Что такое авионика. Интегрированная модульная авионика

В начале лета корпорация «Иркут» провела выкатку МС-21, первого российского среднемагистрального пассажирского самолета. Мы уже о том, как разрабатывалось и как производится композитное крыло нового лайнера. Теперь корреспондент N+1 побывал в Центре комплексирования Объединенной авиастроительной корпорации, где разрабатывается функциональное программное обеспечение для бортового оборудования пассажирского самолета и проводятся работы по интеграции электронных систем и их тестированию.

Авионикой называют все электронные системы, функционирующие на борту пассажирского самолета. Долгое время различные бортовые электронные системы на лайнерах были самостоятельными элементами, имели собственные органы управления и индикаторы и по большому счету никому не подчинялись. Друг с другом они обменивались данными по специальным интерфейсным линиям. На многих современных лайнерах, выпущенных десяток лет назад, дела обстоят именно так: например, устройство автоматического выведения самолета из режимов сваливания и штопора работает самостоятельно и о своем функционировании лишь извещает летчиков загоревшимся индикатором.

Несколько лет назад мировые авиапроизводители стали реализовывать концепцию комплекса интегрированного бортового оборудования на основе интегрированной модульной авионики (ИКБО ИМА). В рамках этой концепции абсолютно все периферийные электронные системы были подчинены бортовому компьютеру. Это означает, что периферийные электронные системы стали проще, поскольку лишились собственных вычислительных систем - теперь их работой управляет главный компьютер самолета. При этом сами системы проектируются по модульному принципу с открытой архитектурой, то есть их можно заменить новыми более мощными, а передаваемые ими данные хорошо задокументированы и могут быть использованы сторонними производителями оборудования.

Современный самолет представляет собой большой летающий компьютер с собственной операционной системой. Под управлением этой системы функционирует множество программ, каждая из которых отвечает за работу определенного оборудования - открывание дверей, вывод индикации, получение данных от внешних датчиков, управление бортовым радиоэлектронным оборудованием. Все эти программы работают на центральном компьютере - вычислителе - и обмениваются данными друг с другом с помощью программного кода внутри операционной системы. Оборудование самого компьютера дублировано, и при выходе из строя одного блока его место занимает второй и вся система в целом продолжает работу.

В целом концепция ИКБО ИМА одновременно и упростила, и усложнила разработку бортового оборудования самолета. С одной стороны, передача всех управляющих функций центральному вычислителю позволило сделать конструкцию периферийных систем проще, снизить общий вес аппаратуры, ускорить ее работу и обмен данными, освободить больше места на борту самолета. При этом открытая архитектура дала возможность выбирать из множества датчиков и периферийных систем, представленных на рынке, а не конкретных типов, рекомендованных к установке производителем конкретного оборудования. Это позволяет точно конфигурировать функциональность системы и составлять комплекс оборудования исходя из собственных финансовых возможностей.

С другой стороны, разрабатывать программное обеспечения для авионики стало сложнее. Да, с каждым закупаемым сегодня вычислителем производитель поставляет программный комплекс для написания программного обеспечения, своего рода инструменты разработчика. Для того чтобы новый комплекс бортового оборудования допустили к полетам на серийном самолете, он должен пройти испытания и сертификацию. В концепции ИКБО ИМА отдельные испытания проходят само оборудование, программное обеспечение, каждая отдельная программа - и все это в комплексе. Раньше же при разработке бортовой электронной системы один производитель создавал «железо» и испытывал его, другой - программу и испытывал ее, а потом аппаратура и «софт» совмещались и сертифицировались.

При старте проекта МС-21 в начале 2000-х годов бортовые электронные системы лайнера планировалось разрабатывать и производить в России. Но позднее стало понятно, что реализовать концепцию ИКБО ИМА полностью в России и при этом практически с нуля будет крайне сложно, долго и дорого. Поэтому разработчики самолета пошли проверенным путем, уже давно избранным крупными иностранными авиапроизводителями, от канадского Bombardier и бразильского Embraer до американского Boeing и европейского Aribus. Речь идет о заказе готового оборудования и доработке его под собственные требования и нужды. Такой подход существенно экономит время и затраты.

А еще он значительно упрощает сертификацию новых самолетов в соответствии с международными стандартами. По словам начальника отдела систем самолетовождения «ОАК - Центр комплексирования» Евгения Лунева, покупка готового оборудования с инструментами разработчика, уже прошедшими предварительные сертификационные испытания, упрощает последующую сертификацию этих систем с написанным программным обеспечением. Потому что даже программные инструменты разработчика, поставляемые производителем, позволяют визуально через удобный графический интерфейс прописывать логику работы программы и задавать алгоритмы. При этом ручное программирование сводится к минимуму.

