Hno3 цвет. Азотистая и азотная кислоты и их соли

Структурная формула

Истинная, эмпирическая, или брутто-формула: HNO 3

Химический состав Азотной кислоты

Молекулярная масса: 63,012

Азо́тная кислота́ (HNO 3 ) - сильная одноосновная кислота. Твёрдая азотная кислота образует две кристаллические модификации с моноклинной и ромбической решётками.

Азотная кислота смешивается с водой в любых соотношениях. В водных растворах она практически полностью диссоциирует на ионы. Образует с водой азеотропную смесь с концентрацией 68,4 % и t кип 120 °C при нормальном атмосферном давлении. Известны два твёрдых гидрата: моногидрат (HNO 3 ·H 2 O) и тригидрат (HNO 3 ·3H 2 O).

Азот в азотной кислоте четырёхвалентен, степень окисления +5. Азотная кислота - бесцветная, дымящая на воздухе жидкость, температура плавления −41,59 °C, кипения +82,6 °C (при нормальном атмосферном давлении) с частичным разложением. Азотная кислота смешивается с водой во всех соотношениях. Водные растворы HNO 3 с массовой долей 0,95-0,98 называют «дымящей азотной кислотой», с массовой долей 0,6-0,7 - концентрированной азотной кислотой. С водой образует азеотропную смесь (массовая доля 68,4 %, d20 = 1,41 г/см, T кип = 120,7 °C)

Высококонцентрированная HNO 3 имеет обычно бурую окраску вследствие происходящего на свету процесса разложения. ри нагревании азотная кислота распадается по той же реакции. Азотную кислоту можно перегонять без разложения только при пониженном давлении (указанная температура кипения при атмосферном давлении найдена экстраполяцией).

Золото, некоторые металлы платиновой группы и тантал инертны к азотной кислоте во всём диапазоне концентраций, остальные металлы реагируют с ней, ход реакции при этом определяется её концентрацией.

Азотная кислота в любой концентрации проявляет свойства кислоты-окислителя, при этом азот восстанавливается до степени окисления от +5 до −3. Глубина восстановления зависит в первую очередь от природы восстановителя и от концентрации азотной кислоты.

Смесь азотной и серной кислот носит название «меланж».

Азотная кислота широко используется для получения нитросоединений.

Смесь трех объёмов соляной кислоты и одного объёма азотной называется «царской водкой». Царская водка растворяет большинство металлов, в том числе золото и платину. Её сильные окислительные способности обусловлены образующимся атомарным хлором и хлоридом нитрозила.

Азотная кислота является сильной кислотой. Её соли - нитраты - получают действием HNO 3 на металлы, оксиды, гидроксиды или карбонаты. Все нитраты хорошо растворимы в воде. Нитрат-ион в воде не гидролизуется. Нитраты - широко используются как удобрения. При этом практически все нитраты хорошо растворимы в воде, поэтому в виде минералов их в природе чрезвычайно мало; исключение составляют чилийская (натриевая) селитра и индийская селитра (нитрат калия). Большинство нитратов получают искусственно.

Азотная кислота по степени воздействия на организм относится к веществам 3-го класса опасности. Её пары очень вредны: пары вызывают раздражение дыхательных путей, а сама кислота оставляет на коже долгозаживающие язвы. При действии на кожу возникает характерное жёлтое окрашивание кожи, обусловленное ксантопротеиновой реакцией. При нагреве или под действием света кислота разлагается с образованием высокотоксичного диоксида азота NO 2 (газа бурого цвета). ПДК для азотной кислоты в воздухе рабочей зоны по NO 2 2 мг/м 3 .

Особые свойства азотной и концентрированной серной кислоты.

Азотная кислота - HNO3, кислородосодержащая одноосновная сильная кислота. Твёрдая азотная кислота образует две кристаллические модификации с моноклинной и ромбической решётками. Азотная кислота смешивается с водой в любых соотношениях. В водных растворах она практически полностью диссоциирует на ионы. Образует с водой азеотропную смесь с концентраций 68,4 % и tкип120 °C при 1 атм. Известны два твёрдых гидрата: моногидрат (HNO3 H2O) и тригидрат (HNO3 3H2O).
Высококонцентрированная HNO3 имеет обычно бурую окраску вследствие происходящего на свету процесса разложения:

HNO3 ---> 4NO2 + O2 + 2H2O

При нагревании азотная кислота распадается по той же реакции. Азотную кислоту можно перегонять (без разложения) только при пониженном давлении.

Азотная кислота является сильным окислителем , концентрированная азотная кислота окисляет серу до серной, а фосфор - до фосфорной кислоты, некоторые органические соединения (например, амины и гидразин, скипидар) самовоспламеняются при контакте с концентрированной азотной кислотой.

