Какую функцию выполняет цитоплазматическая мембрана в клетке. Биологические мембраны

Каждый организм человека, либо животного состоит из миллиардов клеток. Клетка представляет собой сложный механизм, выполняющий определенные функции. Из субъединиц состоят все органы и ткани.

Система имеет цитоплазматическую мембрану, цитоплазму, ядро, также ряд органелл. Ядро разграничено с органеллами внутренней пленочкой. Все вместе обеспечивает жизнь тканям, а также позволяет осуществлять метаболизм.

Важную роль в функционировании играет цитоплазматическая плазма лемма или мембрана.

Само название наружная цитоплазматическая мембрана произошло от латин membrana или по другому кожица. Это разграничитель пространства между клеточными организмами.

Гипотезу строения выдвинули уже в 1935 г. В 1959 г. В. Робертсон пришел к выводу, что мембранные оболочки устроены по одному принципу.

Вследствие большого количества накопленной информации, полость приобрела жидко-мозаичную модель конструкции. Сейчас она считается признанной всеми. Именно наружная цитоплазматическая мембрана образует внешнюю оболочку единиц.

Строение

Итак, что такое плазма лемма?

Представляет собой тоненькую пленочку разграничивающую прокариоты с внутренней средой. Разглядеть ее можно только в микроскоп. В строение цитоплазматической мембраны входит би слой, который служит основой.

Би слой - это двойная прослойка, состоящая из белков и липидов. Также есть холестерол и гликолипиды, обладают амфипатричностью.

Что это значит?

Жировой организм имеет биполярную головку и гидрофильный хвостик. Первая обусловлена боязнью воды, а второй ее поглощением. Группа фосфатов имеет наружное направление от пленки, вторые направлены друг на друга.

Таким образом, происходит формирование биполярного липидного слоя. Липиды обладают высокой активностью, могут перемещаться в своем монослое, редко переходить в другие области.

Полимеры делятся на:

  • наружные,
  • интегральные,
  • пронизывающие плазма лемму.

Первые находятся только на поверхностной части пазухи. Держатся за счет электростатики с биполярными головками липидных элементов. Удерживают питательные ферменты. Интегральные внутри, они встроены в саму структуру оболочки, соединения меняют свое местоположение за счет движения эукариот. Служат своеобразным конвейером, выстроены так, что по ним идут субстраты, продукты реакции. Белковые соединения пронизывающие макрополость имеют свойства образования пор для поступления питательных элементов в организм.

Ядро

В любой единице есть ядро, это ее основа. Цитоплазматическая мембрана также имеет органеллу, строение которого будет описано далее.

Ядерная структура включает пленку, сок, место сборки рибосом и хроматин. Оболочка разделена около ядерным пространством, оно окружено жидкостью.

Функции органеллы делятся на две основных:

  1. замыкание структуры в органелле,
  2. регулирование работы ядра и жидкого содержимого.

Ядро состоит из пор, каждая обусловливается наличием тяжелых поровых сочетаний. Их объем может говорить об активной двигательной способности эукариотов. Например, высокая активность незрелых содержит большее количество поровых областей. Ядерным соком служат белки.

Полимеры представляют соединение матрикса и нуклеоплазмы. Жидкость содержится внутри ядерной пленки, обеспечивает работоспособность генетического содержимого организмов. Белковый элемент выполняет защиту и прочность субъединиц.

В самом ядрышке созревают рибосомальные РНК. Сами гены РНК находятся на определенной области нескольких хромосом. В них происходит формирование маленьких организаторов. Внутри создаются сами ядрышки. Зоны в митозных хромосомах представлены сужениями, название вторичные перетяжки. При исследовании электроникой различают фазы фиброзного и грануляционного происхождения.

Развитие ядра

Другое обозначение фибриллярный, происходит из белковых и огромных полимеров-предыдущих версий р-РНК. В дальнейшем они образуют меньшие по размеру элементы зрелой р-РНК. Когда фибрилла созревает, она становится зернистой по структуре или рибонуклеопротеиновой гранулой.

Входящий в строение хроматин обладает окрашивающими свойствами. Присутствует в нуклеоплазме ядра, служит формой интерфазы жизнедеятельности хромосом. Состав хроматина, это нити ДНК и полимеры. Вместе они составляют комплекс нуклеопротеидов.

