Фуллерен, его производство, свойства и применение. О воде

Фуллерены в Природе существуют повсюду, и особенно там, где есть углерод и высокие энергии. Они существуют вблизи углеродных звезд, в межзвездном пространстве, в местах попадания молний, вблизи кратеров вулканов, образуются при горении газа в домашней газовой плите или в пламени обычной зажигалки.

В местах скопления древних углеродных пород также обнаруживаются фуллерены. Особое место принадлежит карельским минералам - шунгитам. Этим породам, содержащим до 80% чистого углерода, около 2-х миллиардов лет. Природа их происхождения до сих пор не ясна. Одно из предположений – падение большого углеродного метеорита.

Фуллерены в шунгитах (Fullerenes in Shungites Stone) - тема, широко обсуждаемая во многих печатных изданиях и на страницах Интернет-сайтов. По этому поводу существует немало противоречивых мнений, в связи, с чем и у читателей, и у пользователей шунгитной продукцией возникает немало вопросов. Действительно ли шунгиты содержат молекулярную форму углерода – фуллерены? Содержат ли лечебные «Марциальные воды» фуллерены? Можно ли пить воду, настоянную на шунгите, и какова от этого будет польза? Основываясь на своем опыте научных исследований свойств различных шунгитов, ниже мы приводим свое мнение по поводу этих и некоторых других, часто задаваемых вопросов.

В настоящее время широкое распространение получила продукция, изготовляемая с использованием карельских шунгитов. Это различные фильтры для водоочистки, пирамиды, кулоны, изделия, экранирующие от электро-магнитных излучений, пасты и просто шунгитный щебень и многие другие виды продукции, предлагаемой в качестве профилактических, лечебно-оздоровительных средств. При этом, как правило, в последние годы лечебные свойства различных видов шунгитов приписывают содержащимся в них фуллеренам.

Вскоре, после открытия в 1985 году фуллеренов, начался активный поиск их в Природе. Фуллерены были обнаружены в карельском шунгите, о чем сообщалось в различных научных изданиях . В свою очередь нами были разработаны альтернативные методические подходы по выделению фуллеренов из шунгитов и доказательству их присутствия. В исследованиях анализировались образцы, отобранные в разных районах Заонежья, где залегают шунгитовые породы. Перед анализом образцы шунгитов измельчались до микродисперсного состояния.

Напомним, что шунгиты представляют собой ажурную силикатную решетку, пустоты которой заполнены шунгитным углеродом, который по своей структуре является промежуточным продуктом между аморфным углеродом и графитом. Также в шунгитном углероде присутствуют природные органические низкои высокомолекулярные соединения (ПОНВС) невыясненного химического состава. Шунгиты различаются по составу минеральной основы (алюмосиликатной, кремнистой, карбонатной) и составу шунгитного углерода. Шунгиты подразделяются на малоуглеродистые (до 5% С), среднеуглеродистые (5 - 25% С) и высокоуглеродистые (25 - 80% С). После полного сжигания шунгитов в золе, кроме кремния, находят Fe, Ni, Ca, Mg, Zn, Cd, V, Mo, Cu, Ce, As, W и др. элементы.

Фуллерен в шунгитном углероде находится в виде особых, полярных донорно-акцепторных комплексов с ПОНВС. Поэтому эффективная экстракция фуллеренов из него органическими растворителями, например толуолом, в котором фуллерены хорошо растворимы, не происходит и выбор такого метода извлечения часто приводит к противоречивым результатам об истинном наличии фуллеренов в шунгитах.

В связи с этим нами был разработан метод ультразвуковой экстракции водно-детергентной дисперсии шунгитов с последующим переводом фуллеренов из полярной среды в фазу органического растворителя . После нескольких стадий экстракции, концентрирования и очистки удается получить раствор в гексане, УФ-вид и ИК-спектры которого являются характерными спектрам чистого фуллерена С 60 . Также четкий сигнал в масс-спектре с m/z = 720 (рис. ниже) является однозначным подтверждением наличия в шунгитах только фуллерена С 60 .

252 Cf-ПД масс-спектр экстракта из шунгита. Сигнал при 720 а.е.м – фуллерен С 60 , а сигналы с 696, 672 –характерные осколочные ионы фуллерена С 60 , образующиеся в условиях плазменно-десорбционной ионизации.

Однако нами было обнаружено, что далеко не каждый образец шунгита содержит фуллерены. Из всех образцов шунгита, предоставленных нам Институтом геологии Карельского НЦ РАН (Петрозаводск, Россия) и отобранных из разных районов залегания шунгитовых пород – фуллерен С 60 был обнаружен только в одном образце высокоуглеродистого шунгита, содержащего более 80 % углерода. Причем фуллерена в нем содержалось около 0,04 мас. %. Из этого можно сделать вывод, что далеко не каждый образец шунгита содержит фуллерен, по крайней мере, в количестве доступном для его обнаружения современными высокочувствительными методами физико-химического анализа.

Наравне с этим, хорошо известно, что шунгиты могут содержать достаточно большое количество примесей, в том числе ионов тяжелых поливалентных металлов. И поэтому вода, настоянная на шунгитах, может содержать нежелательные, токсичные примеси.

Но, почему же тогда Марциальная вода (Карельская природная вода, проходящая через шунгитосодержащие породы) обладает столь уникальными биологическими свойствами. Напомним, что еще во времена Петра I, и по его личной инициативе, в Карелии был открыт лечебный источник «Марциальные воды» (подробней, см. ). Долгое время никто не мог объяснить причину особых лечебных свойств этого источника. Предполагалось, что повышенное содержание железа в этих водах является причиной оздоровительных эффектов. Однако есть много железосодержащих источников на Земле, но, как правило, лечебные эффекты от их приема весьма ограничены. Лишь после обнаружения фуллерена в шунгитовых породах, сквозь которые протекает источник, возникло предположение о том, что фуллерен и есть главная причина, квитэсценция лечебного действия Марциальных вод .

Действительно, вода длительное время проходящая через пласты «отмытой» шунгитовой породы, уже не содержит ощутимых количеств вредных примесей. Вода «насыщается» той структурой, которую ей задает порода. Фуллерен, содержащийся в шунгите, способствует упорядочению водных структур и образованию в ней фуллереноподобных гидратных кластеров и приобретению уникальных биологических свойств Марциальных вод. Шунгит, допированный фуллереном, является своеобразным природным структуризатором проходящей через него воды. В то же время никто ещё не смог обнаружить фуллерены в Марциальных водах или в водном настое шунгита: или они из шунгитов не вымываются, или если и вымываются, то в столь мизерных количествах, которые не детектируются ни одним из известных методов. К тому же хорошо известно, что фуллерены в воде самопроизвольно не растворяются. И если бы молекулы фуллеренов содержались бы в Марциальной воде, то ее полезные свойства сохранялись бы очень долгое время. Однако она активна лишь непродолжительное время. Также, как и «талая вода», насыщенная кластерными, льдоподобными структурами, Марциальная вода, содержащая живительные фуллереноподобные структуры, сохраняет свои свойства лишь несколько часов. При хранении Марциальной воды, также как и «талой», упорядоченные водные кластеры саморазрушаются и вода приобретает структурные свойства, как у обычной воды. Поэтому такую воду нет смысла разливать в емкости и хранить длительное время. В ней отсутствует структурообразующий и структуроподдерживающий элемент – фуллерен С 60 в гидратированном состоянии, который способен сохранять упорядоченные кластеры воды сколь угодно долго. Другими словами, для того, чтобы вода в течение длительного времени сохраняла свои естественные кластерные структуры, необходимо постоянное присутствие в ней структурообразующего фактора. Для этого молекула фуллерена является оптимальной, в чем мы убедились, исследуя многие годы уникальные свойства гидратированного фуллерена С 60 .

Все началось в 1995 году, когда нами был разработан метод получения молекулярно–коллоидных растворов гидратированных фуллеренов в воде. Тогда же мы познакомились с книгой, рассказывающей о необычных свойствах Марциальных вод . Мы попробовали воспроизвести природную суть Марциальных вод в лабораторных условиях. Для этого была использована вода высокой степени очистки, к которой по специальной технологии добавлялся гидратированный фуллерена С 60 в очень малых дозах. После этого стали проводить различные биологические испытания на уровне отдельных биомолекул, живых клеток и целостного организма. Результаты оказались поразительными. Практически при любой патологии мы обнаруживали только положительные биологические эффекты действия воды с гидратированным фуллереном С 60 , причем эффекты её применения не только полностью совпадали, но и даже превосходили по многим параметрам, эффекты, которые были описаны для Марциальных вод еще в Петровские времена. Многие патологические изменения в живом организме уходят, и он возвращается к своему нормальному, здоровому состоянию. А ведь это не лекарственный препарат целенаправленного действия и не чужеродное химическое соединение, а просто шарик углерода, растворенный в воде. Причем, складывается впечатление, что гидратированный фуллерен C 60 помогает вернуть в «нормальное состояние» любые негативные изменения в организме за счет восстановления и поддержания тех структур, которые он породил, как матрица, в процессе зарождения жизни.