Степень окисленности азота в азотной кислоте равна 4-5. Выступая в качестве окислителя, НNО может восстанавливаться до различных продуктов:

Какое из этих веществ образуется, т. е. насколько глубоко восстанавливается азотная кислота в том или ином случае, зависит от природы восстановителя и от условий реакции, прежде всего от концентрации кислоты. Чем выше концентрации HNO , тем менее глубоко она восстанавливается. При реакциях с концентрированной кислотой чаще всего выделяется .

При взаимодействии разбавленной азотной кислоты с малоактивными металлами , например, с медью, выделяется NO. В случае более активных ме­таллов - железа, цинка, - образуется .

Сильно разбавленная азотная кислота взаимодействует с активными металлами -цинком, магнием, алюминием -- с образованием иона аммония, даю­щего с кислотой нитрат аммония. Обычно одновременно образуют­ся несколько продуктов.

Золото, некоторые металлы платиновой группы и тантал инертны к азотной кислоте во всём диапазоне концентраций, остальные металлы реагируют с ней, ход реакции при этом определяется её концентрацией. Так, концентрированная азотная кислота реагирует с медью с образованием диоксида азота, а разбавленная - оксида азота (II):

Cu + 4HNO3----> Cu(NO3)2 + NO2 + 2H2O

3Cu + 8 HNO3 ----> 3Cu(NO3)2 + 2NO + 4H2O

Большинство металло в реагируют с азотной кислотой с выделением оксидов азота в различных степенях окисления или их смесей, разбавленная азотная кислота при реакции с активными металлами может реагировать с выделением водорода и восстановлением нитрат-иона до аммиака.

Некоторые металлы (железо, хром, алюминий), реагирующие с разбавленной азотной кислотой, пассивируются концентрированной азотной кислотой и устойчивы к её воздействию.

Смесь азотной и серной кислот носит название «меланж». Азотная кислота широко используется для получения нитросоединений.

Смесь трех объёмов соляной кислотой и одного объёма азотной называется «царской водкой». Царская водка растворяет большинство металлов, в том числе и золото. Её сильные окислительные способности обусловлены образующимся атомарным хлором и хлоридом нитрозила:

3HCl + HNO3 ----> NOCl + 2 =2H2O

Серная кислота – тяжелая маслянистая жидкость, не имеющая цвета. Смешивается с водой в любых отношениях.

Концентрированная серная кислота активно поглощает воду из воздуха, отнимает её от других веществ. При попадании органических веществ в концентрированную серную кислоту происходит их обугливание, например, бумаги:

(C6H10O5)n + H2SO4 => H2SO4 + 5nH2O + 6C

При взаимодействии концентрированной серной кислоты с сахаром образуется пористая угольная масса, похожая на черную затвердевшую губку:

C12H22O11 + H2SO4 => C + H2O + CO2 + Q

Химические свойства разбавленной и концентрированной серной кислоты отличаются.

Разбавленныерастворы серной кислоты реагируют с металлами , расположенными в электрохимическом ряду напряжений левее водорода, с образованием сульфатов и выделением водорода.

Концентрированные растворы серной кислоты проявляют сильные окислительные свойства, обусловленные наличием в её молекулах атома серы в высшей степени окисления (+6), поэтому концентрированная серная кислота является сильным окислителем. Так окисляются некоторые неметаллы:

S + 2H2SO4 => 3SO2 + 2H2O

C + 2H2SO4 => CO2 + 2SO2 + 2H2O

P4 + 8H2SO4 => 4H3PO4 + 7SO2 + S + 2H2O

H2S + H2SO4 => S + SO2 + 2H2O

Она взаимодействует с металлами , расположенными в электрохимическом ряду напряжений металлов правее водорода (медь, серебро, ртуть), с образованием сульфатов, воды и продуктов восстановления серы. Концентрированные растворы серной кислоты не реагируют с золотом и платиной вследствие их малой активности.

а) малоактивные металлы восстанавливают серную кислоту до диоксида серы SO2:

Cu + 2H2SO4 => CuSO4 + SO2 + 2H2O

2Ag + 2H2SO4 => Ag2SO4 + SO2 + 2H2O

б) с металлами средней активности возможны реакции с выделением любого из трех продуктов восстановления серной кислоты:

Zn + 2H2SO4 => ZnSO4 + SO2 + 2H2O

3Zn + 4H2SO4 => 3ZnSO4 + S + 4H2O

4Zn + 5H2SO4 => 4ZnSO4 + H2S + 2H2O

в) с активными металлами могут выделяться сера или сероводород:

8K + 5H2SO4 => 4K2SO4 + H2S + 4H2O

6Na + 4H2SO4 => 3Na2SO4 + S + 4H2O

г) с алюминием, железом, хромом, кобальтом, никелем концентрированная серная кислота на холод (то есть без нагревания) не взаимодействует - происходит пассивирование этих металлов. Поэтому серную кислоту можно перевозить в железной таре. Однако при нагревании возможно взаимодействие с ней и железа, и алюминия:

2Fe + 6H2SO4 => Fe2(SO4)3 + 3SO2 + 6H2O

2Al + 6H2SO4 => Al2(SO4)3 + 3SO2 + 6H2O

Т.О. глубина восстановления серы зависит от восстановительных свойств металлов. Активные металлы (натрий, калий, литий) восстанавливают серную кислоту до сероводорода, металлы, расположенные в ряду напряжений от алюминия до железа - до свободной серы, а металлы с меньшей активностью - до сернистого газа.

