшитого полиэтилена значительно выше, чем у обычного материала. Данный полимер представляет собой модифицированную структуру связей между молекулами. Основу структуры составляет этилен, полимеризированный под высоким давлением.

Именно у этого материала самые высокие технические характеристики из всех полиэтиленовых образцов. Полимер применяют для создания прочных деталей, которые способны выдерживать разные химические, механические нагрузки.

Высокая температура плавления полиэтилена в экструдере предопределяет области использования данного материала.

В сшитом полиэтилене широкоячеистая сетчатая структура молекулярных связей, образуемая при появлении в структуре поперечных цепочек, состоящих из водородных атомов, которые объединены в трехмерную сетку.

Технические параметры

Помимо высокой прочности и плотности, сшитый полиэтилен имеет оригинальные свойства:

  • плавление при 200 градусах, разложение на углекислый газ и воду;
  • увеличение жесткости и прочности при уменьшении величины удлинения на разрыв;
  • устойчивость к агрессивным химическим веществам, биологическим разрушителям;
  • «память формы».

Недостатки сшитого полиэтилена

Этот материал при воздействии ультрафиолетового облучения постепенно разрушается. Кислород, проникая в его структуру, разрушает данный материал. Для того чтобы устранить эти недостатки, изделия покрывают специальными защитными оболочками, изготовленными из иных материалов, либо наносят на них слой краски.

Получаемый материал имеет универсальные свойства: стойкость к разрушителям, прочность, высокую температуру плавления. Они позволяют использовать сшитый полиэтилен для изготовления труб горячего или холодного водоснабжения, изоляции кабеля высокого напряжения, создания современных строительных материалов.

В заключение

В настоящее время полиэтилен и полипропилен считаются одними из самых востребованных материалов. В зависимости от условий протекания процесса можно получать полимеры с заданными техническими характеристиками.

Например, создавая определенное давление, температуру, выбирая катализатор, можно контролировать процесс, направлять его в сторону получения молекул полимера.

Получение пластмасс, которые обладают определенными физическими и химическими характеристиками, позволило существенно расширить сферы их использования.

Производители изделий из этих полимеров стараются совершенствовать технологии, увеличить срок эксплуатации продукции, повышать их устойчивость к перепадам температур, воздействию прямых солнечных лучей.

Полиэтилен (PE) и полипропилен (PP) - распространенные полимерные материалы, востребованные в промышленности. Их применяют для изготовления пластмассы, тары, труб, упаковочных и термоизоляционного волокна и т. д.

Между полимерами немало схожих свойств:

  • Долговечность - сохраняют внешний вид при воздействиях.
  • Универсальность - размягчаются при нагревании, что дает возможность применять их в разных сферах.
  • Удобством в эксплуатации - имеют низкую массу.
  • Практичность - не подвергаются воздействию воды, кислорода и солей.
  • Электроизоляция - не проводят электрический ток.

Полиэтиленовая (слева) и полипропиленовая (справа) гранулы

Отличие полипропилена от полиэтилена

Полипропилен и полиэтилен широко применяются в промышленности и часто потребителю они кажутся одинаковыми. Но, полимеры имеют немало отличий.

Чем отличается полипропилен от полиэтилена:

  • Легкостью - PP весит на 0,04 г/куб. см. меньше.
  • Температурой плавления - полипропилен плавится при 180 градусов С, а полиэтилен - при 140 градусов С.
  • Уходом - продукция из PP практически не подвержена загрязнениям и легко отмываются.
  • Методами синтезирования - полиэтилен изготавливает при любых условиях, а полипропилен - при низком давлении.
  • Затратами - изготовление продукции из полипропилена обходится дороже, чем производство полиэтилена из-за дороговизны сырья.

Чем отличается полиэтилен от полипропилена:

Эластичностью - полиэтилен более гибкий, а полипропилен - хрупкий.

  • Морозостойкостью - PE не утрачивает свойства при температуре до -50 градусов С, а для PP разрушается при -5 градусов С.
  • Легкостью - за счет небольшого веса полиэтилен пригоден при изготовлении пленок, упаковки, труб и изоляционных изделий.
  • Отсутствием токсичности - при нагреве PE токсины улетучиваются.

Пленка из полиэтилена и полипропилена: отличия

Пленка из PP и PE используется для сохранности хрупких товаров и имеет несколько отличий:

  • Экономичность - при равных параметрах с аналогом полиэтиленовая упаковка дешевле на 50%.
  • Презентабельность - глянцевая пленка из PP выглядит гораздо привлекательнее, чем тусклая вещь из полиэтилена.
  • Практичность - полипропилен менее подвержен сминанию и не теряет внешний вид из-за погрузочно-разгрузочных работ.
  • Стойкость к температурам - полипропилен становится хрупким от холода, а полиэтилен переносит замораживание.

Что прочнее: пластмасса из полипропилена или полиэтилена

Продукция из пластмассы отличаются невысокой ценой и долговечностью. Трубы, посуда и прочие изделия получаются при синтезировании PE при низком давлении. Полиэтилен высокого давления менее прочный и применим при изготовлении ПЭТ и брезента.

Полиэтиленовые и полипропиленовые трубы

Полипропилен подходит для изготовления упаковки, болоньевой одежды и волокна. PP не страшна жара, растворители и изгибы. Он не токсичен, но боится ультрафиолета и мороза.

Полипропилен или полиэтилен: что лучше

Оба полимера используются в разных отраслях промышленности. В зависимости от способа синтезирования и назначения производители полимеров добиваются максимальной выгоды от полимеров.

Условия протекания синтеза сырья влияет на технические характеристики полимеров. Например, при создании давления и выборе катализатора получается продукция с разными химическими и физическими характеристиками.

На основе полипропилена создают стройматериалы и различные контейнеры. Полиэтилен высокого давления оптимален при производстве труб, а полиэтилен высокого давления - для изготовления упаковки.

Представляет собой воскообразную массу белого цвета (тонкие листы прозрачны и бесцветны). Химически- и морозостоек, изолятор , не чувствителен к удару (амортизатор), при нагревании размягчается (80-120°С), при охлаждении застывает, адгезия - чрезвычайно низкая. Иногда в народном сознании отождествляется с целлофаном - похожим материалом растительного происхождения.