Поэтому, видимо, неслучайно Орлов А.Д. в своей книге "Шунгит - камень чистой воды., сравнивая свойства шунгитов и фуллеренов, говорит о последних как о квинтэссенции здоровья.

1. Buseck et al. Fullerenes from the Geological Environment. Science 10 July 1992: 215-217. DOI: 10.1126/science.257.5067.215.
2. Н.П. Юшкин. Глобулярная надмолекулярная структура шунгита: данные растровой туннельной микроскопии. ДАН, 1994, т. 337, № 6 с. 800-803.
3. В.А. Резников. Ю.С. Полеховский. Аморфный шунгитовый углерод – естественная среда образования фуллеренов. Письма в ЖТФ. 2000. т. 26. в. 15. с.94-102.
4. Peter R. Buseck. Geological fullerenes: review and analysis. Earth and Planetary Science Letters.V 203, I 3-4, 15 November 2002, Pages 781-792
5. N.N. Rozhkova, G. V.Andrievsky. Aqueous colloidal systems based on shungite carbon and extraction of fullerenes from them. The 4 th Biennial International Workshop in Russia "Fullerenes and Atomic Clusters" IWFAC"99 October 4 - 8, 1999, St. Petersburg, Russia. Book of Abstracts, p.330.
6. Н.Н Рожкова, Г.В. Андриевский. Фуллерены в шунгитовом углероде. Сб. научн. трудов междунар. симпозиума “Фуллерены и фуллереноподобные структуры”: 5-8 июня 2000, БГУ, Минск, 2000, С. 63-69.
7. Н.Н. Рожкова, Г.В. Андриевский. Наноколлоиды шунгитового углерода. экстракция фуллеренов водосодержащими растворителями. Сб. Научн. трудов III международного семинара "Минералогия и жизнь: биоминеральные гомологи", 6-8 июня 2000 г., Сыктывкар, Россия, Геопринт, 2000, С.53-55.
8. С.А. Вишневский. Лечебные местности Карелии. Государственное издательство Карельской АССР, Петрозаводск, 1957, 57 с.
9. Фуллерены: Квинтэссенция Здоровья. Глава на с. 79-98 в книге: А.Д. Орлов. "Шунгит - камень чистой воды."Москва-СПб: "Издательство "ДИЛЯ", 2004. - 112 с.; и в Интернете на сайте (www.golkom.ru/book/36.html).

Свойства… Но обо всём по порядку.

В начале — о шунгите.

Шунгит — это минерал черного цвета, содержащий 93-98% углерода и до 3-4% соединений водорода, кислорода, азота, серы, воды. В золе минерала содержится ванадий, молибден, никель, вольфрам, селен. Название минерал получил по поселку Шуньга в Карелии, где находятся его основные месторождения.

Шунгит образовался из органических донных отложений - сапропеля - примерно 600 млн лет назад, а по некоторым источникам - 2 млрд лет назад. Эти органические осадки (трупы рачков, водорослей и прочих улиток), прикрываемые сверху все новыми наслоениями, постепенно уплотнялись, обезвоживались и погружались в глубины земли. Под влиянием сжатия и высокой температуры шел процесс метаморфизации. В результате этого процесса образовался распыленный в минеральной матрице аморфный углерод в виде характерных именно для шунгита глобул-фуллеренов.

Теперь о фуллеренах

Что же такое, этот фуллерен, содержащийся в шунгите? Фуллерены — это одна из разновидностей углерода. Так, со школы мы помним, что углерод имеет несколько форм:

  • алмаз,
  • графит,
  • уголь.

Фуллерены — это просто ещё одна форма углерода. Отличается она тем, что молекулы фуллеренов представляют собой шары-глобулы из правильных многогранников, составленные из молекул того самого углерода:

Но чем же так полезны фуллерены?

Фуллерены используются в технике полупроводников, для разнообразных исследований (оптики, квантовой механики), фоторезистенции, в области сверхпроводников, в механике для изготовления веществ для уменьшения трения, в аккумуляторной технике, при синтезе алмазов, изготовлении фотобатарей и многих других отраслях. Из которых одна — для изготовления лекарств.

И опять же мы вернулись к нашему вопросу — чем же так полезны фуллерены ? Здесь можно обратиться к Григорию Андриевскому, работающему с группой учёных в Институте терапии Академии медицинских наук Украины именно над этим вопросом. В своих исследованиях учёный раскрыл, что к чему.

Так, фуллерены в шунгите находятся в особой форме — гидратированной. То есть, они соединены с водой и могут растворяться в воде. Соответственно, фуллерены могут вымываться из шунгита и образовывать раствор фуллеренов — единственную активную форму фуллеренов на сегодня.

Далее, водные растворы фуллеренов — это мощные антиоксиданты . То есть, они, подобно витаминам Е и С (и другим веществам) помогают организму справляться со свободными радикалами — веществами, которые образуются в организме при воспалительных процессах и очень агрессивно взаимодействуют с окружающими их веществами — разрушая необходимые организму структуры. Но, в отличие от витаминов, фуллерены не расходуются при нейтрализации свободных радикалов — и могут делать их безопасными, пока не будут выведены из организма естественным путём.

Соответственно, количества фуллеренов, эффективно работающие как антиоксиданты, могут находиться в организме в намного меньших количествах, чем витамины. По сравнению с ними

фуллерены могут работать в сверхмалых дозах.

Соответственно, используя водные растворы фуллеренов, можно снизить количество свободных радикалов в организме — и помочь телу справляться с негативными процессами. Что, собственно, и делает шунгитовая вода — тот самый водный раствор фуллеренов.

И очень важное дополнение от Григория Андриевского по поводу лечебных свойств фуллеренов из шунгита:

Пока шли только опыты на добровольцах, включая меня самого. Поэтому не следует подогревать ажиотаж и внушать несбыточные надежды больным. Да, у нас есть многообещающие результаты фундаментальных исследований, полученные в основном на животных и клеточных культурах. Но, пока препараты и методики не прошли проверки и апробации в установленном порядке, мы не имеем ни морального, ни иного права называть их лекарственными препаратами и лечебными методиками.

И, наконец, к шунгитовой воде

Шунгитовая вода — возвращаемся к ней. Существует два противоположных мнения о приготовлении и использовании шунгитовой воды.

Первое озвучено канд. хим. наук О. В. Мосином (Московская государственная академия тонкой химической технологии им. М. В. Ломоносова):

Вода, настоянная на шунгите , становится не просто чистой питьевой водой, но и молекулярно-коллоидным раствором гидратированных фуллеренов, которые относятся к новому поколению лекарственных и профилактических средств с многоплановым действием на организм.

Второе мнение о использовании шунгита озвучивает директор Института геологии Карельского научного центра РАН д. геол.-м. н. Владимир Щипцов:

То, что шунгит очищает воду, доказано, но лишь в том случае, если он входит в качестве составной части в специальные фильтры . Вода же, настоянная просто на куске минерала, может быть даже вредна - в результате химической реакции образуется, по сути, малоконцентрированный раствор кислоты.

Итак, чтобы приготовить шунгитовую воду — нужно настаивать воду на минерале или пропускать через специальные фильтры? Давайте углубимся в тему. И, поскольку шунгитовая вода — это водный раствор фуллеренов, то от них мы никуда не денемся.

Так, фуллерены растворяются в воде с большим трудом. Зато, если они растворены, то вокруг каждого шара-фуллерена образуется многослойная оболочка из правильно расположенных молекул воды, примерно в десять молекулярных слоев. Эту водяную, иначе говоря гидратную, оболочку вокруг молекулы фуллерена можно назвать структурированной водой .

По своим свойствам вода, окружающая молекулу фуллерена, существенно отличается от обычной. И очень похожа на связанную воду в клетках организма. Так, в живой клетке, по сути, очень мало обычной, знакомой нам свободной воды. Вся вода связана с окружающими её молекулами. И представляет собой что-то вроде желе. Механизм образования связанной воды в клетках похож на механизм образования водной оболочки вокруг молекулы фуллерена.

Таким образом, в растворе шунгитовой воды можно выделить выделяется два сорта воды:

  1. структурированная вода, окружающая молекулы фуллерена (как и молекулы органических веществ в клетках),
  2. и свободная вода.

При выпаривании растворов в первую очередь испаряется именно свободная вода. Такая же водная оболочка с пониженной температурой плавления образуется вокруг молекул ДНК, в растворах ферментов. Что придаёт им устойчивость как к замерзанию, так и к нагреву.