Гистоны выполняют функции организации пространства в структуре ДНК-молекулы. Дополнительно хромосомы включают органические вещества, ферменты, содержащие полисахариды, частицы металлов. Хроматин делится на:

  1. эухроматин,
  2. гетерохроматин.

Первый обусловлен низкой плотностью, поэтому считать генетические данные с таких эукариотов невозможно.

Второй вариант обладает компактными свойствами.

Структура

Сама конституция оболочки неоднородна. За счет постоянных движений на ней появляются наросты, выпуклости. Внутри это обусловлено движениями макромолекул и их выходом в другой слой.

Поступление самих веществ происходит 2 путями:

  1. фагоцитозом,
  2. пиноцитозом.

Фагоцитоз выражается во впячивании твердых частиц. Пиноцитозом называют выпуклости. Путем выпячивания, края областей смыкаются захватив жидкость между эукариотами.

Пиноцитоз осуществляет механизм проникновения соединений внутрь оболочки. Диаметр вакуоли составляет от 0,01 до 1,3 мкм. Далее вакуоль начинает погружение в цитоплазменный слой и от шнуровку. Связь между пузырьками играет роль транспортировки полезных частиц, расщеплении ферментов.

Цикл пищеварения

Весь круг пищеварительной функции разделяется на следующие этапы:

  1. попадание компонентов в организм,
  2. распад ферментов,
  3. попадание в цитоплазму,
  4. выведение.

Первая фаза подразумевает поступление веществ в тело человека. Далее они начинаются распадаться при помощи лизосом. Разделенные частички проникают в цитоплазменное поле. Непереваренные остатки просто выходят наружу естественным способом. Впоследствии пазуха становится плотной, начинается превращение в зернистые гранулы.

Функции мембраны

Итак, какие же функции она выполняет?

Главными будут:

  1. защитная,
  2. переносная,
  3. механическая,
  4. матричная,
  5. перенос энергии,
  6. рецепторная.

Защита выражается в барьере между субъединицей и внешней средой. Пленка служит регулятором обмена между ними. В результате последний может быть активным, либо пассивным. Происходит избирательность необходимых веществ.

При транспортной функции через оболочку передаются соединения от одного механизма к другому. Именно этот фактор влияет на доставку полезных соединений, выведение продуктов метаболизма и распада, секреторные компоненты. Вырабатываются градиенты ионного характера, благодаря чему идет поддержка ph и уровень концентрации ионов.

Последние две миссии относятся к вспомогательным. Работа на матричном уровне направлена на правильное расположение белковой цепочки внутри полости, их грамотное функционирование. За счет механической фазы клетка обеспечена в автономном режиме.

Перенос энергии происходит в результате фотосинтеза в зеленых пластидах, дыхательных процессов в клеточках внутри полости. В работе участвуют также белки. За счет нахождения в мембране белки снабжают макроклетку способностью воспринимать сигналы. Импульсы переходят от одной клетки-мишени к остальным.

К особым свойствам мембраны относят генерацию, осуществление биопотенциала, распознавание клеток, а то есть маркировка.

Наружная цитоплазматическая мембрана, окружающая цитоплазму каждой клетки, определяет ее величину и обеспечивает сохранение существенных различий между клеточным содержимым и окружающей средой. Мембрана служит высокоизбирательным фильтром, который поддерживает разницу концентраций ионов по обе стороны мембраны и позволяет питательным веществам проникать внутрь клетки, а продуктам выделения выходить наружу.

Все биологические мембраны представляют собой ансамбли липидных и белковых молекул, удерживаемых вместе с помощью нековалентных взаимодействий. Липидные и белковые молекулы образуют непрерывный двойной слой.

Липидный бислой - это основная структура мембраны, которая создает относительно непроницаемый барьер для большинства водорастворимых молекул.

Белковые молекулы как бы «растворены» в липидном бислое. При посредстве белков выполняются разнообразные функции мембраны: одни из них обеспечивают транспорт определенных молекул внутрь клетки или из нее, другие являются ферментами и катализируют ассоциированные с мембраной реакции, а третьи осуществляют структурную связь цитоскелета с внеклеточным матриксом или служат рецепторами для получения и преобразования химических сигналов из окружающей среды.