Получение

На обработку поступает в виде гранул от 2 до 5 мм. Полиэтилен получают полимеризацией этилена:

Получение полиэтилена высокого давления

Полиэтилен высокого давления (ПЭВД), или Полиэтилен низкой плотности (ПЭНП) образуется при следующих условиях:

  • температура 200-260 °C ;
  • давление 150-300 МПа ;
  • присутствие инициатора (кислород или органический пероксид);

в автоклавном или трубчатом реакторах. Реакция идёт по радикальному механизму. Получаемый по этому методу полиэтилен имеет средневесовой молекулярный вес 80 000-500 000 и степень кристалличности 50-60 . Жидкий продукт впоследствии гранулируют . Реакция идёт в расплаве.

Получение полиэтилена среднего давления

Полиэтилен среднего давления (ПЭСД) образуется при следующих условиях:

  • температура 100-120 °C;
  • давление 3-4 МПа;
  • присутствие катализатора (катализаторы Циглера - Натта , например, смесь TiCl 4 и R 3);

продукт выпадает из раствора в виде хлопьев. Получаемый по этому методу полиэтилен имеет средневесовой молекулярный вес 300 000-400 000, степень кристалличности 80-90 %.

Получение полиэтилена низкого давления

Полиэтилен низкого давления (ПЭНД) или Полиэтилен высокой плотности (ПЭВП) образуется при следующих условиях:

  • температура 120-150 °C;
  • давление ниже 0.1 - 2 МПа;
  • присутствие катализатора (катализаторы Циглера-Натта, например, смесь TiCl 4 и R 3);

Полимеризация идёт в суспензии по ионно-координационному механизму. Получаемый по этому методу полиэтилен имеет средневесовой молекулярный вес 80 000-3 000 000, степень кристалличности 75-85 %.

Следует иметь в виду, что названия «полиэтилен низкого давления», «среднего давления», «высокой плотности» и т. д. имеют чисто риторическое значение. Так, полиэтилен, получаемый по 2- и 3-му методам, имеет одинаковую плотность и молекулярный вес. Давление в процессе полимеризации при так называемых низком и среднем давлениях в ряде случаев одно и то же.

Другие способы получения полиэтилена

Существуют и другие способы полимеризации этилена, например под влиянием радиоактивного излучения, однако они не получили промышленного распространения.

Модификации полиэтилена

Ассортимент полимеров этилена может быть значительно расширен получением сополимеров его с другими мономерами, а также путём получения композиций при компаундировании полиэтилена одного типа с полиэтиленом другого типа, полипропиленом , полиизобутиленом, каучуками и т. п.

На основе полиэтилена и других полиолефинов могут быть получены многочисленные модификации - привитые сополимеры с активными группами, улучшающими адгезию полиолефинов к металлам, окрашиваемость, снижающими его горючесть и т. д.

Особняком стоят модификации так называемого «сшитого» полиэтилена ПЭ-С (PE-X) . Суть сшивки состоит в том, что молекулы в цепочке соединяются не только последовательно, но и образуются боковые связи которые соединяют цепочки между собой, за счёт этого достаточно сильно изменяются физические и в меньшей степени химические свойства изделий.

Различают 4 вида сшитого полиэтилена (по способу производства): пероксидный (а), силановый (b), радиационный (с) и азотный (d). Наибольшее распространение получил РЕх-b, как наиболее быстрый и дешёвый в производстве.

Молекулярное строение

Макромолекулы полиэтилена высокого давления (n ≅1000) содержат боковые углеводородные цепи C 1 -С 4 , молекулы полиэтилена среднего давления практически неразветвлённые, в нём больше доля кристаллической фазы, поэтому этот материал более плотный; молекулы полиэтилена низкого давления занимают промежуточное положение. Большим количеством боковых ответвлений объясняется более низкая кристалличность и соответственно более низкая плотность ПЭВД по сравнению с ПЭНД и ПЭСД.

Показатели, характеризующие строение полимерной цепи различных видов полиэтилена:

Показатель

ПЭВД

ПЭСД

ПЭНД

Общее число групп СН 3 на 1000 атомов углерода:

Число концевых групп СН 3 на 1000 атомов углерода:

Этильные ответвления

Общее количество двойных связей на 1000 атомов углерода

в том числе:

винильных двойных связей (R-CH=CH 2), %

винилиденовых двойных связей (), %

транс-виниленовых двойных связей (R-CH=CH-R’), %

Степень кристалличности, %

Плотность, г/см³

Полиэтилен низкого давления (HDPE)

Физико-химические свойства ПЭНД при 20°C:

Параметр

Значение

Плотность, г/см³

Разрушающее напряжение, кгс/см²

при растяжении

при статическом изгибе

при срезе

относительное удлинение при разрыве, %

модуль упругости при изгибе, кгс/см²

предел текучести при растяжении, кгс/см²

относительное удлинение в начале течения, %

При комнатной температуре нерастворим и не набухает ни в одном из известных растворителей. При повышенной температуре (80 °C) растворим в циклогексане и четырёххлористом углероде . Под высоким давлением может быть растворён в перегретой до 180 °C воде .

Со временем, деструктурирует с образованием поперечных межцепных связей, что приводит к повышению хрупкости на фоне небольшого увеличения прочности. Нестабилизированный полиэтилен на воздухе подвергается термоокислительной деструкции (термостарению). Термостарение полиэтилена проходит по радикальному механизму, сопровождается выделением альдегидов, кетонов, перекиси водорода и др.

Полиэтилен низкого давления (HDPE) применяется при строительстве полигонов переработки отходов, накопителей жидких и твёрдых веществ, способных загрязнять почву и грунтовые воды.

Переработка

Полиэтилен (кроме сверхмолекулярного) перерабатывается всеми известными для пластмасс методами, такими как экструзия , экструзия с раздувом, литьё под давлением , пневматическое формование . Экструзия полиэтилена возможна на оборудовании с установленным «универсальным» червяком.

Применение

  • Полиэтиленовая плёнка (особенно упаковочных, например, пузырчатая упаковка или скотч),
  • Тара (бутылки , банки , ящики , канистры , садовые лейки , горшки для рассады)
  • Полимерные трубы для канализации , дренажа , водо-, газоснабжения.
  • Полиэтиленовый порошок используется как термоклей .
  • Броня (бронепанели в бронежилетах)
  • Корпуса для лодок , вездеходов

Деталей технической аппаратуры, диэлектрических антенн, предметов домашнего обихода и др.; Малотоннажная марка полиэтилена - так называемый «сверхвысокомолекулярный полиэтилен», отличающийся отсутствием каких-либо низкомолекулярных добавок, высокой линейностью и молекулярной массой, используется в медицинских целях в качестве замены хрящевой ткани суставов. Несмотря на то, что он выгодно отличается от ПЭНД и ПЭВД своими физическими свойствами, применяется редко из-за трудности его переработки, так как обладает низким ПТР и перерабатывается только литьём.

n CH 2 =CH(CH 3) → [-CH 2 -CH(CH 3)-] n

Международное обозначение – PP.