Итак, возвращаемся к двум разным способам приготовления шунгита — настаиванию и пропусканию через слой шунгита. Чем отличаются эти способы? Они отличаются временем контакта. То есть, временем, за которое фуллерены могут выйти из структуры шунгита и образовать водный раствор.

Как мы уже упоминали ранее, фуллерены могут работать в сверхмалых дозах . То есть, для образования действительно эффективного раствора фуллеренов достаточно простого пропускания воды через шунгит или не очень длительного настаивания воды на шунгите.

Естественно, интенсивность растворения фуллеренов из шунгита зависит от степени измельчённости гранул шунгита. Так, если у вас кусок камня весом в килограмм, то воду можно настаивать долго 🙂

Поскольку завершённых научных исследований с однозначными рекомендациями по использованию шунгита нет, то нет и точной закономерности — сколько времени настаивать (фильтровать) через гранулы какого размера шунгита для приготовления раствора фуллеренов нужной концентрации.

Соответственно, единственный выход на сегодня — экспериментировать с шунгитовой водой на себе.

И прислушиваться к своим ощущениям. И, естественно, изменять воздействие при ухудшении или улучшении самочувствия.

Пишите результаты ваших экспериментов!

Фуллере́н , бакибо́л , или букибо́л - молекулярное соединение, принадлежащее классу аллотропных форм углерода и представляющее собой выпуклые замкнутые многогранники, составленные из чётного числа трёхкоординированных атомов углерода. Своим названием фуллерены обязаны инженеру и архитектору Ричарду Бакминстеру Фуллеру , чьи геодезические конструкции построены по этому принципу. Первоначально данный класс соединений был ограничен лишь структурами, включающими только пяти- и шестиугольные грани. Заметим, что для существования такого замкнутого многогранника, построенного из n вершин, образующих только пяти- и шестиугольные грани, согласно теореме Эйлера для многогранников , утверждающей справедливость равенства | n | − | e | + | f | = 2 {\displaystyle |n|-|e|+|f|=2} (где | n | , | e | {\displaystyle |n|,|e|} и | f | {\displaystyle |f|} соответственно количество вершин, ребер и граней), необходимым условием является наличие ровно 12 пятиугольных граней и n / 2 − 10 {\displaystyle n/2-10} шестиугольных граней. Если в состав молекулы фуллерена, помимо атомов углерода, входят атомы других химических элементов, то, если атомы других химических элементов расположены внутри углеродного каркаса, такие фуллерены называются эндоэдральными , если снаружи - экзоэдральными .