Важное свойство биологических мембран - текучесть. Все клеточные мембраны представляют собой подвижные текучие структуры: большая часть составляющих их молекул липидов и белков способна достаточно быстро перемещаться в плоскости мембраны. Другое свойство мембран - их асимметрия: оба их слоя различаются по липидному и белковому составам, что отражает функциональные различия их поверхностей.

Функции наружной цитоплазматической мембраны:

· барьерная - обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.

· транспортная - через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке соответствующего pH и ионной концентрации, которые нужны для работы клеточных ферментов.

Частицы, по какой-либо причине не способные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза.

При пассивном транспорте вещества пересекают липидный бислой без затрат энергии, путем диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.

Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивают в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).

· матричная - обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие;

· механическая - обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечение механической функции имеют клеточные стенки, а у животных - межклеточное вещество.

· энергетическая - при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;

· рецепторная - некоторые белки, сидящие в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).

Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.

· ферментативная - мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.

· осуществление генерации и проведения биопотенциалов.

С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.

· маркировка клетки - на мембране есть антигены, действующие как маркеры - «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Цитоплазматическая мембрана, плазмалемма - основная, универсаль­ная для всех клеток составная часть поверхностного аппарата. Ее толщина составляет около 10 нм. Она ограничивает цитоплазму и защищает ее от внешних воздействий, принимает участие в процессах обмена веществ с окружающей средой.

Химическими компонентами мембраны явля­ются липиды и белки. Липидысоставляют в среднем 40 % массы мембран. Среди них преобладают фосфолипиды.

Молекулы липидов располагаются в виде двой­ного слоя (билипидный слой). Каждая молекула липида образована полярной гидрофильной головкой и неполярными гидрофобными хвостами. В цитоплазматической мембране их гидрофильные головки обращены к наружной и внутренней поверхности мембра­ны, а гидрофобные хвосты - внутрь мембраны (рис.).

Кроме основного билипидного слоя, в состав мембран входят белки двух разновидностей: пе­риферические и интегральные. Периферические белки связа­ны с полярными головками липидных молекул элект­ростатическими взаимодействиями. Они не образуют сплошного слоя. Периферические белки связывают плазмалемму с над- или субмембран­ными структурами поверхностного аппарата.

Интегральные белки более или менее глубоко погружены в мембрану, либо пронизывают ее насквозь (см. рис.).

С некоторыми молекулами липидов и белков плазмалеммы животных клеток связаны ковалентными связями молекулы полисахаридов. Их короткие, сильно разветвленные молекулы образуют гликолипиды и гликопротеиды . Полисахаридный слой покрывает всю поверхность клетки. Он называется гликокаликсом (от лат. гликис - сладкий и калюм - толстая кожа), и представляет собой надмембранный комплекс животной клетки.

Функции плазмалеммы. Плазмалемма выполняет барьерную, рецепторную и транспортную функции.

Барьерная функция . Окружая клетку со всех сторон, цитоплазматическая мембрана играет роль механического барьера – преграды между сложно организованным внутриклеточным содержимым и внешней средой. Барьерную функцию обеспечивает билипидный слой, не давая содержимому клетки растекаться и препятствуя проникновению в клетку чужеродных для нее веществ.

Рецепторная функция. Некоторые белки мембраны способны узнавать определенные вещества и связываться с ними. Таким образом рецепторные белки участвуют в отборе молекул, поступающих в клетки. К рецепторным белкам относятся, например, антигенраспознающие рецеп­торы В-лимфоцитов, рецепторы гормонов и т.д. К этому же типу можно отнести интегральные белки, выполняющие специфические ферментативные функции, осуществляю­щие процессы пристеночного пищеварения в кишечнике.

В плазматическую мембрану встроены также сиг­нальные белки, способные в ответ на действие раз­личных факторов окружающей среды изменять свою пространственную структуру и таким образом пере­давать сигналы внутрь клетки. Следовательно, плаз­матическая мембрана обеспечивает раздражи­мость организмов (способность воспринимать раздражители и определенным образом реагировать на них), осуществляя обмен информацией между клеткой и окружающей средой.



В осуществлении рецепторной функции, кроме мембранных белков, важную роль играют элементы гликокаликса.

Разнообразие и специфичность наборов рецепторов на поверхности клеток приводит к созданию очень сложной системы маркеров, позволяющих отличить «свои» клетки (той же особи или того же вида) от «чужих». Сходные клетки вступают друг с другом во взаимодействия, приводящие к слипанию поверхностей (коньюгация у бактерий, образование тканей у животных).