Параметры, необходимые для получения полипропилена близки к тем, при которых получают полиэтилен низкого давления. При этом, в зависимости от конкретного катализатора, может получаться любой тип полимера или их смеси.

Полипропилен выпускается в виде порошка белого цвета или гранул с насыпной плотностью 0,4-0,5 г/см³. Полипропилен выпускается стабилизированным, окрашенным и неокрашенным.

Молекулярное строение

По типу молекулярной структуры можно выделить три основных типа: изотактический, синдиотактический и атактический. Изотактический и синдиотактический образуются случайным образом;

Физико-механические свойства

В отличие от полиэтилена, полипропилен менее плотный (плотность 0,91 г/см 3 , что является наименьшим значением вообще для всех пластмасс), более твёрдый (стоек к истиранию), более термостойкий (начинает размягчаться при 140 °C, температура плавления 175 °C), почти не подвергается коррозионному растрескиванию. Обладает высокой чувствительностью к свету и кислороду (чувствительность понижается при введении стабилизаторов).

Поведение полипропилена при растяжении ещё в большей степени, чем полиэтилена, зависит от скорости приложения нагрузки и от температуры. Чем ниже скорость растяжения полипропилена, тем выше значение показателей механических свойств. При высоких скоростях растяжения разрушающее напряжение при растяжении полипропилена значительно ниже его предела текучести при растяжении.

Показатели основных физико-механических свойств полипропилена приведены в таблице:

Физико-механические свойства полипропилена разных марок приведены в таблице:

Физико-механические свойства полипропилена различных марок

Показатели / марка

01П10/002

02П10/003

03П10/005

04П10/010

05П10/020

06П10/040

07П10/080

08П10/080

09П10/200

Насыпная плотность, кг/л, не менее

Показатель текучести расплава, г/10 мин

Относительное удлинение при разрыве, %, не менее

Предел текучести при разрыве, кгс/см² , не менее

Стойкость к растрескиванию, ч, не менее

Теплостойкость по методу НИИПП, °C

Полиэтилен (ПЭ) : физико-химические и потребительские свойства, структура потребления, области применения полиэтилена

Полиолефины представляют собой самый распространенный тип полимеров получаемых реакциями полимеризации и сополимеризации непредельных углеводородов (этилена, пропилена, бутилена и других альфа-олефинов). Около 50% производимого в мире этилена используется для получения полиэтилена.

Химическая структура молекулы полиэтилена проста и представляет собою цепочку атомов углерода, к каждому из которых присоединены две молекулы водорода.
Полиэтилен (ПЭ) [–СН2-СН2–]n существует в двух модификациях, отличающихся по структуре, а значит, и по свойствам. Обе модификации получаются из этилена СН2=СН2. В одной из форм мономеры связаны в линейные цепи со степенью полимеризации (СП) обычно 5000 и более; в другой – разветвления из 4-6 углеродных атомов присоединены к основной цепи случайным способом. Линейные полиэтилены производятся с использованием особых катализаторов, полимеризация протекает при умеренных температурах (до 150 0С) и давлениях (до 20 атм.).
Полиэтилен - термопластичный полимер, непрозрачен в толстом слое, кристаллизуется в диапазоне температур от минус 60 °С до минус 369 °С; не смачивается водой, при комнатной температуре не растворяется в органических растворителях, при температуре выше 80 °С сначала набухает, а затем растворяется в ароматических углеводородах и их галогенопроизводных; ПЭ устойчив к действию водных растворов солей, кислот, щелочей, но при температурах выше 60 °С серная и азотная кислоты быстро его разрушают. Кратковременная обработка ПЭ окислителем (например, хромовой смесью) приводит к окислению поверхности и смачиванию ее водой, полярными жидкостями и клеями. В этом случае изделия из ПЭ можно склеивать.
Этилен может быть полимеризован несколькими способами, в зависимости от этого полиэтилен разделяют на: полиэтилен высокого давления (ПЭВД) или низкой плотности (ПЭНП); полиэтилен низкого давления (ПЭНД) или высокой плотности (ПЭВП); а также еще на линейный полиэтилен.
ПЭВД полимеризуется радикальным способом под давле¬нием от 1000 до 3000 атмосфер и при температуре 180 градусов. Инициатором служит кислород.
ПЭНД полимеризуется при давлении не менее 5 атмосфер и температуре 80 градусов при помощи катализаторов Циглера-Натта и органического растворителя.
Линейный полиэтилен (есть еще название полиэтилен среднего давления) получают при 30-40 атмосферах и температуре около 150 градусов. Такой полиэтилен является как бы «промежуточным» продуктом между ПЭНД и ПЭВД, что касается свойств и качеств.
Не так давно начала применяться технология, где используются так называемые металлоценовые катализаторы. Смысл технологии заключается в том, что удается добиться более высокой молекулярной массы полимера, это, соответственно, увеличивает прочность изделия.
По своей структуре и свойствам (несмотря на то, что используется один и тот же мономер), ПЭВД, ПЭНД, линейный полиэтилен отличаются, и, соответственно, применяются для различных задач. ПЭВД мягкий материал, ПЭНД и линейный полиэтилен имеют жесткую структуру.
Также отличия проявляются в плотности, температуре плавления, твердости, и прочности.
Сравнительная характеристика полиэтилена высокого и низкого давления (ПЭВД и ПЭНД)