Энциклопедичный YouTube

    1 / 2

    ✪ Bill Joy: What I"m worried about, what I"m excited about

    ✪ 12 * L"homme qui empoisonna l"Humanité en voulant la sauver

Субтитры

Переводчик: Marina Gavrilova Редактор: Ahmet Yükseltürk Какие технологии мы можем реально использовать для сокращения глобальной бедности? То, что я понял, было довольно неожиданно. Мы начали изучать такие вещи, как уровень смертности в двадцатом веке, и как с тех пор положение улучшилось, и всплыли очень интересные и простые вещи. Может показаться, что решающую роль сыграли антибиотики, а не чистая вода, но на самом деле всё наоборот. И очень простые вещи -- готовые технологии, которые легко было найти на ранних ступенях развития интернета -- могли кардинально изменить эту проблему. Но, глядя на более мощные технологии, такие как нанотехнологии и генная инженерия, а также другие возникающие цифровые технологии, я обеспокоился возможными злоупотребленями в этих областях. Задумайтесь, ведь в истории, много лет тому назад, мы имели дело с эксплуатацией человека человеком. Тогда мы придумали десять заповедей: не убий. Это своего рода индивидуальное решение. Наши поселения стали организовываться в города. Население увеличивалось. И, чтобы защитить человека от тиранства толпы, мы придумали такие концепции, как свобода личности. Затем, чтобы иметь дело с большими группами, скажем, на уровне государства, либо в результате договоров о взаимном ненападении, либо в результате ряда конфликтов, мы в конце концов пришли к своеобразному мировому соглашению о сохранении мира. Но на сегодняшний день ситуация изменилась, это то, что люди называют асимметричной ситуацией, когда технологии стали настолько мощны, что они уже выходят за пределы государства. Теперь уже не государства, а отдельные индивиидумы имеют потенциальный доступ к оружию массового уничтожения. И это является следствием того факта, что эти новые технологии, как правило, цифровые. Мы все видели геномные последовательности. При желании, кто угодно может скачать последовательности генов патогенных микроорганизмов из Интернета. Если хотите, я недавно прочёл в одном научном журнале, что штамм гриппа 1918 г. слишком опасен для пересылки. И если кому-то нужно использовать его в лабораторных исследованиях, предлагается просто реконструировать его, чтобы не подвергать опасности почту. Такие возможности, бесспорно, существуют. Таким образом, небольшие группы людей, имеющие доступ к такого рода само-воспроизводящимся технологиям, будь то биологические или другие технологии, представляют явную опасность. И опасность в том, что они могут, в сущности, создать пандемию. А у нас нет реального опыта работы с пандемиями, а также, как общество, мы не очень хорошо умеем справляться с незнакомыми вещами. Принятие превентивных мер не в нашей природе. И в этом случае, технология не решает проблему, потому что она только открывает перед людьми больше возможностей. Рассел, Эйнштейн и другие, обсуждая это в гораздо более серьёзной форме, я думаю, ещё в начале двадцатого века, пришли к заключению, что решение должно приниматься не только головой, но и сердцем. Возьмите, к примеру, открытые обсуждения и моральный прогресс. Преимущество, которое дает нам цивилизация, это возможность не использовать силу. Наши права в обществе защищаются в основном посредством законных мер. Чтобы ограничить опасность этих новых вещей, необходимо ограничить доступ отдельных лиц к источникам создания пандемий. Нам также нужны значительные средства обороны, потому что действия сумасшедших людей могут быть непресказуемыми. А самая неприятная вещь -- это то, что сделать что-то плохое гораздо легче, чем разработать защиту во всех возможных ситуациях; поэтому преступник всегда имеет асимметричное преимущество. Вот такие мысли я думал в 1999 и 2000 годах; мои друзья видели, что я находился в подавленном состоянии, и беспокоились за меня. Тогда же я подписал контракт на написание книги, в которой я намеревался изложить свои мрачные мысли, и переехал в гостиничный номер в Нью-Йорке с одной комнатой, полной книг о чуме и о взрывах ядерных бомб в Нью-Йорке; создал атмосферу, одним словом. И я был там 11 сентября, стоял на улице со всеми. Происходило что-то невероятное. Я встал на следующее утро и вышел из города, все уборочные грузовики были припаркованы на Хьюстон-стрит, готовые к разбору завалов. Я шел по середине улицы, до железнодорожной станции; всё, ниже 14-ой улицы, было перекрыто. Это было невероятно, но не для тех, у кого была комната, полная книг. Было удивительно, что это произошло тогда и там, но не удивительно, что это в принципе произошло. Все потом начали об этом писать. Тысячи людей начали писать об этом. И в конце концов я отказался от книги, а затем Крис позвонил мне с предложением выступить на конференции. Я об этом больше не говорю, потому что и без этого происходит достаточно удручающих вещей. Но я согласился прийти и сказать несколько слов по этому поводу. И я бы сказал, что мы не должны отказываться от верховенства закона в борьбе с асимметричными угрозами, что, похоже, делают в настоящее время люди, находящиеся у власти, потому что это равно отказу от цивилизации. И мы не можем бороться с угрозой в такой глупой форме, как мы это делаем, потому что действие в миллион долларов приводит к ущербу на миллиард долларов и к противодействию на триллион долларов, каковое является неэффективным и, почти наверняка усугубляет проблему. Невозможно с чем-то бороться, если затраты находятся в соотношении миллион к одному, а шансы на успех -- один к миллиону. После отказа от книги, около года назад, я имел честь присоединиться к Kleiner Perkins и получил возможность с помощью венчурного капитала работать над инновациями, пытаясь найти такие инновации, которые можно было бы использовать для решения основных проблем. В таких вещах разница в десять раз может в итоге дать выигрыш в тысячу раз. Я был поражен в прошлом году невероятным качеством и импульсом инноваций, которые прошли через мои руки. Временами это было просто захватывающе. Я очень благодарен Google и Wikipedia за то, что я мог понять хотя бы немного из того, о чём говорили приходящие люди. Я бы хотел рассказать вам о трёх областях, которые вселяют в меня особую надежду, касаемо проблем, о которых я писал в статье в журнале "Wired". Первая область -- это образование в целом, а в сущности, это относится к тому, что говорил Николас (Nicholas Negroponte) о 100-долларовых компьютерах. Закон Мура ещё далеко не исчерпан. Наиболее передовые транзисторы на сегодня -- 65 нанометров, и я с удовольствием инвестировал в компании, которые дают мне большую уверенность в том, что закон Мура будет работать вплоть до масштаба примерно 10 нанометров. Ещё уменьшение размеров, скажем, в 6 раз должно улучшить производительность чипов в 100 раз. Таким образом, в практическом плане, если что-то стоит порядка 1000 долларов на сегодняшний день, скажем, лучший персональный компьютер, который можно купить, то его стоимость в 2020 году, я думаю, может быть 10 долларов. Неплохо? Представьте себе, сколько-же будет стоить упомянутый 100-долларовый компьютер в 2020 году в качестве инструмента для обучения. Я думаю, что наша задача -- а я уверен, что это произойдет, разработать такие учебно-методические пособия и сети, которые-бы позволили нам воспользоваться этим устройством. Я убеждён, что мы обладаем невероятно мощными компьютерами, но у нас нет для них хорошего программного обеспечения. И только по прошествии времени, когда появляется более качественное программное обеспечение, вы запускаете его на 10-летней машине и говорите: "Боже, эта машина была способна работать так быстро?" Я помню, когда интерфейс Apple Mac поставили обратно на Apple II. Apple II прекрасно работал с этим интерфейсом, просто в то время мы ещё не знали, как это сделать. Исходя из того, что Закон Мура работал в течении 40 лет, можно предположить, что так оно и будет. Тогда мы знаем, какими будут компьютеры в 2020 году. Это здорово, что у нас есть инициативы для организации образования и просвещения людей по всему миру, потому что это великая сила мира. И мы можем обеспечить каждого в мире 100-долларовым компьютером или 10-долларовым компьютером в течение ближайших 15 лет. Второе направление, на котором я концентрируюсь -- это проблема экологии, потому что она оказывает сильное влияние на весь мир. Скоро Альберт Гор расскажет об этом подробнее. Нам кажется, что существует своего рода тенденция Закона Мура, согласно которой новые материалы являются движущей силой прогресса в области экологии. Перед нами стоит сложная задача, потому что городское население выросло в этом столетии с 2 до 6 миллиардов в очень короткий промежуток времени. Люди перебираются в города. Всем нужна чистая вода, энергия, средства передвижения, и мы хотим развивать города по зеленому пути. Промышленные сектора достаточно эффективны. Мы добились улучшений в области энергетики и эффективности использования ресурсов, но потребительский сектор, особенно в Америке, очень неэффективен. Новые материалы привносят такие невероятные новшества, что есть веские основания надеяться, что они будут достаточно выгодными, чтобы попасть на рынок. Я хочу привести конкретный пример нового материала, который был открыт 15 лет назад. Это углеродные нанотрубки, которые Иидзима открыл в 1991 году, у них просто невероятные свойства. Такие вещи мы обнаруживаем, когда начинаем проектировать на нано уровне. Их сила в том, что это практически самый прочный материал самый устойчивый к растяжению из известных. Они очень, очень жесткие и тянутся очень мало. В двух измерениях, если например из них сделать ткань, то она будет в 30 раз прочнее, чем кевлар. А если сделать трехмерную структуру, например букибол, у него будут невероятные свойства. Если обстрелять его частицами и пробить в нём дыру, он сам себя отремонтирует, быстренько так отремонтирует, в течении фемтосекунд, что не.. Очень быстро. (Смех в зале) Если его осветить, он генерирует электроэнергию. Фото-вспышка может вызвать его возгорание. Если его наэлектризовать, он испускает свет. Через него можно пропустить в тысячу раз больший ток, чем через кусок металла. Из них можно сделать полупроводники как р-, так и n-типа, что означает, что из них можно делать транзисторы. Они проводят тепло по длине, но не поперёк -- тут нельзя говорить о толщине, просто о поперечном направлении -- если поместить их один на другой; это также свойство и углеродного волокна. Если поместить в них частицы, и стрелять -- они действуют как миниатюрные линейные ускорители или электронные пушки. Внутренняя часть нанотрубки настолько мала, -- самая маленькая из них 0,7 нм -- что это в сущности уже квантовый мир. Странное это пространство -- внутри нанотрубки. Итак, мы начинаем понимать, и уже существуют бизнес-планы, вещи, о которых говорит Лиза Рэндел. У меня был один бизнес-план, где я пытался узнать больше о Виттеновских струнах космических измерений, чтобы попытаться понять, что происходит в предлагаемом наноматериале. Так что мы действительно уже на пределе внутри нанотрубки. То есть мы видим, что из этих и других новых материалов можно создавать вещи с различными свойствами -- легкие и прочные -- и применять эти новые материалы для решения экологических проблем. Новые материалы, которые могут создавать воду, новые материалы, которые могут заставить топливные элементы работать лучше, новые материалы, которые катализируют химические реакции, которые уменьшают загрязнение окружающей среды и так далее. Этанол -- новые способы изготовления этанола. Новые способы построения электрического транспорта. Зеленый сон наяву -- потому что это может быть выгодным. И мы вложили -- мы недавно основали новый фонд, мы вложили 100 миллионов долларов в такого рода инвестиции. Мы считаем, что Genentech, Compaq, Lotus, Sun, Netscape, Amazon, и Google ещё появятся в этих областях, потому что это революция в материалах будет двигателем прогресса. Третье направление, над которым мы работаем, и о котором мы только что объявил на прошлой неделе в Нью-Йорке. Мы основали 200-миллионный специальный фонд для разработки биозащиты от пандемий. И, чтобы дать вам представление: последний фонд, основанный Клейнером, оценивается в 400 миллионов долларов, так что это для является очень существенным фондом. Что мы сделали за последние несколько месяцев - несколько месяцев назад мы с Рейем Курцвейлом написали обзорную статью в "Нью-Йорк Таймс" о том, насколько опасна была публикация генома гриппа 1918г. Джон Дерр, Брук и другие обеспокоились этим [неясно], и мы стали изучать, как мир готовился к пандемии. Мы увидели много пробелов. Мы задались вопросом, можно-ли найти такие инновации, которые заполнят эти пробелы? И Брукс сказал мне в перерыве, что он нашел так много вещей, от волнения он не может спать, так много замечательных технологий, что мы просто можем в них закопаться. Мы нуждаемся в них, вы знаете. У нас в резерве есть один антивирусный препарат; говорят, что он по-прежнему работает. Это "Тамифлю". Однако вирус Тамифлю устойчив. Он устойчив к препарату "Тамифлю". Из опыта со СПИДом, мы видим, что хорошо работают коктейли, то есть для вирусной устойчивости нужно несколько препаратов. Нужно глубже это исследовать. Нужны группы, которые могут выяснить, что происходит. Нужна экспресс-диагностика, чтобы мочь выявить штамм гриппа, который только недавно был открыт. Нужно иметь возможность быстро выполнять экспресс-диагностику. Нужны новые антивирусные препараты и коктейли. Нужны новые виды вакцин. Вакцины широкого спектра. Вакцины, которые можно быстро изготовлять. Коктейли, более мощные вакцины. Обычная вакцина работает против 3 возможных штаммов. Мы не знаем, какой именно активизировался. Мы считаем, что если-бы мы могли заполнить эти 10 пробелов, у нас была-бы возможность реально уменьшить риск возникновения пандемии. Обычный сезонный грипп и пандемия находятся в отношении 1:1000 в терминах летальных исходов, ну и, конечно, влияние на экономику огромно. Поэтому мы очень рады, потому что мы думаем, что можем финансировать 10, или, по крайней мере, ускорить 10 проектов и быть свидетелями их выхода на рынок в ближайшие пару лет. Таким образом, если с помощью технологии мы можем помочь в решении проблем в области образования, окружающей среды, в борьбе с пандемиями, то решит-ли это более широкую проблему, которую я обсуждал в журнале "Wired"? Я боюсь, что ответа на самом деле нет, потому что невозможно решить проблему управления технологией с помощью технологии-же. Если оставить неограниченную власть в свободном доступе, то очень небольшое количество людей сможет использовать это в своих целях. Невозможно бороться, когда шансы находятся в соотношении миллион к одному. Что нам нужно, так это более эффективные законы. Например, то, что мы можем сделать, то, что пока не витает в политическом воздухе, но, возможно, со сменой администрации будет -- это использование рынков. Рынки являются очень мощной силой. Например, вместо того, чтобы пытаться регулировать проблемы, что, вероятно, не будет работать, если-бы мы могли внести стоимость катастрофы в затраты на ведение бизнеса, так, чтобы люди, которые работают с бизнесом повышенного риска, могли-бы застраховаться от этого риска. Например, вы можете это использовать, чтобы выйти на рынок с лекарством. Оно не должно будет быть одобрено регулирующими органами; но вам придется убедить страховую компанию, что это безопасно. А если применить понятие страхования в более широком масштабе, вы можете использовать более мощную силу, силу рынка, чтобы обеспечить обратную связь. Как можно обеспечить такое законодательство? Я думаю, что подобное законодательство нужно поддерживать. Нужно провлекать людей к ответственности. Закон требует ответственности. На сегодняшний день ученые, технологи, бизнесмены, инженеры не несут личную ответственность за последствия своих действий. Если что-то делаешь, нужно делать это в согласии с законом. И наконец, я думаю, мы должны сделать - это практически невозможно сказать -- мы должны начать проектировать будущее. Мы не можем выбрать будущее, но мы можем поменять его направление. Наши инвестиции в попытки предотвратить пандемии гриппа влияют на распределение возможных результатов. Мы может быть не в состоянии остановить пандемию, но вероятность того, что она не затронет нас, ниже, если мы концентрируемся на этой проблеме. Таким образом, мы можем конструировать будущее, выбирая то, что мы хотим, чтобы произошло и предотвращая то, что не хотим, и направляя развитие в место с меньшим риском. Вице-президент Гор расскажет о том, как мы могли бы направить траекторию климата в область с низкой вероятностью катастрофы. Но самое главное, что мы должны делать -- это мы должны помочь хорошим ребятам, людям, занятым в обороне, получить преимущество по сравнению с людьми, которые могут использовать ситуацию в своих целях. И то, что мы должны сделать -- это ограничить доступ к определенной информации. Принимая во внимание те ценности, на которых мы выросли, то высокое значение, мы придаём свободе слова, это трудно принять -- всем нам трудно это принять. Особенно трудно это ученым, которые помнят гонения, которым подвергался Галилей, но все же боролся против церкви. Но это цена цивилизации. Ценой за сохранение закона является ограничение доступа к неограниченной власти. Спасибо за внимание. (Аплодисменты)