Получение кислот.

1. Бескислородные кислоты получают путем синтеза водородных соединений неметаллов из простых веществ и последующего растворения полученных продуктов в воде

Неметалл + H 2 = Водородное соединение неметалла

H 2 + Cl 2 = 2HCl

2. Оксокислоты получают взаимодействием кислотных оксидов с водой.



Кислотный оксид + H 2 O = Оксокислота

SO 3 + H 2 O = H 2 SO 4

3. Большинство кислот можно получить взаимодействием солей с кислотами.

Соль + Кислота = Соль + Кислота

2NaCl + H 2 SO 4 = 2HCl + Na 2 SO 4

Основания– это сложные вещества, молекулы которых состоят из атома металла и одной или нескольких гидроксидных групп .

Основания - это электролиты, которые диссоциируют с образованием катионов металлического элемента и гидроксид-анионов.

Например:
КОН = К +1 + ОН -1

6.Классификация оснований:

1.По числу гидроксильных групп в молекуле:

а)· Однокислотные, молекулы которых содержат одну гидроксидную группу.

б)· Двухкислотные, молекулы которых содержат две гидроксидные группы.

в)· Трехкислотные, молекулы которых содержат три гидроксидые группы.
2. По растворимости в воде: Растворимые и Нерастворимые.

7.Физические свойства оснований :

Все неорганические основания– твердые вещества (кроме гидроксида аммония). Основания имеют разный цвет: гидроксид калия-белого цвета, гидроксид меди-голубого, гидроксид железа-красно-бурого.

Растворимые основания образуют мыльные на ощупь растворы, через что эти вещества получили название щелочь.

Щёлочи образуют лишь 10 элементов периодической системы химических элементов Д. И. Менделеева: 6 щелочных металлов – литий, натрий, калий, рубидий, цезий, франций и 4 щелочноземельных металла – кальций, стронций, барий, радий.

8.Химические свойства оснований:

1. Водные растворы щелочей изменяют окраску индикаторов. фенолфталеин - малиновый, метилоранж - желтый. Это обеспечивается свободным присутствием гидроксогрупп в растворе. Именно поэтому малорастворимые основания такой реакции не дают.

2. Взаимодействуют :

а) с кислотами : Основание + Кислота = Соль + H 2 O

KOH + HCl = KCl + H 2 O

б) с кислотными оксидами: Щелочь + Кислотный оксид = Соль + H 2 O

Ca(OH) 2 + CO 2 = CaCO 3 + H 2 O

в) с растворами: Раствор щелочи + Раствор соли = Новое основание + Новая соль

2NaOH + CuSO 4 = Cu(OH) 2 + Na 2 SO 4

г) с амфотерными металлами : Zn + 2NaOH = Na 2 ZnO 2 + H 2

Амфотерные гидроксиды:

а) Реагируют с кислотами с образованием соли и воды:

Гидроксид меди (II) + 2HBr = CuBr2 + вода.

б). Реагируют с щелочами: итог - соль и вода (условие: сплавление):

Zn(OH)2 + 2CsOH = соль + 2H2O.

в). Реагируют с сильными гидроксидами: итог - соли, если реакция идет в водном растворе: Cr(OH)3 + 3RbOH = Rb3

Нерастворимые в воде основания при нагревании разлагаются на основной оксид и воду:

Нерастворимое основание = Основной оксид + H 2 O

Cu(OH) 2 = CuO + H 2 O

Соли – это продукты неполного замещения атомов водорода в молекулах кислот атомами металла или это продукты замещения гидроксидных групп в молекулах оснований кислотными остатками .

Соли - это электролиты, которые диссоциируют с образованием катионов металлического элемента и анионов кислотного остатка.

Например:

К 2 СО 3 = 2К +1 + СО 3 2-

Классификация:

Нормальные соли . Это продукты полного замещения атомов водорода в молекуле кислоты атомами неметалла, или продукты полного замещения гидроксидных групп в молекуле основания кислотными остатками.

Кислые соли . Это продукты неполного замещения атомов водорода в молекулах многоосновных кислот атомами металла.

Основные соли. Это продукты неполного замещения гидроксидных групп в молекулах многокислотных оснований кислотными остатками.

Типы солей:

Двойные соли - в их составе присутствует два различных катиона, получаются кристаллизацией из смешанного раствора солей с разными катионами, но одинаковыми анионами.

Смешанные соли - в их составе присутствует два различных аниона.

Гидратные соли (кристаллогидраты) - в их состав входят молекулы кристаллизационной воды.

Комплексные соли - в их состав входит комплексный катион или комплексный анион.