С цитоплазматической мембраной связана локализация специфических рецепторов, реагирующих на физические факторы. Так, у фотосинтезирующих бактерий и цианобактерий на мембранах локализованы рецепторы (хлорофиллы), взаимодействующие с квантами света. В плазмалемме светочувствительных клеток животных расположена специальная система фоторецепторов (родопсин). С помощью фоторецепторов световой сигнал превращается в химический, что в свою очередь приводит к возникновению нервного импульса.

Транспортная функция. Одной из основных функ­ций мембраны является перенос веществ. Выделяют несколько основных способов транспорта веществ через цитоплазматическую мембрану: диффузия, облегченная диффузия, активный транспорт и транспорт в мембранной упаковке.

Диффузия - движение веществ через мембрану по гради­енту концентрации (из области, где их концентрация выше, в область, где их концентрация ниже). Этот процесс происходит без затраты энергии вслед­ствие хаотического движения молекул. Диф­фузный транспорт веществ осуще­ствляется либо через билипидный слой (жирорастворимые вещества), либо при участии транспортных белков мем­браны (рис.). В этом случае транспортные белки образуют молекулярные комплексы - каналы, через которые проходит растворенные молекулы и ионы.

Облегченная диффузия - на­блюдается тогда, когда специаль­ные мембранные белки-переносчи­ки избирательно связываются с тем или иным ионом или молекулой и переносят их через мембрану. При этом переносимые частицы переме­щаются по градиенту концентра­ции, но быстрее, чем при обычной диффузии. Диффузия и облегченная диффузия являются пассивными видами транспорта.

Наконец, наиболее важный вид транспорта - активный мембранный транспорт. Его принципиальное отличие от пассивного транспорта состоит в возможности переноса вещества против градиента концентрации. Для этого в мембране имеются специальные насосы, работающие с ис­пользованием энергии (чаще всего АТФ).

Одним из наиболее распростра­ненных мембранных насосов является так называемая калиево-натриевая АТФаза (К\Na-АТФаза). Благодаря ее работе из клетки непрерыв­но удаляются ионы Na + и закачиваются ионы К + . Таким образом в клетке и вне ее поддерживается разность концент­раций этих ионов, что лежит в основе многих биоэлектрических и транспорт­ных процессов.

В результате активного транс­порта с помощью мембранного на­соса происходит также регуляция концентрации Mg 2+ и Са 2+ в клетке.

Наряду с ионами путем активного транспорта через цитоплазматическую мембрану в клетку поступают моносахариды, аминокислоты и другие вещества.

Своеобразной и относительно хорошо изученной раз­новидностью мембранного транспорта является транс­порт в мембранной упаковке. Он особенно важен для клеток протистов, пищеварительных и секреторных клеток, фагоцитов и др. Различают эндоцитоз и экзоцитоз - в зависимости от того, в каком направлении переносятся вещества (в клетку или из нее).

Эндоцитоз (от греч. эндон - внутри и китос - клетка) - поглощение клеткой пищевых частиц. При эндоцитозе определенный участок плазмалеммы захватывает, обволакивает внеклеточный материал, заключая его в мембранную упаковку, возникшую за счет впячивания мембраны (рис.).

Эндоцитоз разделяют на фаго­цитоз (захват и поглощение круп­ных твердых частиц) и пиноцитоз (поглощение жидкости). Путем эн­доцитоза осуществляется питание гетеротрофных протистов, защит­ные реакции организма (поглощение лейкоцитами чужеродных части­ц) и др. Он не характе­рен для растений и грибов (подумайте, почему).

Экзоцитоз - транспортировка веществ, заключенных в мембранную упаковку, из клетки во внешнюю сре­ду. Вакуолярный пузырек перемещается к цитоплазматической мембране, сливается с ней, а его содержимое выделяется в окружающую среду. Таким способом выделяют­ся пищеварительные ферменты, секретор­ные гранулы, гор­моны, гемицеллюлоза и др.