История открытия

Фуллерены в природе

После получения в лабораторных условиях молекулы углерода были найдены в некоторых образцах шунгитов Северной Карелии в фульгуритах США и Индии , метеоритах и донных отложениях , возраст которых достигает 65 миллионов лет .

Фуллерены в больших количествах были обнаружены и в космосе : в 2010 году в виде газа , в 2012 году - в твёрдом виде .

Структурные свойства

Молекулярное образование углерода в форме усечённый икосаэдр имеет массу 720 а. е. м. В молекулах фуллеренов атомы углерода расположены в вершинах шести- и пятиугольников, из которых составлена поверхность сферы или эллипсоида. Самый симметричный и наиболее полно изученный представитель семейства фуллеренов - фуллерен (C 60), в котором углеродные атомы образуют усечённый икосаэдр , состоящий из 20 шестиугольников и 12 пятиугольников и напоминающий футбольный мяч (как идеальная форма, крайне редко встречающаяся в природе). Так как каждый атом углерода фуллерена С 60 принадлежит одновременно двум шести- и одному пятиугольнику, то все атомы в С 60 эквивалентны, что подтверждается спектром ядерного магнитного резонанса (ЯМР) изотопа 13 С - он содержит всего одну линию. Однако не все связи С-С имеют одинаковую длину. Связь С=С, являющаяся общей стороной для двух шестиугольников, составляет 1,39 , а связь С-С, общая для шести- и пятиугольника, длиннее и равна 1,44 Å . Кроме того, связь первого типа двойная, а второго - одинарная, что существенно для химии фуллерена С 60 . В действительности изучение свойств фуллеренов полученных в больших количествах показывают распределение их объективных свойств (химическая и сорбционная активности) на 4 устойчивых изомера фуллерена , свободно определяемые по различному времени выхода из сорбционной колонки жидкостного хроматографа высокого разрешения. При этом атомная масса всех 4-х изомеров равнозначна - имеет массу 720 а. е. м.

Следующим по распространённости является фуллерен C 70 , отличающийся от фуллерена C 60 вставкой пояса из 10 атомов углерода в экваториальную область C 60 , в результате чего молекула 34 является вытянутой и напоминает своей формой мяч для игры в регби .

Так называемые высшие фуллерены, содержащие большее число атомов углерода (до 400), образуются в значительно меньших количествах и часто имеют довольно сложный изомерный состав. Среди наиболее изученных высших фуллеренов можно выделить C n , n =74, 76, 78, 80, 82 и 84.

Синтез

Первые фуллерены выделяли из конденсированных паров графита , получаемых при лазерном облучении твёрдых графитовых образцов. Фактически, это были следы вещества. Следующий важный шаг был сделан в 1990 году В. Кретчмером, Лэмбом, Д. Хаффманом и др., разработавшими метод получения граммовых количеств фуллеренов путём сжигания графитовых электродов в электрической дуге в атмосфере гелия при низких давлениях . В процессе эрозии анода на стенках камеры оседала сажа, содержащая некоторое количество фуллеренов. Сажу растворяют в бензоле или толуоле и из полученного раствора выделяют в чистом виде граммовые количества молекул С 60 и С 70 в соотношении 3:1 и примерно 2 % более тяжёлых фуллеренов . Впоследствии удалось подобрать оптимальные параметры испарения электродов (давление, состав атмосферы, ток, диаметр электродов), при которых достигается наибольший выход фуллеренов, составляющий в среднем 3-12 % материала анода, что, в конечном счёте, определяет высокую стоимость фуллеренов.

На первых порах все попытки экспериментаторов найти более дешёвые и производительные способы получения граммовых количеств фуллеренов (сжигание углеводородов в пламени , химический синтез и др.) к успеху не привели и метод «дуги» долгое время оставался наиболее продуктивным (производительность около 1 г/час) . Впоследствии фирме Mitsubishi удалось наладить промышленное производство фуллеренов методом сжигания углеводородов, но такие фуллерены содержат кислород , и поэтому дуговой метод по-прежнему остаётся единственным подходящим методом получения чистых фуллеренов.

Механизм образования фуллеренов в дуге до сих пор остаётся неясным, поскольку процессы, идущие в области горения дуги, термодинамически неустойчивы, что сильно усложняет их теоретическое рассмотрение. Неопровержимо удалось установить только то, что фуллерен собирается из отдельных атомов углерода (или фрагментов С 2). Для доказательства в качестве анодного электрода использовался графит 13 С высокой степени очистки, другой электрод был из обычного графита 12 С. После экстракции фуллеренов было показано методом ЯМР , что атомы 12 С и 13 С расположены на поверхности фуллерена хаотично. Это указывает на распад материала графита до отдельных атомов или фрагментов атомного уровня и их последующую сборку в молекулу фуллерена. Данное обстоятельство заставило отказаться от наглядной картины образования фуллеренов в результате сворачивания атомных графитовых слоёв в замкнутые сферы.

Сравнительно быстрое увеличение общего количества установок для получения фуллеренов и постоянная работа по улучшению методов их очистки привели к существенному снижению стоимости С 60 за последние 17 лет - с 10 тыс. до 10-15 долл. за грамм , что подвело к рубежу их реального промышленного использования.

К сожалению, несмотря на оптимизацию метода Хаффмана - Кретчмера (ХК), повысить выход фуллеренов более 10-20 % от общей массы сожжённого графита не удаётся. Из-за относительно высокой стоимости начального продукта - графита, этот метод имеет принципиальные ограничения. Многие исследователи полагают, что снизить стоимость фуллеренов, получаемых методом ХК, ниже нескольких долларов за грамм не удастся. Поэтому усилия ряда исследовательских групп направлены на поиск альтернативных методов получения фуллеренов. Наибольших успехов в этой области достигла фирма Мицубиси , которой удалось наладить промышленный выпуск фуллеренов методом сжигания углеводородов в пламени. Стоимость таких фуллеренов составляет около 5 долл./грамм (2005 год), что никак не повлияло на стоимость электродуговых фуллеренов.

Необходимо отметить, что высокую стоимость фуллеренов определяет не только их низкий выход при сжигании графита, но и сложность выделения, очистки и разделения фуллеренов различных масс из углеродной сажи. Обычный подход состоит в следующем: сажу, полученную при сжигании графита, смешивают с толуолом или другим органическим растворителем (способным эффективно растворять фуллерены), затем смесь фильтруют или отгоняют на центрифуге , а оставшийся раствор выпаривают. После удаления растворителя остается тёмный мелкокристаллический осадок - смесь фуллеренов, называемый обычно фуллеритом. В состав фуллерита входят различные кристаллические образования: мелкие кристаллы из молекул С 60 и С 70 и кристаллы С 60 /С 70 , являются твёрдыми растворами. Кроме того, в фуллерите всегда содержится небольшое количество высших фуллеренов (до 3 %). Разделение смеси фуллеренов на индивидуальные молекулярные фракции производят с помощью жидкостной хроматографии на колонках и жидкостной хроматографии высокого давления (ЖХВД). Последняя используется главным образом для анализа чистоты выделенных фуллеренов, так как аналитическая чувствительность метода ЖХВД очень высока (до 0,01 %). Наконец, последний этап - удаление остатков растворителя из твёрдого образца фуллерена. Оно осуществляется путём выдерживания образца при температуре 150-250 °C в условиях динамического вакуума (около 0,1 торр).