Основной причиной, вызывающей различия в свойствах ПЭ, является разветвленность макромолекул: чем больше разветвлений в цепи, тем выше эластичность и меньше кристалличность полимера. Paзветвления затрудняют более плотную упаковку макромолекул и препятствуют достижению степени кристалличности 100 %; наряду с кристаллической фазой всегда имеется аморфная, содержащая недостаточно упорядоченные участки макромолекул. Соотношение этих фаз зависит от способа получения ПЭ и условии его кристаллизации. Оно определяет и свойства полимера. Пленки из ПЭНП в 5-10 раз более проницаемы, чем пленки из ПЭВП.
Механические показатели ПЭ возрастают с увеличением плотности (степени кристалличности) и молекулярной массы. В виде тонких пленок ПЭ (особенно полимер низкой плотности) обладает большей гибкостью и некоторой прозрачностью, а в виде листов приобретает большую жесткость и непрозрачность.
Полиэтилен устойчив к ударным нагрузкам. Среди наиболее важных свойств полиэтилена можно отметить морозостойкость. Они могут эксплуатироваться при температурах от -70°С до 60 °С (ПЭНП) и до 100 °С (ПЭВП), некоторые марки сохраняют свои ценные свойства при температурах ниже -120°С.
Полиэтилены, являясь предельными углеводородами, стойки по отношению ко многим агрессивным средам (кислотам, щелочам и т.д.) и органическим жидкостям.
Существенным недостатком полиэтилена является его быстрое старение. Срок старения увеличивают за счет специальных добавок - противостарителей (фенолы, амины, газовая сажа).
Вязкость расплава ПЭНП выше, чем ПЭВП, поэтому он перерабатывается в изделия легче.
По электрическим свойствам ПЭ, как неполярный полимер, относится к высококачественным высокочастотным диэлектрикам, диэлектрическая проницаемость и тангенс угла диэлектрических потерь мало изменяются с изменением частоты электрического поля, температуры в пределах от минус 80 °С до 100 °С и влажности. Однако остатки катализатора в ПЭВП повышают тангенс угла диэлектрических потерь, особенно при изменении температуры, что приводит к некоторому ухудшению изоляционных свойств.
Полиэтилен низкого давления PEHD
Легкий эластичный кристаллизующийся материал с теплостойкостью отдельных марок до 110 0С. Допускает охлаждение до -80 0С. Температура плавления марок: 120-135 0С. Температура стеклования: ок. -20 0С. Дает блестящую поверхность.
Характеризуется хорошей ударной прочностью и большей теплостойкостью по сравнению с LDPE.
Свойства сильно зависят от плотности материала. Увеличение плотности приводит к повышению прочности, жесткости, твердости, химической стойкости. В то же время при увеличении плотности снижается ударопрочность при низких температурах, удлинение при разрыве, проницаемость для газов и паров.
Наблюдается высокая ползучесть при длительном нагружении. Имеет очень высокую химическую стойкость (больше, чем у LDPE). Обладает отличными диэлектрическими характеристиками. Биологически инертен. Легко перерабатывается.


Показатели (23 0С)

Значения для ненаполненных марок

Плотность

0,94-0,97 г/см3

Теплостойкость по Вика (в жидкой среде, 50 0С/ч, 50Н)

Предел текучести при растяжении (50 мм/мин)

Модуль упругости при растяжении (1 мм/мин)

Относительное удлинение при растяжении (50мм/мин)

Ударная вязкость по Шарпи (образец с надрезом)

Твердость при вдавливании шарика (358 Н, 30с)

Удельное поверхностное электрическое сопротивление

10^14-10^15 Ом

Водопоглощение (24 ч, влажность 50%)

Полиэтилен ПНД (высокой плотности) применяется преимущественно для выпуска тары и упаковки. За рубежом примерно третья часть выпускаемого полимера используется для изготовления контейнеров выдувным формованием (емкости для пищевых продуктов, парфюмерно-косметических товаров, автомобильных и бытовых химикатов, топливных баков и бочек). При этом стоит отметить, что по сравнению с другими областями, опережающими темпами растет использование ПЭНД для производства упаковочных пленок. ПЭ НД находит также применение в производстве труб и деталей трубопроводов, где используются такие достоинства материала как долговечность (срок службы - 50 лет), простота стыковой сварки, дешевизна (в среднем на 30% ниже по сравнению с металлическими трубами).
Полиэтилен высокого давления

Другие обозначения: PE-LD, PEBD (французское и испанское обозначение).
Легкий эластичный кристаллизующийся материал с теплостойкостью без нагрузки до 60°С (для отдельных марок до 90 °С). Допускает охлаждение (различные марки в диапазоне от -45 до -120 °С).
Свойства сильно зависят от плотности материала. Увеличение плотности приводит к повышению прочности, жесткости, твердости, химической стойкости. В то же время при увеличении плотности снижается ударопрочность при низких температурах, удлинение при разрыве, трещиностойкость, проницаемость для газов и паров. Склонен к растрескиванию при нагружении. Не отличается стабильностью размеров.
Обладает отличными диэлектрическими характеристиками. Имеет очень высокую химическую стойкость. Не стоек к жирам, маслам. Не стоек к УФ-излучению. Отличается повышенной радиационной стойкостью. Биологически инертен. Легко перерабатывается.
Характеристики марочного ассортимента
(минимальные и максимальные значения для промышленных марок)

Примеры применения

Полиэтилен ПВД (низкой плотности) используется в основном в производстве пищевых, технических, сельскохозяйственных пленок и для изоляции трубопроводов. В последние годы за рубежом наиболее активно растет объем потребления и производства линейного полиэтилена низкой плотности, который в ряде зарубежных стран в значительной степени вытеснил из основных сегментов рынка (производство пленок) ПЭНП.
Линейный полиэтилен LLDPE

Другие обозначения: PE-LLD, L-LDPE
Легкий эластичный кристаллизующийся материал. Теплостойкость до 118 0С. Имеет большую стойкость к растрескиванию, ударную прочность и теплостойкость, чем полиэтилен низкой плотности (LDPE). Биологически инертен. Легко перерабатывается. Дает меньшее коробление и большую стабильность размеров, чем LDPE.
Характеристики марочного ассортимента
(минимальные и максимальные значения для промышленных марок)

Примеры применения

Упаковка. Контейнеры (в том числе для пищевых продуктов), емкости.
Сэвилен: TУ 6-05-1636-97
Сэвилен – сополимер этилена с винилацетатом – представляет собой высокомолекулярное соединение, относящееся к полиолефинам. Получают его методом, аналогичным методу производства полиэтилена низкой плотности (высокого давления).
Сэвилен превосходит полиэтилен по прозрачности и эластичности при низких температурах, обладает повышенной адгезией к различным материалам.
Свойство сэвилена зависят, главным образом, от содержания винилацетата (5-30 вес. %). С повышением содержания винилацетата кристалличность, разрушающее напряжение при растяжении, твердость, теплостойкость уменьшаются, в то время кок плотность, эластичность, прозрачность, адгезия увеличиваются.
Сэвилен с содержанием винилацетата до 15% (марки 11104-030, 11306-075) перерабатывается теми же методами, что и полиэтилен низкой плотности, но переработка экструзией и литьем под давлением ведется при более низкой температуре.
Из сэвилена марок 11104-030, 11306-075 можно изготавливать выдувные изделия, шланги, прокладки, игрушки. Из этих же марок сэвилена получают атмосферостойкие, прозрачные пленки, обладающие, по сравнению с полиэтиленовыми пленками, более низкой температурой плавления.
Высокие адгезионные свойства сэвилена и хорошая совмещаемость с восками дает возможность для использования его в качестве покрытия бумаги и картона при производстве тары. Для этих целей применяется сэвилен с содержанием винилацетата 21-30 вес. % (марки 11507-070, 11708-210, 11808-340).
Важной областью использования сэвилена является приготовление на его основе клеев-расплавов. Клеи-расплавы не содержат растворителей, при комнатной температуре – это твердые вещества. Используются они в расплавленном виде при температуре 120 – 200С.
Для получения клеев-расплавов служит сэвилен, содержащий 21 -30 вес.% винилацетата (марки 11507-070, 11708-210, 11808-340). Клеи-расплавы на основе сэвилена широко применяются в полиграфической, мебельной, обувной и других отраслях промышленности.
Сэвилен хорошо совмещается с различными наполнителями, что обусловливает широкое распространение наполненных продуктов.
Таблица качественных показателей марок сэвилена ТУ 6-05-1636-97