1. Что такое плазмалемма? Можно ли ее видеть в световой микроскоп? 2. Каковы химический состав и строение плазмалеммы? 3. Какие функции выполняет плазмалемма? 4. Какие вещества и как обеспечивают выполнение плазмалеммой сигнальной функции? 5. Как осуществляется перенос веществ через мембрану? 6. В чем состоит принципиальное отличие пассивного транс­порта от активного? 7. Что общего и отличного между процессами фагоцитоза и пиноцитоза? Клетки каких организмов могут осуществлять эти процессы? Свой ответ обоснуйте.

Клеточная мембрана также называется плазматической (или цитоплазматической) мембраной и плазмалеммой. Данная структура не только отделяет внутреннее содержимое клетки от внешней среды, но также входит с состав большинства клеточных органелл и ядра, в свою очередь отделяя их от гиалоплазмы (цитозоля) - вязко-жидкой части цитоплазмы. Договоримся называть цитоплазматической мембраной ту, которая отделяет содержимое клетки от внешней среды. Остальными терминами обозначать все мембраны.

В основе строения клеточной (биологической) мембраны лежит двойной слой липидов (жиров). Формирование такого слоя связано с особенностями их молекул. Липиды не растворяются в воде, а по-своему в ней конденсируются. Одна часть отдельно взятой молекулы липида представляет собой полярную головку (она притягивается водой, т. е. гидрофильна), а другая - пару длинных неполярных хвостов (эта часть молекулы отталкивается от воды, т. е. гидрофобна). Такое строение молекул заставляет их «прятать» хвосты от воды и поворачивать к воде свои полярные головки.

В результате образуется двойной липидный слой, в котором неполярные хвосты находятся внутри (обращены друг к другу), а полярные головки обращены наружу (к внешней среде и цитоплазме). Поверхность такой мембраны гидрофильна, а внутри она гидрофобна.

В клеточных мембранах среди липидов преобладают фосфолипиды (относятся к сложным липидам). Их головки содержат остаток фосфорной кислоты. Кроме фосфолипидов есть гликолипиды (липиды + углеводы) и холестерол (относится к стеролам). Последний придает мембране жесткость, размещаясь в ее толще между хвостами остальных липидов (холестерол полностью гидрофобный).

За счет электростатического взаимодействия, к заряженным головкам липидов присоединяются некоторые молекулы белков, которые становятся поверхностными мембранными белками. Другие белки взаимодействуют с неполярными хвостами, частично погружаются в двойной слой или пронизывают его насквозь.

Таким образом, клеточная мембрана состоит из двойного слоя липидов, поверхностных (периферических), погруженных (полуинтегральных) и пронизывающих (интегральных) белков . Кроме того, некоторые белки и липиды с внешней стороны мембраны связаны с углеводными цепями.


Это жидкостно-мозаичная модель строения мембраны была выдвинута в 70-х годах XX века. До этого предполагалась бутербродная модель строения, согласно которой липидный бислой находится внутри, а с внутренней и наружной стороны мембрана покрыта сплошными слоями поверхностных белков. Однако накопление экспериментальных данных опровергло эту гипотезу.

Толщина мембран у разных клеток составляет около 8 нм. Мембраны (даже разные стороны одной) отличаются между собой по процентному соотношению различных видов липидов, белков, ферментативной активности и др. Какие-то мембраны более жидкие и более проницаемые, другие более плотные.

Разрывы клеточной мембраны легко сливаются из-за физико-химических особенностей липидного бислоя. В плоскости мембраны липиды и белки (если только они не закреплены цитоскелетом) перемещаются.

Функции клеточной мембраны

Большинство погруженных в клеточную мембрану белков выполняют ферментативную функцию (являются ферментами). Часто (особенно в мембранах органоидов клетки) ферменты располагаются в определенной последовательности так, что продукты реакции, катализируемые одним ферментом, переходят ко второму, затем третьему и т. д. Образуется конвейер, который стабилизируют поверхностные белки, т. к. не дают ферментам плавать вдоль липидного бислоя.

Клеточная мембрана выполняет отграничивающую (барьерную) от окружающей среды и в то же время транспортную функции. Можно сказать, это ее самое главное назначение. Цитоплазматическая мембрана, обладая прочностью и избирательной проницаемостью, поддерживает постоянство внутреннего состава клетки (ее гомеостаз и целостность).

При этом транспорт веществ происходит различными способами. Транспорт по градиенту концентрации предполагает передвижение веществ из области с их большей концентрацией в область с меньшей (диффузия). Так, например, диффундируют газы (CO 2 , O 2).