Особую группу составляют соли органических кислот , свойства которых значительно отличаются от свойств минеральных солей. Некоторые из них можно отнести к особенному классу органических солей, так называемых ионных жидкостей или по-другому «жидких солей» , органических солей с температурой плавления ниже 100 °C.

Физические свойства:

Большинство солей-твердые вещества белого цвета. Некоторые соли имеют окраску. Например, дихромат калия-оранжевого, сульфат никеля-зеленого.

По растворимости в воде соли делятся на растворимые в воде, малорастворимые в воде и нерастворимые.

Химические свойства:

Растворимые соли в водных растворах диссоциируют на ионы:

1. Средние соли диссоциируют на катионы металлов и анионы кислотных остатков:

· Кислые соли диссоциируют на катионы металла и сложные анионы:

KHSO 3 = K + HSO 3

· Основные металлы диссоциируют на сложные катионы и анионы кислотных остатков:

AlOH(CH 3 COO) 2 = AlOH + 2CH 3 COO

2. Соли взаимодействуют с металлами с образованием новой соли и нового металла: Ме(1) + Соль(1) = Ме(2) + Соль(2)

CuSO 4 + Fe = FeSO 4 + Cu

3. Растворы взаимодействуют с щелочами Раствор соли + Раствор щелочи = Новая соль + Новое основание:

FeCl 3 + 3KOH = Fe(OH) 3 + 3KCl

4. Соли взаимодействуют с кислотами Соль + Кислота = Соль + Кислота:

BaCl 2 + H 2 SO 4 = BaSO 4 + 2HCl

5. Соли могут взаимодействовать между собой Соль(1) + Соль(2) = Соль(3) + Соль(4):

AgNO 3 + KCl = AgCl + KNO 3

6. Основные соли взаимодействуют с кислотами Основная соль + Кислота = Средняя соль + H 2 O:

CuOHCl + HCl = CuCl 2 + H 2 O

7. Кислые соли взаимодействуют с щелочами Кислая соль + Щелочь = Средняя соль + H 2 O:

NaHSO 3 + NaOH = Na 2 SO 3 + H 2 O

8. Многие соли разлагаются при нагревании: MgCO 3 = MgO + CO 2

Представители солей и их значение:

Соли повсеместно используются как в производстве, так и в повседневной жизни:

Соли соляной кислоты. Из хлоридов больше всего используют хлорид натрия и хлорид калия.

Хлорид натрия (поваренную соль) выделяют из озерной и морской воды, а также добывают в соляных шахтах. Поваренную соль используют в пищу. В промышленности хлорид натрия служит сырьём для получения хлора, гидроксида натрия и соды.

Хлорид калия используют в сельском хозяйстве как калийное удобрение.

Соли серной кислоты. В строительстве и в медицине широко используют полуводный гипс, получаемый при обжиге горной породы (дигидрат сульфата кальция). Будучи смешан с водой, он быстро застывает, образуя дигидрат сульфата кальция, то есть гипс.

Декагидрат сульфата натрия используют в качестве сырья для получения соды.

Соли азотной кислоты. Нитраты больше всего используют в качестве удобрений в сельском хозяйстве. Важнейшим из них является нитрат натрия, нитрат калия,нитрат кальция и нитрат аммония. Обычно эти соли называют селитрами.

Из ортофосфатов важнейшим является ортофосфат кальция. Эта соль служит основной составной частью минералов - фосфоритов и апатитов. Фосфориты иапатиты используются в качестве сырья в производстве фосфорных удобрений,например, суперфосфата и преципитата.

Соли угольной кислоты. Карбонат кальция используют в качестве сырья для получения извести.

Карбонат натрия (соду) применяют в производстве стекла и при варке мыла.
- Карбонат кальция в природе встречается и в виде известняка, мела и мрамора.

Материальный мир, в котором мы живем и крохотной частичкой которого мы являемся, един и в то же время бесконечно разнообразен. Единство и многообразие химических веществ этого мира наиболее ярко проявляется в генетической связи веществ, которая отражается в так называемых генетических рядах.

Генетической называют связь между веществами разных классов, основанную на их взаимопревращениях.

Если основу генетического ряда в неорганической химии составляют вещества, образованные одним химическим элементом, то основу генетического ряда в органической химии (химии углеродных соединений) составляют вещества с одинаковым числом атомов углерода в молекуле.

Контроль знаний:

1. Дать определение солям, основаниям, кислотам, их характеристику, основных характерных реакций.

2.Почему кислоты и основания объединяются в группу гидроксиды? Что у них общего и чем они отличаются? Почему щелочь нужно приливать к раствору соли алюминия, а не наоборот?

3. Задание: Приведите примеры уравнений реакций, иллюстрирующих указанные общие свойства нерастворимых оснований.

4. Задание: Определите степень окисления атомов металлических элементов в приведенных формулах. Какая закономерность прослеживается между их степенью окисления в оксиде и основе?