Физические свойства и прикладное значение

Фуллериты

Конденсированные системы, состоящие из молекул фуллеренов, называются фуллеритами . Наиболее изученная система такого рода - кристалл С 60 , менее - система кристаллического С 70 . Исследования кристаллов высших фуллеренов затруднены сложностью их получения.

Атомы углерода в молекуле фуллерена связаны σ- и π-связями , в то время как химической связи (в обычном смысле этого слова) между отдельными молекулами фуллеренов в кристалле нет. Поэтому в конденсированной системе отдельные молекулы сохраняют свою индивидуальность (что важно при рассмотрении электронной структуры кристалла). Молекулы удерживаются в кристалле силами Ван-дер-Ваальса , определяя в значительной мере макроскопические свойства твёрдого C 60 .

При комнатных температурах кристалл С 60 имеет гранецентрированную кубическую (ГЦК) решётку с постоянной 1,415 нм, но при понижении температуры происходит фазовый переход первого рода (Т кр ≈260 ) и кристалл С 60 меняет свою структуру на простую кубическую (постоянная решётки 1,411 нм) . При температуре Т > Т кр молекулы С 60 хаотично вращаются вокруг своего центра равновесия, а при её снижении до критической две оси вращения замораживаются. Полное замораживание вращений происходит при 165 К. Кристаллическое строение С 70 при температурах порядка комнатной подробно исследовалось в работе . Как следует из результатов этой работы, кристаллы данного типа имеют объёмноцентрированную (ОЦК) решётку с небольшой примесью гексагональной фазы.

Нелинейные оптические свойства

Анализ электронной структуры фуллеренов показывает наличие π-электронных систем, для которых имеются большие величины нелинейной восприимчивости. Фуллерены действительно обладают нелинейными оптическими свойствами. Однако из-за высокой симметрии молекулы С 60 генерация второй гармоники возможна только при внесении асимметрии в систему (например внешним электрическим полем). С практической точки зрения привлекательно высокое быстродействие (~250 пс), определяющее гашение генерации второй гармоники. Кроме того фуллерены С 60 способны генерировать и третью гармонику .

Другой вероятной областью использования фуллеренов и, в первую очередь, С 60 являются оптические затворы. Экспериментально показана возможность применения этого материала для длины волны 532 нм . Малое время отклика даёт шанс использовать фуллерены в качестве ограничителей лазерного излучения и модуляторов добротности. Однако, по ряду причин фуллеренам трудно конкурировать здесь с традиционными материалами. Высокая стоимость, сложности с диспергированием фуллеренов в стёклах, способность быстро окисляться на воздухе, далеко не рекордные коэффициенты нелинейной восприимчивости, высокий порог ограничения оптического излучения (не пригодный для защиты глаз) создают серьёзные трудности в борьбе с конкурирующими материалами.

Квантовая механика и фуллерен

Гидратированный фуллерен (HyFn);(С 60 (H 2 O)n)

Гидратированный фуллерен С 60 - C 60 HyFn - это прочный, гидрофильный супрамолекулярный комплекс, состоящий из молекулы фуллерена С 60 , заключенной в первую гидратную оболочку, которая содержит 24 молекулы воды: C 60 @(H 2 O) 24 . Гидратная оболочка образуется вследствие донорно-акцепторного взаимодействия неподеленных пар электронов кислорода молекул воды с электрон-акцепторными центрами на поверхности фуллерена. При этом, молекулы воды, ориентированные вблизи поверхности фуллерена связаны между собой объёмной сеткой водородных связей. Размер C 60 HyFn соответствует 1,6-1,8 нм. В настоящее время, максимальная концентрация С 60 , в виде C 60 HyFn, которую удалось создать в воде, эквивалентна 4 мг/мл. [уточните ссылку ] Фотография водного раствора С 60 HyFn с концентрацией С 60 0,22 мг/мл справа.

Фуллерен в качестве материала для полупроводниковой техники

Молекулярный кристалл фуллерена является полупроводником с шириной запрещённой зоны ~1.5 эВ и его свойства во многом аналогичны свойствам других полупроводников. Поэтому ряд исследований был связан с вопросами использования фуллеренов в качестве нового материала для традиционных приложений в электронике: диод, транзистор, фотоэлемент и т. п. Здесь их преимуществом по сравнению с традиционным кремнием является малое время фотоотклика (единицы нс). Однако существенным недостатком оказалось влияние кислорода на проводимость плёнок фуллеренов и, следовательно, возникла необходимость в защитных покрытиях. В этом смысле более перспективно использовать молекулу фуллерена в качестве самостоятельного наноразмерного устройства и, в частности, усилительного элемента .

Фуллерен как фоторезист

Под действием видимого (> 2 эВ), ультрафиолетового и более коротковолнового излучения фуллерены полимеризуются и в таком виде не растворяются органическими растворителями . В качестве иллюстрации применения фуллеренового фоторезиста можно привести пример получения субмикронного разрешения (≈20 нм) при травлении кремния электронным пучком с использованием маски из полимеризованной плёнки С 60 .

Фуллереновые добавки для роста алмазных плёнок методом CVD

Другой интересной возможностью практического применения является использование фуллереновых добавок при росте алмазных плёнок CVD-методом (Chemical Vapor Deposition). Введение фуллеренов в газовую фазу эффективно с двух точек зрения: увеличение скорости образования алмазных ядер на подложке и поставка строительных блоков из газовой фазы на подложку. В качестве строительных блоков выступают фрагменты С 2 , которые оказались подходящим материалом для роста алмазной плёнки. Экспериментально показано, что скорость роста алмазных плёнок достигает 0,6 мкм/ч, что в 5 раз выше, чем без использования фуллеренов. Для реальной конкуренции алмазов с другими полупроводниками в микроэлектронике необходимо разработать метод гетероэпитаксии алмазных плёнок, однако рост монокристаллических плёнок на неалмазных подложках остаётся пока неразрешимой задачей. Один из возможных путей решения этой проблемы - использование буферного слоя фуллеренов между подложкой и плёнкой алмазов. Предпосылкой к исследованиям в этом направлении является хорошая адгезия фуллеренов к большинству материалов. Перечисленные положения особенно актуальны в связи с интенсивными исследованиями алмазов на предмет их использования в микроэлектронике следующего поколения. Высокое быстродействие (высокая насыщенная дрейфовая скорость); максимальная, по сравнению с любыми другими известными материалами, теплопроводность и химическая стойкость делают алмаз перспективным материалом для электроники следующего поколения .

Сверхпроводящие соединения с С 60

Молекулярные кристаллы фуллеренов - полупроводники , однако в начале 1991 года было установлено, что легирование твёрдого С 60 небольшим количеством щелочного металла приводит к образованию материала с металлической проводимостью, который при низких температурах переходит в сверхпроводник . Легирование С 60 производят путём обработки кристаллов парами металла при температурах в несколько сотен градусов Цельсия. При этом образуется структура типа X 3 С 60 (Х - атом щелочного металла). Первым интеркалированным металлом оказался калий . Переход соединения К 3 С 60 в сверхпроводящее состояние происходит при температуре 19 К. Это рекордное значение для молекулярных сверхпроводников . Вскоре установили, что сверхпроводимостью обладают многие фуллериты, легированные атомами щелочных металлов в соотношении либо Х 3 С 60 , либо XY 2 С 60 (X,Y - атомы щелочных металлов). Рекордсменом среди высокотемпературных сверхпроводников (ВТСП) указанных типов оказался RbCs 2 С 60 - его Т кр =33 К .

Влияние малых добавок фуллереновой сажи на антифрикционные и противоизносные свойства ПТФЭ

Следует отметить, что присутствие фуллерена С 60 в минеральных смазках инициирует на поверхностях контртел образование защитной фуллерено-полимерной плёнки толщиной 100 нм. Образованная плёнка защищает от термической и окислительной деструкции, увеличивает время жизни узлов трения в аварийных ситуациях в 3-8 раз, термостабильность смазок до 400-500 °C и несущую способность узлов трения в 2-3 раза, расширяет рабочий интервал давлений узлов трения в 1,5-2 раза, уменьшает время приработки контртел.

Другие области применения

Среди других интересных приложений следует отметить аккумуляторы и электрические батареи, в которых так или иначе используются добавки фуллеренов. Основой этих аккумуляторов являются литиевые катоды , содержащие интеркалированные фуллерены. Фуллерены также могут быть использованы в качестве добавок для получения искусственных алмазов методом высокого давления . При этом выход алмазов увеличивается на ≈30 %.

Кроме того, фуллерены нашли применение в качестве добавок в интумесцентные (вспучивающиеся) огнезащитные краски. За счёт введения фуллеренов краска под воздействием температуры при пожаре вспучивается, образуется достаточно плотный пенококсовый слой, который в несколько раз увеличивает время нагревания до критической температуры защищаемых конструкций.