Бывает также транспорт против градиента концентрации, но с затратой энергии.

Транспорт бывает пассивным и облегченным (когда ему помогает какой-нибудь переносчик). Пассивная диффузия через клеточную мембрану возможна для жирорастворимых веществ.

Есть особые белки, делающие мембраны проницаемыми для сахаров и других водорастворимых веществ. Такие переносчики соединяются с транспортируемыми молекулами и протаскивают их через мембрану. Так переносится глюкоза внутрь эритроцитов.

Пронизывающие белки, объединяясь, могут образовывать пору для перемещения некоторых веществ через мембрану. Такие переносчики не перемещаются, а образуют в мембране канал и работают аналогично ферментам, связывая определенное вещество. Перенос осуществляется благодаря изменению конформации белка, благодаря чему в мембране образуются каналы. Пример - натрий-калиевый насос.

Транспортная функция клеточной мембраны эукариот также реализуется за счет эндоцитоза (и экзоцитоза). Благодаря этим механизмам в клетку (и из нее) попадают крупные молекулы биополимеров, даже целые клетки. Эндо- и экзоцитоз характерны не для всех клеток эукариот (у прокариот его вообще нет). Так эндоцитоз наблюдается у простейших и низших беспозвоночны; у млекопитающих лейкоциты и макрофаги поглощают вредные вещества и бактерии, т. е. эндоцитоз выполняет защитную функцию для организма.

Эндоцитоз делится на фагоцитоз (цитоплазма обволакивает крупные частицы) и пиноцитоз (захват капелек жидкости с растворенными в ней веществами). Механизм этих процессов приблизительно одинаков. Поглощаемые вещества на поверхности клеток окружаются мембраной. Образуется пузырек (фагоцитарный или пиноцитарный), который затем перемещается внутрь клетки.

Экзоцитоз - это выведение цитоплазматической мембраной веществ из клетки (гормонов, полисахаридов, белков, жиров и др.). Данные вещества заключаются в мембранные пузырьки, которые подходят к клеточной мембране. Обе мембраны сливаются и содержимое оказывается за пределами клетки.

Цитоплазматическая мембрана выполняет рецепторную функцию. Для этого на ее внешней стороне располагаются структуры, способные распознавать химический или физический раздражитель. Часть пронизывающих плазмалемму белков с наружней стороны соединены с полисахаридными цепочками (образуя гликопротеиды). Это своеобразные молекулярные рецепторы, улавливающие гормоны. Когда конкретный гормон связывается со своим рецептором, то изменяет его структуру. Это в свою очередь запускает механизм клеточного ответа. При этом могут открываться каналы, и в клетку могут начать поступать определенные вещества или выводиться из нее.

Рецепторная функция клеточных мембран хорошо изучена на основе действия гормона инсулина. При связывании инсулина с его рецептором-гликопротеидом происходит активация каталитической внутриклеточной части этого белка (фермента аденилатциклазы). Фермент синтезирует из АТФ циклическую АМФ. Уже она активирует или подавляет различные ферменты клеточного метаболизма.

Рецепторная функция цитоплазматической мембраны также включает распознавание соседних однотипных клеток. Такие клетки прикрепляются друг к другу различными межклеточными контактами.

В тканях с помощью межклеточных контактов клетки могут обмениваться между собой информацией с помощью специально синтезируемых низкомолекулярных веществ. Одним из примеров подобного взаимодействия является контактное торможение, когда клетки прекращают рост, получив информацию, что свободное пространство занято.

Межклеточные контакты бывают простыми (мембраны разных клеток прилегают друг к другу), замковыми (впячивания мембраны одной клетки в другую), десмосомы (когда мембраны соединены пучками поперечных волокон, проникающих в цитоплазму). Кроме того, есть вариант межклеточных контактов за счет медиаторов (посредников) - синапсы. В них сигнал передается не только химическим, но и электрическим способом. Синапсами передаются сигналы между нервными клетками, а также от нервных к мышечным.

Цитоплазматическая мембрана (плазмалемма) — основная, универсальная для всех клеток часть поверхностного аппарата. Ее толщина составляет около 10 нм. Плазмалемма ограничивает цитоплазму и защищает ее от внешних воздействий, принимает участие в процессах обмена веществ между клеткой и внеклеточной средой.