ДОМАШНЕЕ ЗАДАНИЕ:

Проработать: Л2.стр.162-172,пересказ конспекта лекции №5.

Записать уравнения возможных реакций согласно схемам, указать типы реакций: а) НСl + СаО ... ;
б) НСl + Аl(ОН) 3 ... ;
в) Mg + HCl ... ;
г) Hg + HCl ... .

Разделить вещества по классам соединений. Формулы веществ: H 2 SO 4 , NaOH, CuCl 2 , Na 2 SO 4 , CaO, SO 3 , H 3 PO 4 , Fe(OH) 3 , AgNO 3 , Mg(OH) 2 , HCl, ZnO, CO 2 , Cu 2 O, NO 2

Лекция № 6.

Тема: Металлы . Положение металлических элементов в периодической системе. Нахождение металлов в природе. Металлы. Взаимодействие металлов с неметаллами (хлором, серой и кислородом).

Оборудование : периодическая система химических элементов, коллекция металлов, ряд активности металлов.

План изучения темы

(перечень вопросов, обязательных к изучению):

1. Положение элементов - металлов в периодической системе, строение их атомов.

2. Металлы как простые вещества. Металлическая связь, металлические кристаллические решетки.

3. Общие физические свойства металлов.

4. Распространенность металлических элементов и их соединений в природе.

5. Химические свойства элементов-металлов.

6. Понятие о коррозии.

Окислительные свойства азотной кислоты.

ОВР в статье специально выделены цветом . Обратите на них особое внимание. Эти уравнения могут попасться в ЕГЭ.

– в любом виде (и разбавленная, и концентрированная) является сильным окислителем.

Причем, разбавленная восстанавливается глубже, чем концентрированная.

Окислительные свойства обеспечиваются азотом в высшей степени окисления +5

Какая валентность у азота в этом соединении? Вопрос очень хитрый, многие отвечают на него корректно. У азота в азотной кислоте валентность IV .

Атом азота не может образовать больше ковалентных связей, посмотрите на электронную диаграмму:

Три связи с каждым атомом кислорода, и четвертая как бы распределяется, образуется полуторная связь. Таким образом, валентность азота IV, а степень окисления +5

Первое самое интересное свойство: взаимодействие с металлами.

Водород при взаимодействии с металлами никогда не выделяется

Схема реакции азотной кислоты (и разбавленной, и концентрированной) с металлами:

HNO 3 + Ме → нитрат + H 2 O + продукт восстановленного азота

Два нюанса:

1. , и с концентрированной азотной кислотой в нормальных условиях не реагируют, из-за пассивации. Нужно нагреть.

2. С платиной и золотом концентрированная азотная кислота не реагирует вообще.

Чтобы понять до чего вообще может восстанавливаться азот, посмотрим на диаграмму его степеней окисления:

Азот +5 – окислитель, будет восстанавливаться, то есть понижать степень окисления.

Все возможные продукты восстановления азотной на диаграмме обведены красным.

(Не все конечно, такие реакции вообще что угодно дать могут, но в ЕГЭ образуются только эти).

Определить какой именно продукт будет образовываться можно чисто логически:

  • до таких низких степеней окисления как -3 или +1, с образованием продуктов NH 4 NO 3 или N 2 O соответственно, азот восстанавливают только достаточно сильные, активные металлы: щелочные — 1-я группа главная подгруппа, щелочноземельные, а так же Al и Zn . Как ранее уже было сказано, разбавленная кислота восстанавливается глубже, поэтому при взаимодействии активных металлов с конц. азотной кислотой образуется N 2 O , а при взаимодействии с разб. азотной кислотой NH 4 NO 3 .

4Ba + 10HNO 3( конц .) → 4Ba(NO 3 ) 2 + 5H 2 O + N 2 O

4Ba + 10HNO 3( разб .) → 4Ba(NO 3 ) 2 + 3H 2 O + NH 4 NO 3

8Li + 10HNO 3( конц .) → 8LiNO 3 + 5H 2 O + N 2 O

8Li + 10HNO 3( разб .) → 8LiNO 3 + 3H 2 O + NH 4 NO 3

8Al + 30HNO 3( конц .) (t)→ 8Al(NO 3 ) 3 + 15H 2 O + 3N 2 O

8Al + 30HNO 3( разб .) → 8Al(NO 3 ) 3 + 9H 2 O + 3NH 4 NO 3

Остальные металлы восстанавливают азотную кислоту до +2 или +4, с образованием продуктов соответственно: NO или O 2 .