Основу бортового электронного оборудования МС-21 составляют системы французской компании Thales и американских Honeywell и Rockwell Collins. В частности, Thales поставляет вычислители, на которых будет работать российское программное обеспечение. На один самолет установят шесть таких компьютеров, которые будут работать синхронно, чтобы реализовать дублирование функциональности без сбоев. Honeywell поставляет навигационные блоки, в состав которых входит и спутниковая навигация, а Rockwell Collins - системы связи и обмена данными. Объединение всех поставляемых блоков в единый комплекс и обеспечивает «ОАК - Центр комплексирования», причем российская компания выступает интегратором систем.


Потолочная консоль МС-21 на стенде

Василий Сычёв

Когда разрабатывался первый со времен СССР российский лайнер Sukhoi Superjet 100, российские разработчики участвовали в создании комплекса его бортового оборудования, которое также состоит из блоков иностранного производства. При этом за интеграцию программного обеспечения (доля российского кода в нем составляет значительную часть) и всех систем бортового оборудования полностью отвечала французская компания Thales. Теперь это положение вещей изменилось. Сегодня компания «ОАК - Центр комплексирования» проводит интеграцию авионики МС-21 и уже частично занимается созданием комплексов бортового оборудования для многих других российских самолетов, включая и транспортные.

Объединение электронных систем в единый комплекс производится через сетевой интерфейс, по своей топологии во многом схожий с самым обыкновенным Ethernet. Отличие заключается в том, что «вещание» бортового оборудования в сеть строго регламентировано как по объемам передаваемых данных, так и по времени начала и продолжительности передачи. В случае, если из-за сбоя какая-либо из подсистем начнет передачу данных вне своего графика, они не будут учтены и не приведут к неверной работе другого оборудования. Каждый элемент сети получает право передачи в зависимости от критичности передаваемых сообщений и присвоенного этому элементу приоритета. Все каналы обмена данными дублируются.

«В бортовом оборудовании используется система централизованного управления. То есть если вам необходимо выгрузить с определенного блока какие-либо данные или провести на нем обновление программного обеспечения, вам не нужно [залезать] куда-то в технический отсек. Все это вы можете проделать из кабины экипажа через специальную панель», - рассказал Лунев. При этом техник в случае масштабного обновления программного обеспечения или модернизации может в несколько простых действий извлечь старый блок и вставить новый. Они выполнены в стандартном типоразмере, имеют стандартный интерфейс подключения и питания и системы фиксации.

Понятно, что современная сеть должна учитывать и возможность атаки злоумышленников, и в этом направлении тоже было сделано несколько важных шагов. В программном обеспечении, например, реализованы аналоги компьютерных файерволлов, контролирующих сетевые пакеты. Кроме того, реализовано разделение сетей разных уровней. То есть оборудование, отвечающее за управление самолетом, навигацию, безопасность полета, «развязано» с «пользовательскими» системами на борту лайнера - развлекательными центрами, телефонией и Wi-Fi. Вычислительные системы МС-21 будут контролировать входящий канал данных, чтобы избежать взлома извне.


Татьяна Павлова / «ОАК-Центр комплексирования»

Бортовое оборудование МС-21 будет выполнять более сотни различных функций. Это должно позволить снизить нагрузку на экипаж во время полета, одновременно уменьшив состав этого экипажа. Если на старых самолетах в состав экипажа входили три-четыре, а иногда и пять человек, то современные лайнеры летчики ведут вдвоем. Бортовое оборудование, например перед взлетом, автоматически получает от центра управления все важные данные, включая объемы заправленного топлива, загрузку и план полета. На основании этих данных проводится расчет всех параметров полета.

МС-21 будет подключен к «авиационному интернету», единой сети, по которой воздушные суда могут получать и передавать важные данные. Такая концепция уже воплощена на SSJ-100. «Мексиканская авиакомпания Interjet, иностранный эксплуатант Superjet, активно использует такой обмен данными. То есть еще при подлете к аэропорту самолет уже получает все данные о следующем рейсе и проводит необходимые расчеты. Благодаря этому время простоя самолета между высадкой и посадкой пассажиров мексиканцам удалось сократить до 30 минут», - пояснил Лунев. Обычно время простоя самолетов в аэропортах между рейсами составляет 40-50 минут.