Основными компонентами мембраны являются липиды и белки. Липиды составляют около 40 % массы мембран. Среди них преобладают фосфолипиды.

Молекулы фосфолипидов располагаются в виде двойного слоя (липидный бислой). Как вы уже знаете, каждая молекула фосфолипида образована полярной гидрофильной головкой и неполярными гидрофобными хвостами. В цитоплазматической мембране гидрофильные головки обращены к наружной и внутренней сторонам мембраны, а гидрофобные хвосты — внутрь мембраны (рис. 30).

Кроме липидов, в состав мембран входят белки двух типов: интегральные и периферические. Интегральные белки более или менее глубоко погружены в мембрану либо пронизывают ее насквозь. Периферические белки располагаются на внешней и внутренней поверхностях мембраны, причем многие из них обеспечивают взаимодействие плазмалеммы с надмембранными и внутриклеточными структурами.

На внешней поверхности цитоплазматической мембраны могут располагаться молекулы олиго- и полисахаридов. Они ковалентно связываются с мембранными липидами и белками, образуя гликолипиды и гликопротеины. В клетках животных такой углеводный слой покрывает всю поверхность плазмалеммы, образуя надмембранный комплекс. Он называется гликокаликсом (от лат. гликис сладкий, калюм — толстая кожа).

Функции цитоплазматической мембраны. Плазмалемма выполняет ряд функций, важнейшими из которых являются барьерная, рецепторная и транспортная.

Барьерная функция. Цитоплазматическая мембрана окружает клетку со всех сторон, играя роль барьера — преграды между сложно организованным внутриклеточным содержимым и внеклеточной средой. Барьерную функцию обеспечивает, прежде всего, липидный бислой, не позволяющий содержимому клетки растекаться и препятствующий проникновению в клетку чужеродных веществ.

Рецепторная функция. В цитоплазматическую мембрану встроены белки, способные в ответ на действие различных факторов внешней среды изменять свою пространственную структуру и таким образом передавать сигналы внутрь клетки. Следовательно, цитоплазматическая мембрана обеспечивает раздражимость клеток (способность воспринимать раздражители и определенным образом реагировать на них), осуществляя обмен информацией между клеткой и окружающей средой.

Некоторые рецепторные белки цитоплазматической мембраны способны распознавать определенные вещества и специфически связываться с ними. Такие белки могут участвовать в отборе необходимых молекул, поступающих в клетки.

К рецепторным белкам относятся, например, антигенраспознающие рецепторы лимфоцитов, рецепторы гормонов и нейромедиаторов и т. д. В осуществлении рецепторной функции, кроме мембранных белков, важную роль играют элементы гликокаликса.

Разнообразие и специфичность наборов рецепторов на поверхности клеток приводит к созданию сложной системы маркеров, позволяющих отличать s.свои:/ клетки (той же особи или того же вида) от s.чужих:/. Благодаря этому клетки могут вступать друг с другом во взаимодействия (например, конъюгация у бактерий, образование тканей у животных).

В цитоплазматической мембране могут быть локализованы специфические рецепторы, реагирующие на различные физические факторы. Например, в плазмалемме светочувствительных клеток животных расположена специальная фоторецепторная система, ключевую роль в функционировании которой играет зрительный пигмент родопсин. С помощью фоторецепторов световой сигнал превращается в химический, что, в свою очередь, приводит к возникновению нервного импульса.

Транспортная функция. Одной из основных функций плазмалеммы является обеспечение транспорта веществ как в клетку, так и из нее во внеклеточную среду. Выделяют несколько основных способов транспорта веществ через цитоплазматическую мембрану: простая диффузия, облегченная диффузия, активный транспорт и транспорт в мембранной упаковке (рис. 31).

При простой диффузии наблюдается самопроизвольное перемещение веществ через мембрану из области, где концентрация этих веществ выше, в область, где их концентрация ниже. Путем простой диффузии через плазмалем-му могут проходить небольшие молекулы (например, Н 2 0, 0 2 , С0 2 , мочевина) и ионы. Как правило, неполярные вещества транспортируются непосредственно через липидный бислой, а полярные молекулы и ионы — через каналы, образованные специальными мембранными белками. Простая диффузия происходит относительно медленно. Для ускорения диффузного транспорта существуют мембранные белки-переносчики. Они избирательно связываются с тем или иным ионом или молекулой и переносят их через мембрану. Такой тип транспорта называется облегченной диффузией. Скорость переноса веществ при облегченной диффузии во много раз выше, чем при простой.