Разбавленная кислота восстанавливается глубже

  • при взаимодействии с ней металлов, не отличающихся особой активностью, будет образовываться NO . Ну а с конц. азотной NO 2:

Cu + 4HNO 3( конц .) → Cu(NO 3 ) 2 + 2H 2 O + 2NO 2

3Cu + 8HNO 3( разб .) → 3Cu(NO 3 ) 2 + 4H 2 O + 2NO

Fe + 6HNO 3( конц .) (t)→ Fe(NO 3 ) 3 + 3H 2 O + 3NO 2

Fe + 4HNO 3( разб .) → Fe(NO 3 ) 3 + 2H 2 O + NO

(обратите внимание, что железо окисляется до высшей степени окисления)

Ag + 2HNO 3( конц .) → AgNO 3 + H 2 O + NO 2

3Ag + 4HNO 3( разб .) → 3AgNO 3 + 2H 2 O + NO

Если тяжело сразу понять всю логичность выбора, вот таблица:

А зотная кислота окисляет неметаллы до высших оксидов .

Так как неметаллы – не такие сильные восстановители, как активные металлы, азот может восстановиться только до +4, образовав NO 2 или NO соответственно.

При окислении неметаллов концентрированной азотной кислотой образуется бурый газ (NO 2), а если кислота разбавленная, то образуется NO . Схемы реакций следующие:

неметалл + HNO 3 (разб.) → + NO

неметалл + HNO 3 (конц.) → соединение неметалла в высшей степени окисления + NO 2

4 HNO 3(конц.) CO 2 + 2 H 2 O + 4 NO 2

3C + 4HNO 3( разб .) → 3CO 2 + 2H 2 O + 4NO

(угольная кислота не образуется, так как она не стабильна)

5HNO 3( конц .) → H 3 PO 4 + H 2 O + 5 NO 2

3P + 5HNO 3( разб .) + 2H 2 O → 3H 3 PO 4 + 5NO

+ 3 HNO 3( конц .) → H 3 BO 3 + 3NO 2

B + HNO 3( разб .) + H 2 O → H 3 BO 3 + NO

6HNO 3( конц .) → H 2 SO 4 + 2H 2 O + 6NO 2

S + 2HNO 3( разб .) H 2 SO 4 + 2 NO

  • концентрированная азотная кислота окисляет сероводород. Окисление идет глубже при нагревании:

2HNO 3( конц .) + H 2 S → S↓ + 2NO 2 + 2H 2 O

H 2 S + 8HNO 3(конц.) H 2 SO 4 + 8 NO 2 + 4 H 2 O

  • концентрированная азотная кислота окисляет сульфиды до сульфатов:

CuS + 8HNO 3(конц.) CuSO 4 + 4 H 2 O + 8 NO 2

  • азотная кислота настолько сурова, что может окислить даже . Только один – иод. Разбавленная восстанавливается глубже: до +2, концентрированная до +4. А вот иод окисляется не до высшей степени окисления +7 (слишком круто), а до +5, образуя иодноватую кислоту HIO 3:

10 HNO 3(конц.) + I 2 (t)→ 2HIO 3 + 10NO 2 + 4H 2 O

10 HNO 3(разб.) + 3 I 2 (t) → 6HIO 3 + 10NO + 2H 2 O

  • концентрированная азотная кислота реагирует с хлоридами и фторидами. Только следует понимать, что с фторидами и хлоридами протекает обычная реакция ионного обмена с вытеснением галогеноводорода и образованием нитрата:

NaCl (тв.) + HNO 3(конц.) → HCl + NaNO 3

NaF (тв.) + HNO 3(конц.) → HF + NaNO 3

  • А вот с бромидами и иодидами (и с бромоводородами, и с иодоводородами) протекает ОВР. В обоих случаях образуется свободный галоген, а азот восстанавливается до NO 2:

8HNO 3( конц .) + 6KBr ( тв .) → 3Br 2 + 4H 2 O + 6KNO 3 + 2NO 2

4HNO 3( конц .) + 2NaI ( тв .) → 2NaNO 3 + 2NO 2 + 2H 2 O + I 2

7HNO 3( конц .) + NaI → NaNO 3 + 6NO 2 + 3H 2 O + HIO 3

То же самое происходит при взаимодействии с иодо- и бромоводородами:

2HNO 3( конц .) + 2HBr → Br 2 + 2NO 2 + 2H 2 O

6HNO 3( конц .) + HI → HIO 3 + 6NO 2 + 3H 2 O


Реакции с золотом, магнием, медью и серебром

Азотная кислота

HNO 3



Опытным путём доказано, что в молекуле азотной кислоты между двумя атомами кислорода и атомом азота две химические связи абсолютно одинаковые – полуторные связи. Степень окисления азота +5, а валентность равна IV.

Физические свойства

Азотная кислота HNO 3 в чистом виде - бесцветная жидкость с резким удушливым запахом, неограниченно растворимая в воде; t°пл.= -41°C; t°кип.= 82,6°С, r = 1,52 г/см 3 . В небольших количествах она образуется при грозовых разрядах и присутствует в дождевой воде.