Наименование показателей

Сэвилен 11104-030

Сэвилен 11205-040

Сэвилен 11306-075

Сэвилен 11407-027

Сэвилен 12206-007

Сэвилен 12306-020

Плотность, г/см2

Показатели текучести расплава, г/10 мин, в пределах:

при t=190 0С

Разброс показателя текучести расплава в пределах партии, %

Массовая доля винилацетата, % в пределах

Кол-во включений, шт. не более

Прочность при разрыве, МПа (кгс/см2), не менее

Относительное удлинение при разрыве %, не менее

Адгезионная прочность, Н/мм (кгс/см), не менее

Стойкость к термоокислительному старению, ч, не менее, для рецептур 02, 03, 06

Стойкость к термоокислительному старению, ч, не менее, для рецептур 05,07

не нормируется

не нормируется

не нормируется

Метод перераьотки

экструзия, литье

экструзия, литье, компаундирование

экструзия

экструзия, литье

экструзия, литье

Комплекс физико-механических, химических и диэлектрических свойств ПЭ определяет его потребительские свойства и позволяет широко применять во многих отраслях промышленности (кабельной, радиотехнической, химической, легкой, медицине и др.).
Структура потребления ПЭ, %

Изоляция электрических проводов . Высокие диэлектрические свойства полиэтилена и его смесей с полиизобутиленом, малая проницаемость для паров воды позволяют широко использовать его для изоляции электропроводов и изготовления кабелей, применяемых в различных средствах связи (телефонной, телеграфной), сигнальных устройствах, системах диспетчерского телеуправления, высокочастотных установках, для обмотки проводов двигателей, работающих в воде, а также для изоляции подводных и коаксиальных кабелей.
Кабель с изоляцией из полиэтилена имеет преимущества по срав¬нению с каучуковой изоляцией. Он легок, более гибок и обладает большей электрической прочностью. Провод, покрытый тонким слоем полиэтилена, может иметь верхний слой из пластифицированного поливинилхлорида, образующего хорошую механическую защиту от повреждений.
В производстве кабелей находит применение ПЭНП, сшитый небольшими количествами (1-3 %) органических перекисей или облученный быстрыми электронами.
Пленки и листы. Пленки и листы могут быть изготовлены из ПЭ любой плотности. При получении тонких и эластичных пленок более широко применяется ПЭНП.
Пленки изготовляются двумя методами: экструзией расплавленного полимера через кольцевую щель с последующим раздувом или экструзией через плоскую щель с последующей вытяжкой. Они выпускаются толщиной 0,03-0,30 мм, шириной, до 1400 мм (в некоторых случаях до 10 м) и длиной до 300 м.
Кроме тонких пленок, из ПЭ изготовляют листы толщиной 1-6 мм и шириной до 1400 мм, Их применяют в качестве футеровочного и электроизоляционного материала и перерабатывают в изделия технического к бытового назначения методом вакуумного формования.
Большая часть продукции из ПЭНП служит упаковочным материалом, конкурируя с другими пленками (целлофановой, поливинилхлоридной, поливинилиденхлоридной, поливинилфторидной, полиэтилентерефталатнсй, из поливинилового спирта и др.), меньшая часть используется для изготовления различных изделий (сумок, мешков, облицовки для ящиков, коробок и других видов тары).
Широко применяются пленки для упаковки замороженного мяса и птицы, при изготовлении аэростатов и баллонов для проведения метеорологических и других исследований верхних слоев атмосферы, защиты от коррозии магистральных нефте- и газопроводов. В сельском хозяйстве прозрачная пленка используется для замены стекла в теплицах и парниках. Черная пленка служит для покрытия почвы в целях задержания тепла при выращивании овощей, плодово-ягодных и бобовых культур, а также для выстилания силосных ям, дна водоемов и каналов. Все больше применяется полиэтиленовая пленка в качестве материала для крыш и стен при сооружении помещений для хранения урожая, сельскохозяйственных машин и другого оборудования.
Из полиэтиленовой пленки изготовляют предметы домашнего обихода: плащи, скатерти, гардины, салфетки, передники, косынки и т. п. Пленка может быть нанесена с одной стороны на различные материалы: бумагу, ткань, целлофан, металлическую фольгу.
Армированная полиэтиленовая пленка отличается большей прочностью, чем обычная пленка такой же толщины. Материал состоит из двух пленок, между которыми находятся армирующие нити из синтетических или природных волокон или редкая стеклянная ткань.
Из очень тонких армированных пленок изготовляют скатерти, а также пленки для теплиц; из более толстых пленок - мешки и упаковочный материал. Армированная пленка, упрочненная редкой стеклянной тканью, может быть применена для изготовления защитной одежды и использована в качестве обкладочного материала для различных емкостей.
На основе пленок из ПЭ могут быть изготовлены липкие (клеящие) пленки или ленты, пригодные для ремонта кабельных линий вы¬сокочастотной связи и для защиты стальных подземных трубопроводов от коррозии. Полиэтиленовые пленки и ленты с липким слоем содержат на одной стороне слой из низкомолекулярного полиизобутилена, иногда в смеси с бутилкаучуком. Выпускаются они толщиной 65-96 мкм, шириной 80-I50 мм.
ПЭНП и ПЭВП применяют и для защиты металлических изделий от коррозии. Защитный слой наносится методами газопламенного и вихревого напыления.
Трубы. Из всех видов пластмасс ПЭ нашел наибольшее применение для изготовления экструзии и центробежного литья труб, характеризующихся легкостью, коррозионной стойкостью, незначительным сопротивлением движению жидкости, простотой монтажа, гибкостью, морозостойкостью, легкостью сварки.
Непрерывным методом выпускаются трубы любой длины с внутренним диаметром 6-300 мм при толщине стенок 1,5-10 мм. Полиэтиленовые трубы небольшого диаметра наматываются на барабаны. Литьем под давлением изготовляют арматуру к трубам, которая включает коленчатые трубы, согнутые под углом 45 и 90 град; тройники, муфты, крестовины, патрубки. Трубы большого диаметра (до 1600 мм) с толщиной стенок до 25 мм получают методом центробежного литья.
Полиэтиленовые трубы вследствие их химической стойкости и эластичности применяются для транспортировки воды, растворов солей и щелочей, кислот, различных жидкостей и газов в химической промышленности, для сооружения внутренней и внешней водопроводной сети, в ирригационных системах и дождевальных установках.
Трубы из ПЭНП могут работать при температурах до 60 0С, а из ПЭВП - до 100 0С. Такие трубы не разрушаются при низких температурах (до – 60 0С) и при замерзании воды; они не подвержены почвенной коррозии.
Формование и литьевые изделия . Из полиэтиленовых листов, полученных экструзией или прессованием, можно изготовить различные изделия штампованием, изгибанием по шаблону или вакуумформованием. Крупногабаритные изделия (лодки, ванны, баки и т. п.) также могут быть изготовлены из порошка полиэтилена путем его спекания на нагретой форме. Отдельные части изделий могут быть сварены при помощи струи горячего воздуха, нагретого до 250 0С.
Формованием и сваркой можно изготовить вентили, колпаки, конейнеры, части вентиляторов и насосов для кислот, мешалки, фильтры, различные емкости, ведра и т. п.
Одним из основных методов переработки ПЭ в изделия является метод литья под давлением. Большое распространение в фармацевтической и химической промышленности получили бутылки из полиэтиле¬на объемом от 25 до 5000 мл, а также посуда, игрушки, электротехнические изделия, решетчатые корзины и ящики.
Выбор того или иного технологического процесса определяется в первую очередь необходимостью получения марочного ассортимента с определенным комплексом свойств. Суспензионный метод целесообразен для производства полиэтилена трубных марок и марок полиэтилена, предназначенного для переработки экструзионным методом, а также для производства высокомолекулярного полиэтилена. С привлечением растворных технологий получают ЛПЭНД, для высококачественных упаковочных пленок, марки полиэтилена для изготовления изде¬лий методами литья и ротационного формования. Газофазным методом производят марочный ассортимент полиэтилена, предназначенный для изготовления товаров народного потребления.