Использование «авиационного интернета» также позволяет бортовому оборудованию самолета в автоматическом режиме пересылать на диспетчерский пункт диагностическую информацию. Например, если в полете у лайнера отказывает один из электронных блоков или какая-либо периферийная система, центральная система отправит отчет об этом происшествии и тогда техники на земле смогут оперативнее подготовиться к предстоящему ремонту. Например, подготовить к замене отказавшие блоки. И этот ремонт, благодаря модульности, будет быстрым - вынул неисправный блок, поставил исправный, и все, полетели. Такой подход также позволяет существенно сократить время простоя самолета.

Следует сказать, что многие нововведения здесь диктуются особенностями именно гражданской пассажирской авиации. Самолет - транспорт дорогой, поэтому авиакомпании крайне заинтересованы в том, чтобы только что купленный лайнер окупился как можно скорее и как можно скорее начал приносить прибыль. Одним из способов достижения этого является как раз сокращение времени простоя лайнера между рейсами - чем плотнее график, тем больше самолет перевезет пассажиров, тем больше денег заработает компания. Все просто. И автоматический расчет полета, и отправка диагностической информации, и даже центральная консоль технического обслуживания в кабине экипажа позволяют уменьшить время, которое лайнер проводит на земле.

В МС-21 будет и система пространственной навигации, которая позволит борту выполнять полеты в условиях тесного воздушного пространства аэропортов. Дело в том, что в современных крупных аэропортах, принимающих и отправляющих множество рейсов, воздушные коридоры очень узки. Чтобы сделать полеты безопаснее, часть расчетов и управления переданы автоматике. Выглядит это так: самолет получает от диспетчера вводные для захода на посадку, рассчитывает траекторию полета и передает ее обратно диспетчеру. Когда то же делают другие самолеты, у диспетчера появляется возможность уместить большое количество бортов в одном воздушном пространстве, ускорить отправление и посадку лайнеров.

Российский лайнер получит и оборудование автоматического зависимого наблюдения-вещания (ADS-B). Это система наблюдения за воздушным движением. В базовом исполнении она представляет собой GPS-приемник, определяющий местоположение самолета и параметры его полета, а также набор приемо-передатчиков. Последние транслируют данные о самолете сети наземных станций, которые уже передают их диспетчерским службам и другим самолетам. Кроме того, ADS-B принимает информацию о погоде по маршруту полета. Считается, что массовый переход авиации на использование систем ADS-B повысит безопасность полетов, поскольку значительно упростит управление воздушным движением и даст летчикам более полную картину о воздушной обстановке.


Татьяна Павлова / «ОАК-Центр комплексирования»

Но автоматизация процессов управления самолетом - это только часть дела. Упростить управление самолетом можно и при помощи интерфейсных элементов. В МС-21 на панели приборов не будет аналоговых инструментов. Вся информация со всех систем будет выводиться на четыре жидкокристаллических полноцветных дисплея, по два у каждого пилота. Эти дисплеи выпускаются в Ульяновске и были разработаны «Ульяновским конструкторским бюро приборостроения». Кроме того, на центральной консоли между летчиками разместится пятый сенсорный дисплей. На него будут выводить критические сообщения, через него летчики смогут управлять частью систем самолета.

Бортовые системы самолета в каждую секунду полета выдают колоссальные объемы информации. Какая именно информация будет отображаться на дисплеях, смогут определять сами летчики, выбирая только актуальные для конкретного полета данные. К слову, графическое отображение данных - от цифровой информации до индикатора нормали - тоже разработали в «ОАК - Центр комплексирования». Управлять выводимой информацией и полетным заданием пилоты смогут при помощи специальных трекболов, аналогов компьютерной мыши. Теперь, вместо того чтобы выстукивать нужные команды на клавиатуре, летчики смогут несколькими движениями пальца произвести нужные настройки.


Стенд поискового моделирования

Татьяна Павлова / «ОАК-Центр комплексирования»

Управлять самолетом в полете летчики смогут при помощи джойстиков с обратной связью. Эта цифровая замена традиционного штурвала представляет собой ручки управления, расположенные слева от левого пилота и справа от правого. Они тоже должны существенно облегчить жизнь летчику - в отличие от штурвала, джойстик не загораживает приборную панель и не занимает много места, давая пилотам бо льшую свободу движений.