N 2 + O 2 грозовые эл.разряды→ 2NO 2NO + O 2 → 2NO 2

Под действием света азотная кислота частично разлагается с выделением NО 2 и за cчет этого приобретает светло-бурый цвет:

4НNО 3 свет→ 4NО 2 (бурый газ) + 2Н 2 О + О 2

Азотная кислота высокой концентрации выделяет на воздухе газы, которые в закрытой бутылке обнаруживаются в виде коричневых паров (оксиды азота). Эти газы очень ядовиты, так что нужно остерегаться их вдыхания. Азотная кислота окисляет многие органические вещества. Бумага и ткани разрушаются вследствие окисления образующих эти материалы веществ. Концентрированная азотная кислота вызывает сильные ожоги при длительном контакте и пожелтение кожи на несколько дней при кратком контакте. Пожелтение кожи свидетельствует о разрушении белка и выделении серы (качественная реакция на концентрированную азотную кислоту – жёлтое окрашивание из-за выделения элементной серы при действии кислоты на белок – ксантопротеиновая реакция). То есть – это ожог кожи. Чтобы предотвратить ожог, следует работать с концентрированной азотной кислотой в резиновых перчатках.

Получение

1. Лабораторный способ KNO 3 + H 2 SO 4 (конц) → KHSO 4 + HNO 3 (при нагревании) 2. Промышленный способ Осуществляется в три этапа: a) Окисление аммиака на платиновом катализаторе до NO 4NH 3 + 5O 2 → 4NO + 6H 2 O (Условия: катализатор – Pt, t = 500˚С) б) Окисление кислородом воздуха NO до NO 2 2NO + O 2 → 2NO 2 в) Поглощение NO 2 водой в присутствии избытка кислорода 4NO 2 + О 2 + 2H 2 O ↔ 4HNO 3

Химические свойства

1. Очень сильная кислота. Диссоциирует в водном растворе практически нацело:

HNO 3 = H+ + NO 3 -

Реагирует:

2. с основными оксидами

CuO + 2HNO 3 = Cu(NO 3 ) 2 + H 2 O

CuO + 2H + + 2NO 3 - = Cu 2+ + 2NO 3 - + H 2 O

или CuO + 2H + = Cu 2+ + H 2 O

3. с основаниями

HNO 3 + NaOH = NaNO 3 + H 2 O

H + + NO 3 - + Na + + OH - = Na + + NO 3 - + H 2 O

или H + + OH - = H 2 O

4. вытесняет слабые кислоты из их солей


2HNO 3 + Na 2 CO 3 = 2NaNO 3 + H 2 O + CO 2

2H + + 2NO 3 - + 2Na + + СO 3 2- = 2Na + + 2NO 3 - + H 2 O + CO 2

2H + + СO 3 2- = H 2 O + CO 2

Специфические свойства азотной кислоты

Сильный окислитель

1. Разлагается на свету и при нагревании


4HNO 3 = 2H 2 O + 4NO 2 + O 2

Рис. 97. Воспламенение скипидара в азотной кислоте

Чистая - бесцветная жидкость уд. веса 1,53, кипящая при 86°, а при -41° застывающая в прозрачную кристаллическую массу. На воздухе она, подобно концентрированной соляной кислоте, «дымит», так как пары ее образуют с влагой воздуха мелкие капельки тумана.

С водой смешивается в любом отношении, причем 68%-ный раствор кипит при 120,5° и перегоняется без изменения. Такой состав имеет обыкновенная продажная уд. веса 1,4. Концентрированная кислота, содержащая 96-98% HNO 3 и окрашенная растворенной в ней двуокисью азота в красно-бурый цвет, известна под названием дымящей азотной кислоты.

Азотная кислота не отличается особенной химической прочностью. Уже под влиянием света она постепенно разлагается на воду, и двуокись азота:

4HNO 3 = 2Н 2 O + 4NO 2 + O 2

Чем выше температура и чем концентрированнее кислота, тем быстрее идет разложение. Поэтому получаемая из селитры азотная кислота всегда бывает окрашена двуокисью азота в желтоватый цвет. Чтобы избежать разложения, перегонку ведут под уменьшенным давлением, под которым азотная кислота закипает при температуре, близкой к 20°.

Азотная кислота принадлежит к числу наиболее сильных кислот; в разбавленных растворах она сполна распадается на ионы Н и NO3′.

Самым характерным свойством азотной кислоты является ее ярко выраженная окислительная способность. Азотная кислота - один из энергичнейших окислителей. Многие металлоиды легко окисляются ею, превращаясь в соответствующие кислоты. Так, например, при кипячении с азотной кислотой постепенно окисляется в серную кислоту, - в фосфорную и т. д. Тлеющий уголек, погруженный в концентрированную азотную кислоту, не только не гаснет, но ярко разгорается, разлагая кислоту с образованием красно-бурой двуокиси азота.

Иногда при окислении выделяется так много тепла, что окисляющееся вещество само собой загорается без предварительного подогревания.