Также фуллерены и их различные химические производные используются в сочетании с полисопряжёнными полупроводящими полимерами для изготовления солнечных элементов.

Химические свойства

Фуллерены, несмотря на отсутствие атомов водорода, которые могут быть замещены как в случае обычных ароматических соединений , всё же могут быть функционализированы различными химическими методами. Например, успешно были применены такие реакции для функционализации фуллеренов, как реакция Дильса - Альдера , реакция Прато , реакция Бингеля. Фуллерены также могут быть прогидрированы с образованием продуктов от С 60 Н 2 до С 60 Н 50 .

Медицинское значение

Антиоксиданты

Фуллерены являются мощнейшими антиоксидантами , известными на сегодняшний день. В среднем они превосходят действие всех известных до них антиоксидантов в 100-1000 раз. Предполагается, что именно благодаря этому они способны значительно продлевать среднюю продолжительность жизни крыс и круглых червей . В природном виде содержатся в шунгите и морском воздухе. Предполагается, что фуллерен С 60 , растворённый в оливковом масле, может встраиваться в двухслойные липидные мембраны клеток и митохондрий и действовать как многоразовый антиоксидант

Фуллерены - это молекулярные соединения, принадлежащие классу аллотропных модификаций углерода, имеющие замкнутые каркасные структуры, состоящие из трех координированных атомов углерода и имеющих 12 пятиугольных и (n/2 - 10) шестиугольных граней (n≥20). Особенностью является то, что каждый пятиугольник соседствует только с шестиугольниками .

Наиболее устойчивую форму имеет С 60 (бакминстерфуллерен), сферическая полая структура которого состоит из 20 гексагонов и 12 пентагонов.

Рисунок 1. Структура С 60

Молекула C 60 представляет собой атомы углерода, связанные друг с другом ковалентной связью. Данная связь обусловлена обобществлением валентных электронов атомов. Длина связи С−С в пентагоне равна 1,43 Ǻ, как и длина стороны гексагона, объединяющей обе фигуры, однако, сторона, соединяющая гексагоны, составляет приблизительно 1,39 Ǻ .

В определенных условиях молекулы С 60 имеют свойство упорядочиваться в пространстве, они располагаются в узлах кристаллической решетки, иными словами, фуллерен образует кристалл, называемый фуллеритом. Чтобы молекулы С 60 систематично разместились в пространстве, как и их атомы, они должны связаться между собой. Данная связь между молекулами в кристалле обусловлена наличием слабой ван-дер-ваальсовой силы. Это явление объясняется тем, что в электрически нейтральной молекуле отрицательный заряд электронов и положительный заряд ядра рассредоточены в пространстве, в следствии чего молекулы способны поляризовать друг друга, иными словами, они приводят к смещению в пространстве центров положительного и отрицательного зарядов, что обуславливает их взаимодействие .

Твердый C 60 при комнатной температуре имеет гранецентрированную кубическую решетку, плотность которой составляет 1,68 г/см 3 . При температуре ниже 0° С происходит трансформация в кубическую решетку.

Энтальпия образования фуллерена-60 составляет около 42,5 кДж/моль. Данный показатель отображает его малую стабильность, по сравнению с графитом (0 кДж/моль) и алмазом (1,67 кДж/моль). Стоит отметить, что с увеличением размеров сферы (по мере увеличения количества атомов углерода) энтальпия образования асимптотически стремится к энтальпии графита, это объясняется тем, что сфера все больше напоминает плоскость.

Внешне фуллерены представляют собой мелкокристаллические порошки черного цвета, не имеющие запаха. Они практически нерастворимы в воде (H 2 O), этаноле (C 2 H 5 OH), ацетоне (C 3 H 6 O) и других полярных растворителя, зато в бензоле (C 6 H 6), толуоле (C 6 H 5 −CH 3), фенилхлориде (C 6 H 5 Cl) растворяются образуя окрашенные в красно-фиолетовый цвет растворы. Стоит отметить, что при добавлении капли стирола (C 8 H 8) к насыщенному раствору C 60 в диоксане (C 4 H 8 O 2), происходит мгновенное изменение окраски раствора с желто-коричневого окраса на красно-фиолетовую, в связи с образованием комплекса (сольвата).

В насыщенных растворах ароматических растворителей фуллерены при низких температурах образует осадок - кристаллосольват вида C 60 ·Xn, где в качестве X выступают бензол (C 6 H 6), толуол (C 6 H 5 −CH 3), стирол (C 8 H 8), ферроцен (Fe(C 5 H 5) 2) и другие молекулы.

Энтальпия растворения фуллерена в большинстве растворителей положительна, при увеличении температуры растворимость, как правило, ухудшается .

Исследование физических и химических свойств фуллерена является актуальным явлением, так как данное соединение все прочнее входит в нашу жизнь. В настоящее время обсуждаются идеи использования фуллеренов в создании фотоприемников и оптоэлектронных устройств, катализаторов роста, алмазных и алмазоподобных пленок, сверхпроводящих материалов, а также в качестве красителей для копировальных машин. Фуллерены применяются в синтезе металлов и сплавов с улучшенными свойствами.

Фуллерены планируются в использовании в основе производства аккумуляторных батарей. Принцип действия данных батарей основан на реакции гидрирования, они во многом аналогичны широко распространенным аккумуляторам на основе никеля, однако, в отличие от последних, обладают способностью запасать в несколько раз больше удельного количества водорода. Кроме того, подобные батареи обладают более высокой эффективностью, малым весом, а также экологической и санитарной безопасностью по сравнению с наиболее продвинутыми в отношении этих качеств литийными аккумуляторами. Фуллереновые аккумуляторы могут найти широкое применение для питания персональных компьютеров и слуховых аппаратов.

Значительное внимание уделяется проблеме использования фуллеренов в области медицины и фармакологии. Рассматривается идея создания противораковых медицинских препаратов, основой которых будут являться водорастворимые эндоэдральные соединения фуллеренов с радиоактивными изотопами.

Однако, применение фуллеренов ограничивается их высокой стоимостью, которая обусловлена трудоемкостью синтеза фуллереновой смеси, а также многостадийным выделением из нее отдельных компонентов.

Фуллерены - ϶ᴛᴏ изолированные молекулы новой аллотропной модификации углерода (названы так в честь американского инженера и архитектора ячеистых куполов Р. Бакминстера Фуллера). Фуллерены в твердом со­стоянии называют фуллеритами.

Фуллерены представляют из себяустойчивые многоатом­ные кластеры углерода с числом атомов от нескольких десят­ков и выше. Число атомов углерода в таком кластере не про­извольно, а подчиняется определœенной закономерности (чис­ло атомов в кластере N = 32,44, 50, 58, 60, 70, 72, 78, 80, 82, 84 и т. д). Молекула фуллерена может содержать только четное число атомов углерода . Форма фуллеренов - полый сфероид, грани кото­рого образуют пяти- и шестиугольники. Молекула фуллерена построена из атомов С, находящихся в состоянии 2 -гибридизации, благодаря чему каждый атом имеет по три сосœеда, связанных с ним s-связями. Оставшиеся валентные электроны образуют π-систему молекулы из делокализованных двойных связей ʼʼуглерод-углеродʼʼ. Для образования сферической поверхности необходимы 12 пятиугольных углеродных фрагментов и сколько угодно шестиугольных.

Наибольший инте­рес представляет фуллерен С 60 ввиду его наибольшей стабильности и высокой симметрии. Все атомы в этой молекуле эквивалентны, каждый атом принад­лежит двум шестиугольникам и одному пятиугольнику и связан с ближайшими сосœедями одной двойной и двумя оди­ночными связями. Молекула С 60 представляет собой полый многогранник, имеющий 12 пятиугольных и 20 шестиуголь­ных симметрично расположенных граней, образующих фор­му, аналогичную форме футбольного мяча, также состояще­го из двенадцати пятиугольных и двадцати шестиугольных фасеток (в связи с этим ее также называют ʼʼфутболиноʼʼ). Свобод­ных связей у молекулы С 60 нет, и этим объясняется ее боль­шая химическая и физическая устойчивость. Благодаря это­му среди аллотропов углерода фуллерены и фуллериты - самые чистые. Диаметр молекулы С 60 равен 0,7024 нм. Ва­лентные электроны распределœены более или менее равномер­но по сферической оболочке толщиной примерно 0,4232 нм. В центре молекулы остается практически свободная от элек­тронов полость радиусом около 0,1058 нм. Так что такая мо­лекула является как бы маленькой пустой клеткой, в поло­сти которой могут размещаться атомы других элементов и даже другие молекулы, не разрушая целостность самой мо­лекулы фуллерена.