Пластмассы

Цепочки молекул полипропилена.

Предметы быта, полностью или частично сделанные из пластмассы

Пластма́ссы (пласти́ческие ма́ссы) или пла́стики - органические материалы, основой которых являются синтетические или природные высокомолекулярные соединения (полимеры). Исключительно широкое применение получили пластмассы на основе синтетических полимеров.

Название «пластмассы» означает, что эти материалы под действием нагревания и давления способны формироваться и сохранять после охлаждения или отвердения заданную форму. Процесс формования сопровождается переходом пластически деформируемого (вязкотекучего) состояния в стеклообразное состояние .

История

Первая пластмасса была получена английским металлургом и изобретателем Александром Парксом в 1855 году . Паркс назвал её паркезин (позже получило распространение другое название - целлулоид). Паркезин был впервые представлен на Большой Международной выставке в Лондоне в 1862 году. Развитие пластмасс началось с использования природных пластических материалов (например, жевательной резинки , шеллака), затем продолжилось с использованием химически модифицированных природных материалов (таких, как резина , нитроцеллюлоза , коллаген , галалит) и, наконец, пришло к полностью синтетическим молекулам (бакелит , эпоксидная смола , поливинилхлорид , полиэтилен и другие).

Паркезин являлся торговой маркой первого искусственного пластика и был сделан из целлюлозы, обработанной азотной кислотой и растворителем. Паркезин часто называли искусственной слоновой костью . В 1866 году Паркс создал фирму Parkesine Company для массового производства материала. Однако, в 1868 году компания разорилась из-за плохого качества продукции, так как Паркс пытался сократить расходы на производство. Преемником паркезина стал ксилонит (другое название того же материала), производимый компанией Даниэля Спилла , бывшего сотрудника Паркса, и целлулоид, производимый Джоном Весли Хайатом .

Типы пластмасс

В зависимости от природы полимера и характера его перехода из вязкотекучего в стеклообразное состояние при формовании изделий пластмассы делят на

  • Термопласты (термопластичные пластмассы ) - при нагреве расплавляются, а при охлаждении возвращаются в исходное состояние.
  • Реактопласты (термореактивные пластмассы ) - отличаются более высокими рабочими температурами, но при нагреве разрушаются и при последующем охлаждении не восстанавливают своих исходных свойств.

Получение

Производство синтетических пластмасс основано на реакциях полимеризации , поликонденсации или полиприсоединения низкомолекулярных исходных веществ, выделяемых из угля , нефти или природного газа . При этом образуются высокомолекулярные связи с большим числом исходных молекул (приставка «поли-» от греческого «много», например этилен-полиэтилен).

Методы обработки

  • Литьё/литьё под давлением
  • Прессование
  • Виброформование
  • Вспенивание
  • Отливка
  • Сварка

Механическая обработка

Пластические массы, по сравнению с металлами, обладают повышенной упругой деформацией , вследствие чего при обработке пластмасс применяют более высокие давления, чем при обработке металлов . Применять какую-либо смазку, как правило, не рекомендуют; только в некоторых случаях при окончательной обработке допускают применение минерального масла . Охлаждать изделие и инструмент следует струей воздуха.

Пластические массы более хрупки, чем металлы, поэтому при обработке пластмасс режущими инструментами надо применить высокие скорости резания и уменьшать подачу. Износ инструмента при обработке пластмасс значительно больше, чем при обработке металлов, почему необходимо применять инструмент из высокоуглеродистой или быстрорежущей стали или же из твердых сплавов. Лезвия режущих инструментов надо затачивать, по возможности, более остро, пользуясь для этого мелкозернистыми кругами.

Пластмасса может быть обработана на токарном станке , может фрезероваться . Для распиливания может применяться ленточные пилы , дисковые пилы и карборундовые круги.