Диффузия (простая и облегченная) — разновидности пассивного транспорта. Он характеризуется тем, что вещества транспортируются через мембрану без затрат энергии и только в том направлении, где наблюдается меньшая концентрация данных веществ.


Активный транспорт — перенос веществ через мембрану из области низкой концентрации этих веществ в область более высокой. Для этого в мембране имеются специальные насосы, работающие с использованием энергии (см. рис. 31). Чаще всего для работы мембранных насосов используется энергия АТФ.

Одним из наиболее распространенных мембранных насосов является натрий-калиевая АТ Фаза (Na + /K + - АТ Фаза). Она удаляет из клетки ионы Na + и закачивает в нее ионы К + - Для работы Ыа + /К + -АТФаза использует энергию, выделяемую при гидролизе АТФ. Благодаря этому насосу поддерживается разность концентраций Na + и К + в клетке и внеклеточной среде, что лежит в основе многих биоэлектрических и транспортных процессов.

В результате активного транспорта с помощью мембранных насосов происходит также регуляция содержания Mgr + , Са 2+ и других ионов в клетке.

Путем активного транспорта через цитоплазматическую мембрану могут перемещаться не только ионы, но и моносахариды, аминокислоты, другие низкомолекулярные вещества.

Своеобразной и относительно хорошо изученной разновидностью мембранного транспорта является транспорт в мембранной упаковке. В зависимости от того, в каком направлении переносятся вещества (в клетку или из нее), различают два вида этого транспорта — эндоцитоз и экзоцитоз.

Эндоцитоз (отгреч. эндон — внутри, китос — клетка, ячейка) — поглощение клеткой внешних частиц путем образования мембранных пузырьков. При эндоцитозе определенный участок плазмалеммы обволакивает внеклеточный материал и захватывает его, заключая в мембранную упаковку (рис. 32).

Выделяют такие разновидности эндоцитоза, как фагоцитоз (захват и поглощение твердых частиц) и пиноцитоз (поглощение жидкости).

Путем эндоцитоза осуществляется питание гетеротрофных протистов, защитные реакции организма (поглощение лейкоцитами чужеродных частиц) и др.

Экзоцитоз (от греч. экзо — снаружи) — транспортировка веществ, заключенных в мембранную упаковку, из клетки во внешнюю среду. Например, пузырек комплекса Гольджи перемещается к цитоплазматической мембране и сливается с ней, а содержимое пузырька выделяется во внеклеточную среду. Таким способом клетки выделяют пищеварительные ферменты, гормоны и другие вещества.

1. Можно ли увидеть плазмалемму в световой микроскоп? Каковы химический состав " и строение цитоплазматической мембраны?

2. Что такое гликокаликс? Для каких клеток он характерен?

3. Перечислите и поясните основные функции плазмалеммы.

4. Какими способами может осуществляться транспорт веществ через мембрану? В чем заключается принципиальное отличие пассивного транспорта от активного?

5. Чем отличаются процессы фагоцитоза и пиноцитоза? В чем проявляется сходство этих процессов?

6. Сравните различные типы транспорта веществ в клетку. Укажите черты их сходства и различия.

7. Какие функции не смогла бы выполнять цитоплазматическая мембрана, если бы в ее состав не входили белки? Ответ обоснуйте.

8. Некоторые вещества (например, диэтиловый эфир, хлороформ) проникают через биологические мембраны даже быстрее, чем вода, хотя их молекулы намного больше молекул воды. С чем это связано?

    Глава 1. Химические компоненты живых организмов

  • § 1. Содержание химических элементов в организме. Макро- и микроэлементы
  • § 2. Химические соединения в живых организмах. Неорганические вещества
  • Глава 2. Клетка - структурная и функциональная единица живых организмов

  • § 10. История открытия клетки. Создание клеточной теории
  • § 15. Эндоплазматическая сеть. Комплекс Гольджи. Лизосомы
  • Глава 3. Обмен веществ и преобразование энергии в организме

  • § 24. Общая характеристика обмена веществ и преобразование энергии
  • Глава 4. Структурная организация и регуляция функций в живых организмах