Шарообразные молекулы С 60 могут соединяться друг с другом в твердом телœе с образованием гранецентрированной кубической (ГЦК) кристаллической решетки. В кристалле фуллерита молекулы С 60 играют такую же роль, как и атомы в обычном кристалле. Расстояние между центрами ближай­ших молекул в гранецентрированной решетке, удержи­ваемых слабыми силами Ван-дер-Ваальса, составляет около 1 нм.

Необходимо отметить, что по своим электронным свойствам кристаллы чистого С 60 и многих комплексов на их базе представляют из себяно­вый класс органических полупроводников, чрезвычайно ин­тересных как с чисто фундаментальной точки зрения, так и с точки зрения возможных применений.

С фундаментальной точки зрения интерес к фуллеритам обусловлен, в частности, тем обстоятельством, что в отличие от ʼʼклассическихʼʼ полупроводников (таких как кремний), ширина разрешенных энергетических зон в кристаллах фуллеренов довольно мала, она не превышает 0,5 эВ. По этой причине в этих кристаллах возможны сильные эффекты, связанные с кулоновскими корреляциями, релаксацией решетки, и другие эффекты, что крайне интересно и может привести к открытию и наблюдению новых явлений.

Ширина первой запрещенной зоны по­рядка 2,2 ... 2,3 эВ.

Модификация поверхности молекулы фуллерена или заполнение ее внутреннего пространства атомами металлов приводит к заметному изменению физических свойств, к примеру переходу в сверхпроводящее состояние или проявлению магнетизма.

К многообразным фуллереновым производным относят­ся интеркалированные соединœения и эндоэдральные фуллерены (или эндоэдральные комплексы). При интеркаляции примеси вводятся в пустоты кристаллической решетки фуллерита͵ а эндоэдральные фуллерены образуются при внедрении атомов различного сорта внутрь кластера С п .

В случае если бы удалось найти химическую реакцию, открываю­щую окошко в каркасе фуллерена, позволяющее впустить туда некий атом или небольшую молекулу, и вновь восста­навливающую строение кластера, то получился бы краси­вый метод получения эндоэдральных фуллеренов. При этом большинство эндоэдральных металлофуллеренов в настоя­щее время производится либо в процессе формирования фуллеренов в присутствии чужеродного вещества, либо пу­тем имплантации.

Методы получения и разделœения фуллеренов . Наиболее эффективный способ получения фуллеренов основан на термическом разложении графита. При умерен­ном нагревании графита разрывается связь между отдельны­ми слоями графита͵ но не происходит разложения испаряе­мого материала на отдельные атомы. При этом испаряемый слой состоит из отдельных фрагментов, из которых и проис­ходит построение молекулы С 60 и других фуллеренов. Для разложения графита при получении фуллеренов использу­ются резистивный и высокочастотный нагрев графитового электрода, сжигание углеводородов, лазерное облучение по­верхности графита. Эти процессы проводятся в буферном газе, в качестве которого обычно используется гелий.

Чаще всœего для получения фуллеренов применяется дуго­вой разряд с графитовыми электродами в гелиевой атмосфе­ре. Основная роль гелия связана, по-видимому, с охлажде­нием фрагментов, которые имеют высокую степень колеба­тельного возбуждения, что препятствует их объединœению в стабильные структуры.

Применение фуллеренов .

Предполагаемых применений фуллеренов очень много:

· С химической устойчивостью и пустотелостью фуллеренов связаны возможности их применения в химии, микробиоло­гии и медицинœе. К примеру, их можно использовать для упаковки и доставки в требуемое место не только атомов, но и целых молекул, в т.ч. органиче­ских (фармацевтика, микробиология);

· Фуллерены как новые полупроводниковые и наноконструкционные материалы. Фуллереновая молекула является готовым наноразмерным объектом для создания приборов и устройств наноэлектроники на новых физических принципах. Разработаны физические принципы создания аналога транзистора на одной молекуле фуллерена, который может служить усилителœем тока наноамперного диапазона. В области наноэлектроники наибольший интерес с точки зрения возможных приложений вызывают квантовые точки (quantum dots). Такие точки обладают рядом уникальных оптических свойств, которые позволяют использовать их, к примеру, для управления волоконной оптической связью, либо в качестве элементов процессора в проектируемом в на­стоящее время оптическом суперкомпьютере. Фуллерены яв­ляются во многих отношениях идеальными квантовыми точ­ками. Интересны для перспективных устройств памяти и эндоэдральные комплексы редкоземельных элементов, таких как тербий (Tb), гадолиний (Gd), диспрозий (Dy), обладающих большими магнитными моментами. Фуллерен, внутри которого находится такой атом, должен обладать свойствами магнитного диполя, ориентацией которого можно управлять внешним магнитным полем. Эти комплексы (в виде многослойной пленки) могут служить основой магнитной запоминающей среды с плотностью записи до 10 12 бит/см 2 .

· Фуллерены как новые материалы для нелинœейной оп­тики. Фуллереносодержащие материалы (растворы, поли­меры, жидкие кристаллы, фуллереносодержащие стеклян­ные матрицы) обладают сильно нелинœейными оптическими свойствами и перспективны для применения в качестве: оп­тических ограничителœей (ослабителœей) интенсивного лазер­ного излучения; фоторефрактивных сред для записи динами­ческих голограмм; частотных преобразователœей; устройств фазового сопряжения. Наиболее изученной областью является создание оптиче­ских ограничителœей мощности на базе жидких и твердых растворов С 60 .

· Легированный щелочным металлом фуллерит С 60 яв­ляется проводником, а при низкой температуре и сверх­проводником. Введение атомов примеси в фуллеритовую матрицу связано с явлением интеркаляции. Интеркаляционные соединœения представляют из себяматериал, в котором атомы или молекулы примеси захвачены между слоями кри­сталлической решетки. Формально химическая связь между интеркалянтом и матрицей отсутствует. В межмолекулярные пустоты кристалла С 60 могут внедряться, не деформируя решетку, атомы примеси (в основном, щелочные, щелочноземельные и редкоземельные металлы). С 60 имеет большое сродство к электрону, щелочные металлы легко отдают электроны. Кристалл С 60 – широкозонный полупроводник и его проводимость низка, и при легировании щелочными атомами он становится проводником. К примеру, при легировании калием до образования K 3 C 60 атомы калия ионизируются до K + , а их электроны связываются с молекулой С 60 , которая становится отрицательным ионом. K 3 C 60 при температуре 18 К является сверхпроводником.

· Фуллерены - материал для литографии.Благодаря способности полимеризоваться под действием лазерного или электронного луча (степень полимеризации в отдельных слу­чаях превышает 10 6) и образовывать при этом нераствори­мую в органических растворителях фазу, перспективно при­менение фуллеренов в качестве резиста для субмикронной литографии. Фуллереновые пленки при этом выдерживают значительный нагрев, не загрязняют подложку, допускают сухое проявление. Поскольку полимеризованные кластеры С 60 сами по себе являются полупроводниками, эта технология может оказаться очень перспективной для созда­ния одноэлектронных транзисторов, работающих при ком­натной температуре. Для этого в туннельных зазорах, сфор­мированных, к примеру, на поверхности кремния, можно попытаться создать очень маленькие кластеры С 60 за счёт электронно-лучевой полимеризации.

Хиральность (chirality)

Хиральность – отсутствие симметрии относительно правой и левой стороны. К примеру, в случае если отражение объекта в идеальном плоском зеркале отличается от самого объекта͵ то объекту присуща хиральность. Молекулярная хиральность – свойство молекулы быть несовместимой со своим зеркальным отражением любой комбинацией вращений и перемещений в трёхмерном пространстве. Любая геометрическая фигура, которая не должна быть совмещена со своим отражением, принято называть хиральной.

Хиральные молекулы составляют основу живой природы, а также многих функциональных материалов. К примеру, всœе аминокислоты, входящие в состав белков, хиральны (за исключением глицина). Это относится и к сахарам – строительным звеньям углеводов и нуклеиновых кислот. Соответственно, хиральны и образованные их них макромолекулы – типичные нанообъекты: белки, нуклеиновые кислоты, углеводы и т.д.

Существенное значение хиральность имеет при синтезе сложных соединœений, обладающих лекарственными свойствами, регулярных полимеров, жидких кристаллов; отсутствие центра симметрии является ключевым условием при получении материалов для нелинœейной оптики, сегнето- и пьезоэлектриков. Большинство природных ядов – полипептидов и алкалоидов – также хиральны, а их ʼʼантиподыʼʼ практически безвредны для организма человека. С другой стороны, ʼʼантиподыʼʼ природных аминокислот и сахаров живыми организмами просто не усваиваются и даже не распознаются. Иногда антиподы лекарственных веществ бывают очень опасны, в связи с этим при производстве лекарств для очистки получаемых веществ используются различные хиральные агенты.

Фуллерены - понятие и виды. Классификация и особенности категории "Фуллерены" 2017, 2018.