Сварка

Соединение пластмасс между собой может осуществляться механическим путем с помощью болтов, заклепок, склеиванием, растворением с последующим высыханием, а также при помощи сварки. Из перечисленных способов соединения только при помощи сварки можно получить соединение без инородных материалов, а также соединение, которое по свойствам и составу будет максимально приближено к основному материалу. Поэтому сварка пластмасс нашла применение при изготовлении конструкций, к которым предъявляются повышенные требования к герметичности, прочности и другим свойствам.

Процесс сварки пластмасс состоит в образовании соединения за счет контакта нагретых соединяемых поверхностей. Он может происходить при определенных условиях:

  1. Повышенная температура. Ее величина должна достигать температуры вязкотекучего состояния.
  2. Плотный контакт свариваемых поверхностей.
  3. Оптимальное время сварки - время выдержки.

Также следует отметить, что температурный коэффициент линейного расширения пластмасс в несколько раз больше, чем у металлов, поэтому в процессе сварки и охлаждения возникают остаточные напряжения и деформации, которые снижают прочность сварных соединений пластмасс.

На прочность сварных соединений пластмасс большое влияние оказывают химический состав, ориентация макромолекул, температура окружающей среды и другие факторы.

Применяются различные виды сварки пластмасс:

  1. Сварка газовым теплоносителем с присадкой и без присадки
  2. Сварка экструдируемой присадкой
  3. Контактно-тепловая сварка оплавлением
  4. Контактно-тепловая сварка проплавлением
  5. Сварка в электрическом поле высокой частоты
  6. Сварка термопластов ультразвуком
  7. Сварка пластмасс трением
  8. Сварка пластмасс излучением
  9. Химическая сварка пластмасс

Как и при сварке металлов, при сварке пластмасс следует стремиться к тому, чтобы материал сварного шва и околошовной зоны по механическим и физическим свойствам мало отличался от основного материала. Сварка термопластов плавлением, как и другие методы их переработки, основана на переводе полимера сначала в высокоэластическое, а затем в вязкотекучее состояние и возможна лишь в том случае, если свариваемые поверхности материалов (или деталей) могут быть переведены в состояние вязкого расплава. При этом переход полимера в вязкотекучее состояние не должен сопровождаться разложением материала термодеструкцией.

ООО «Пластик» специализируется на продаже различных материалов ПВХ в Москве. Листовой пластик или листы ПВХ – понятие очень широкое. К ним относятся многие применяемые сегодня полиэфирные материалы, в том числе листы полипропилена и полиэтилена. Если Вас интересуют цены на эти и другие материалы, вы сможете ознакомиться с ними в разделе «прайс-лист» нашего сайта. У нас Вы можете выбрать любой вид ПВХ в зависимости от поставленных целей и сферы применения.

Листы ПВХ обладают массой достоинств. Это и малый вес, стойкость к низким температурам, низкая электрическая проводимость, высокая экологичность и пластичность. Стоит отдельно отметить, что листы ПВХ обладают повышенной прочностью к воздействию условий окружающей среды, способны выдерживать большие нагрузки по весу, чрезвычайно устойчивы к механическим нагрузкам. Листы ПВХ отлично пропускают свет и хорошо удерживают тепло. И полиэтилен, и полипропилен уже достаточно давно существуют на рынке строительных материалов Москвы, ООО «Пластик» имеет большой опыт и профессиональную команду менеджеров, мы сможем предоставить для Вас наиболее выгодные условия, учитывая при этом все Ваши требования и пожелания.

Невысокая цена и свободная продажа листового ПВХ позволила потребителям оценить все его преимущества. Существует множество разновидностей листов ПВХ, что позволяет с успехом применять их в разных областях. Рассмотрим подробнее основные свойства листов ПВХ из полипропилена и полиэтилена, продажа которых осуществляется ООО «Пластик».

Полипропилен

Полипропилен — это термопластичный полимер, который используется для разнообразных целей. Перечислим основные характеристики полипропилена:

  • Полипропилен имеет низкую плотность и очень хорошее сопротивление высокой температуре.
  • Полипропилен обладает высоким пределом прочности и химической стойкости.
  • Полипропилены физиологически безвредены.
  • Полипропилен имеет высокую водостойкость и отличную свариваемость.
  • Строение полипропиленов характеризуется хрупкостью при отрицательных температурах, низкой сопротивляемости трению и низкой ударной прочностью.
  • При работах с полипропиленом возникают трудности с склеиванием, также у материала низкая погодостойкость. Полипропилен имеет частично кристаллическую структуру и обладает плотностью 0,91 — 0,93 гр/см3.
  • Химические свойства полипропилена:
  • Полипропилены обладают стойкостью против щелочей, кислот, алкоголя, солевых растворов, бензина, масла, молока, фруктовых соков.
  • Полипропилен нестойкий против хлорированных углеводородов. Избегайте контакта полипропилена с медью, иначе есть вероятность образования трещин из-за внутренних напряжений. Материал легко воспламеняется, при этом образует капли и продолжает гореть светлым пламенем, сердцевина пламени голубая, выделяется резкий запах парафина.
  • Трубы из полипропилена идеально подходят для систем внутренней канализации.

Полипропилен изготавливают методом прессования или экструзии, имеет натуральный серый цвет. Полипропилен, в отличие от полиэтилена, менее плотный, при этом более твёрдый и термостойкий. В остальном, по основным потребительским свойствам, эти материалы чрезвычайно похожи. Полимер белого цвета, который получен путём полимеризации этилена при высоком давлении, называют полиэтиленом.

Полиэтилен

Полиэтилен может обладать разными свойствами, всё зависит от способа его производства. Полиэтилен бывает высокого (ПВД) или низкого (ПНД) давления. ПВД имеет большую плотность, чем ПНД. Так как производство полиэтилена является несложным процессом, то и стоимость этого полимера невысока (см. прайс-лист на нашем сайте). Полиэтилен можно перерабатывать вторично, выпускается нескольких видов материала:

  • Гранулированный полиэтилен;
  • Трубный полиэтилен;
  • Этилен;
  • Листовой полиэтилен;
  • Шитый полиэтилен и т.д.

Сегодня полипропилен и полиэтилен чрезвычайно востребован на рынке. ООО «Пластик» занимает лидирующие позиции в Москве по продаже этих материалов, поэтому наши цены оптимальны а профессионализм очевиден. Ознакомьтесь с разделом «прайс-лист» на нашем сайте и убедитесь в этом сами.