Нальем, например, в фарфоровую чашку немного дымящей азотной кислоты, поставим чашку на дно широкого стакана и, набрав в пипетку скипидара, будем по каплям пускать его в чашку с кислотой. Каждая капля, попадая в кислоту, воспламеняется и сгорает, образуя большое пламя и облако копоти (рис. 97). Нагретые древесные опилки также загораются от капли дымящей азотной кислоты. Азотная кислота действует почти на все , за исключением золота, платины и некоторых редких металлов, превращая их в азотнокислые соли. Так как последние растворимы в воде, азотной кислотой постоянно пользуются на практике для растворения металлов, особенно таких, как , на которые другие кислоты не действуют или действуют очень медленно.

Замечательно, что, как нашел еще М В, некоторые ( , и др.), легко растворяющиеся в разбавленной азотной кислоте, не растворяются в холодной концентрированной азотной кислоте. По видимому, это происходит вследствие образования на их поверхности тонкого, очень плотного слоя окисла, защищающего металл от дальнейшего действия кислоты. Такие после обработки их концентрированной азотной кислотой становятся «пассивными», т. е. утрачивают способность растворяться также и в разбавленных кислотах.

Окислительные свойства азотной кислоты обусловливаются неустойчивостью ее молекул и присутствием в них азота в его высшем состоянии окисления, отвечающем положительной валентности, равной 5. Производя окисление, азотная кислота последовательно восстанавливается в следующие соединения:

HNO 3 →NO 2 →HNO 2 →NO→N 2 O→N 2 →NH 3

Степень восстановления азотной кислоты зависит как от ее концентрации, так и от % активности восстановителя. Чем более кислота разбавлена, тем сильнее она восстанавливается. Концентрированная азотная кислота всегда восстанавливается до NO 2 . Разбавленная азотная кислота восстанавливается обычно до NO или при действии более активных металлов, как, например, Fe, Zn, Mg, - до N 2 O. Если же кислота очень разбавлена, главным продуктом восстановления является NH 3 , образующий с избытком кислоты аммонийную соль NH 4 NO 3 .

Для иллюстрации приведем схемы нескольких реакций окисления при помощи азотной кислоты;

1)Pb + HNO 3 → Pb(NO 3) 2 + NO 2 + Н 2 O

2)Сu + HNO 3 → Cu(NO 3) 2 + NO + H 2 O

разбавл,

3) Mg + HNO 3 → Mg(NO 3) 2 + N 2 O + H 2 O

разбавл,

4)Zn + HNO 3 → Zn(NO 3) 2 + NH 4 NO 3 + H 2 O

очень разбавл.

Следует отметить, что при действии разбавленной азотной кислоты на металлы , как правило, не выделяется.

При окислении металлоидов азотная кислота обычно восстанавливается до NO.Например:

S + 2HNO 3 = H 2 SO 4 +2NO

Приведенные выше схемы иллюстрируют наиболее типичные случаи окислительного действия азотной кислоты. Вообще же

необходимо заметить, что все реакции окисления, идущие с уча-стием азотной кислоты, протекают очень сложно вследствие одновременного образования различных продуктов восстановления и до сих пор не могут считаться вполне выясненными.

Смесь, состоящая из 1 объема азотной и 3 объемов соляной кислоты, называется царской водкой. Царская водка растворяет некоторые металлы, не растворяющиеся в азотной кислоте, в том числе и «царя металлов» - . Действие ее объясняется тем, что азотная кислота окисляет соляную кислоту с выделением свободного хлора и образованием хлористого ни-трозила NOCl:

HNO 3 + 3HCl = Сl 2 + 2Н 2 O + NOCl

Хлористый нитрозил является промежуточным продуктом реакции и разлагается на окись азота и :

2NOCl = 2NO + Сl 2

Выделяющийся соединяется с металлами, образуя металлов, поэтому при растворении металлов в царской водке получаются соли соляной, а не азотной кислоты:

Au + 3HCl+ HNO 3 = AuCl 3 +NO + 2H 2 O

На многие органические азотная кислота действует таким образом, что один или несколько атомов водорода в молекуле органического соединения замещаются нитрогруппами - NO 2 . Этот процесс, получивший название нитрования, играет чрезвычайно важную роль в органической химии.

При действии на азотную кислоту фосфорного ангидрида последний отнимает от азотной кислоты элементы воды и в результате образуются азотный ангидрид и метафосфорная кислота.

2HNO 3 + P 2 O 5 = N 2 O 5 + 2HPO 3

Азотная кислота является самым важным соединением азота благодаря разнообразному применению, которое она находит в народном хозяйстве.

В больших количествах азотная кислота расходуется в производстве азотных удобрений и органических красителей. Она применяется как окислитель во многих химических процессах, используется в производстве серной кислоты по нитрозному способу, служит для растворения металлов, для получения нитратов, применяется для изготовления целлюлозных лаков, кинопленки и в ряде других химических производств. Азотная кислота идет также на изготовление бездымного пороха и взрывчатых веществ, необходимых для обороны страны и широко используемых в горнорудном деле и при различных земляных работах (строительство каналов, плотин и т. п.).