Область применения полиэтиленов и полипропиленов

Материалы могут применяться для изготовления барабанов, ванн, фильтровальных установок, воздуховодов, насосов, гальванических линий. Всё чаще используют в качестве электроизоляции и облицовки в различных отраслях промышленности. Кроме этого, листы полипропилена применяют для изготовления бытовых изделий: ящиков для рассады, садовой мебели, разделочных досок, ящиков для воды и т.д.

Работы с полиэтиленом чаще всего проводят при производстве кабелей, труб и пакетов. Важным моментом в процессе производства является строгое соблюдение необходимого давления. ООО «Пластик» специализируется на продаже качественного листового полиэтилена в Москве и Московской области, связавшись с нами вы сможете обсудить все детали приобретения и согласовать сроки доставки.

Опытные специалисты нашей компании всегда готовы помочь Вам сделать правильный выбор. Они ответят на все вопросы, подробно расскажут все условия продажи любого инженерного пластика из нашего ассортимента, а также обсудят доставку товара в любой регион России. Продажа листов ПВХ по самым выгодным ценам – это то что мы предлагаем нашим клиентам!

Основные технические характеристики полипропилена:

Транспортировка производится закрытыми транспортными средствами. Листовой полипропилен должен быть уложен на горизонтальной поверхности и закреплен. Хранение осуществлять лучше на специальных поддонах. Материал, не стабилизированный к ультрафиолетовому излучению необходимо хранить в закрытых помещениях. Стабилизированный полипропилен может храниться на открытых площадках. Листы полипропилена должны быть проложены упаковочным материалом. Полипропилен стоек к химическому воздействию, хранение не связано с его изоляцией от других химических веществ.

Данные по химической стойкости

Таблица. Данные по химической стойкости

Вещество Формула CONC. РР
Уксусная кислота CH3COOH 100% 0
Уксусный ангидрид (СН3СО)2 О 100% 0
Ацетон СН3СОСН3 100% +
Бутанол С4Н9ОН 100% +
Бутилацетат С7Нl3О2 100% +
Кальция гидроксид Са(ОН)2 s +
Аммония гидроокись NH3*H2O s +
Углерод четыреххлористый ССl4 100%
Хлорная кислота НClО3 20%
Хлорбензол С6Н5Сl 100% +
Анилин С6Н5NН2 100% +
Царская водка 3НСl + HNO3 100%
Хлороформ СНСl3 100% 0
Бария сульфат ВаSО4 s +
Хромовая кислота Н2СrО4 50% 0
Бензолсульфокислота С6Н5СНО 100% +
Хромовая смесь К2СrО4+Н2SО4 s 0
Вода брома Br2 + Н2О s
Бензиловый спирт С6Н4СН3ОН 100% +
Этанол С2Н5ОН 100% +
Этиловый эфир НОС2Н4ОС2Н5 100% +
Муравьиная кислота НСООН s +
Йод I2 s +
Соляная кислота НСl 38% +
Фтористоводородная кислота НF 80% 40%
Ртуть Hg 100% +
Метанол СН3ОН 100% +
Фосфорная кислота Н3РО4 85% +
Азотная кислота НNО3 99% 50%
Хлорид серебра АgСl s +
Нитрат серебра AgNO3 s +
Серная кислота Н2SO4 98% 85%
Диэтиловый эфир С2Н5ОС2Н5 100% 0
Лимонная кислота С6Н8О7 s +
Изопропанол (СН3)2СНОН 100% +
Глицерин С3Н5(ОН)3 100% +
Гексан С6Нl4 100% +
Гептан С7Hl6 100% +
Диэтиленгликоль С2Н4(ОН)2 100% +
Петралейный эфир CnH2n+2 100% +
Октан С8Нl8 100% +
Щавелевая кислота (СООН)2 s +
Салициловая кислота НОС6Н4СООН s +
Калия марганцовокислый КMnO4 s +
Ксилол С6Н4(СН3)2 100%
Толуол С6Н5СН3 100% 0

Пакеты - наиболее распространенные и доступные средства упаковки продукции. Сегодняшнее производство упаковки использует при изготовлении пакетов преимущественно полиэтилен и полипропилен. Чем же отличаются пакеты, сделанные из данных материалов? Об этом пойдет речь далее.

Полиэтиленовые пакеты

Физические свойства полиэтиленовых пакетов во многом зависят от использующегося в них исходного сырья, а также от формы. Пакеты, в которых используется полиэтилен с низким давлением , прочен только в случае, если у него высокая плотность. Основным достоинством такого материала является его низкая цена.

Главным свойством данного материала является способностьияго. Основным же недостатком такого материала считается отсутствие эластичности. Пакеты, изготовленные из такого полиэтилена, легко узнать по шуршащему звуку и быстро теряющейся внешней привлекательности.

Производством пакетов из полиэтилена высокого давления способно создавать изделия с более высокой степенью эластичности. Тем не менее, прочность таких пакетов отставляет желать лучшего. Если же в пакетах используется полиэтилен, изготовленный под средним давлением , в них оптимально может сочетаться плотность и прочность полиэтилена.

Полиэтиленовые пакеты высокого давления (ПВД) эластичнее, но менее прочные. Пакеты из полиэтилена среднего давления сочетают качества пакетов, изготовленных из полиэтилена высокого и низкого давления - то есть они более плотные, чем ПНД и более прочные, чем ПВД. Часто такие пакеты называют «шуршащим полиэтиленом».

Полипропиленовые пакеты

Потребителю пакеты, в которых используется полипропилен , знакомы благодаря отсутствию «шуршащего» звука. Им свойственна большая плотность, чем у полипропилена, поэтому в них часто упаковывают мелкую сыпучую продукцию, которая может быть безвозвратно потеряна при повреждении упаковки.

Также полипропиленовым пакетам свойственна большая эластичность . При растяжении поверхность полипропилена может увеличиваться в три раза. Это означает, что полипропиленовые пакеты более пригодны для носки и могут использоваться для реализации продукции конечному потребителю.

Виды пакетов

Выбор конструкции пакета осуществляется в зависимости от формы и исходного материала, из которого он изготовлен. Так, пакет может быть простым, и производиться из двух слоев спаянной между собой пленки. Также в пакетах может присутствовать клейкая лента, именуемая клапаном, и позволяющая многократное открытие и закрытие изделия.

Также из полипропилена изготавливаются пакеты с европодреской, в которых делаются различные отверстия для вывешивания или выставки на витрине. Для ежедневного использования потребителю больше подходят пакеты, у которых имеется объемное дно. В них удобно складывать много вещей, а за счет дополнительных ручек такие пакеты приспособлены к переноске.