Тестирование программного обеспечения, интерфейсов и элементов управления в «ОАК - Центр комплексирования» проводятся на специальном стенде поискового моделирования. Этот стенд, повторяющий по органам управления и экранам кабину экипажа МС-21, подключен к центральному вычислительному ядру самолета и представляет собой, условно, полетный симулятор. Все показания, которые выводятся на экраны стенда, имитируются специальными программами. Такой стенд позволяет проверить работу авионики, правильность и удобство отображения данных, удобство управления самолетом, взаимодействие всех элементов кабины экипажа друг с другом и программное обеспечение.

У компании есть целая система стендов, на которых разрабатываются и отлаживаются отдельные программы, взаимодействие различных элементов графического интерфейса на экранах и правильность отображения информации, происходит проверка комплекса электронного оборудования и испытание совместной работы программ и операционной системы. Работа на стендах позволяет на ранних этапах разработки вылавливать возможные ошибки и недостатки, а также на завершающем этапе подготавливать документацию, необходимую для последующей сертификации комплекса бортового оборудования.

Разработка российского лайнера находится уже на завершающей стадии. Впереди - испытания, которые позволят «причесать» самолет, устранив возможные недоработки или неточности. Как ожидается, МС-21 совершит первый полет в конце 2016-го - начале 2017 года. Первый серийный самолет заказчику планируется поставить в 2018 году.


Татьяна Павлова / «ОАК-Центр комплексирования»

Василий Сычёв

С наступлением весны пришло время проговорить об авиамоделизме, ведь первые дни по-настоящему лётной погоды уже порадовали наших коллег в большинстве регионов страны. Времени на подготовку к сезону остаётся всё меньше. Особых сомнений в том, с чего начать, не было, ведь именно аппаратура радиоуправления обычно покупается первой и используется для всех моделей, а также для тренировок на симуляторе*.

Эта статья поможет Вам сориентироваться в большом ассортименте систем радиоуправления и разобраться в собственных потребностях. В каждом из разделов статьи мы будем приводить примеры соответствующих товаров из каталога компании Хобби Центр. Если Вы отправитесь за покупкой к нам - эти рекомендации помогут Вам заранее сделать выбор, однако общая информация, приведённая ниже, применима и к продукции других брендов.






Как выбрать аппаратуру радиоуправления - основные принципы

Многие опытные моделисты на вопрос о том, какую систему радиоуправления купить, дают очень похожие ответы, среди них:

  • Выбрать ту, возможностей которой хватит на много лет;
  • Брать "на вырост";
  • Самое простое - не жалеть денег.

Советы на первый взгляд правильные, но очень расплывчатые. Именно исходя из таких рекомендаций появляется в корне неправильное решение - приобрести авиамодельную аппаратуру по принципу выбора максимально дорогого комплекта, который вписывается в бюджет. Более правильно - руководствоваться определёнными критериями, о которых мы расскажем. Приведённый ниже список составлен исходя из личного опыта автора и наблюдений за коллегами по авиамодельному хобби и спорту. Итак, эти требования к аппаратуре радиоуправления чаще всего возникают у пользователей:

  • Наличие настроек для каждого типа моделей: самолёт, вертолёт, планер, мультикоптер. Постарайтесь ответить себе на вопрос, какие из этих летательных аппаратов могут пополнить Ваш парк;
  • Эргономика - она намного важнее, чем может показаться. Помните - именно передатчик Вы будете держать в руках, и попробовать это стоит ещё до покупки. У каждого есть личные особенности и предпочтения в постановки рук. Здесь играют роль такие параметры, как вес, толщина и форма корпуса, его балансировка, длина и форма ручек управления, расстояние между ручками, наличие вставок из мягкого пластика в нужных местах и многое другое. Для некоторых классов моделей эргономика передатчика выходит на первое место, например - для метательных планеров;
  • Функциональные возможности. Такие функции, как экспоненты и двойные расходы, потребуются для любой модели, более серьёзной, чем тренер. Для самолётов и вертолётов с ДВС необходима функция дистанционного выключения двигателю. Большинство самолётов для классического и 3D пилотажа требует использования микшеров. При пилотировании вертолётов будут полезны функции настройки точки висения и виртуального кольца. Не ограничивайтесь чтением инструкций к моделям - там Вы найдёте только самые необходимые настройки. Узнайте у опытных коллег по хобби, какие функции и для чего они используют;
  • Количество каналов управления. Для большинства хоббийных моделей достаточно 6-8 каналов, однако если Вашим следующим увлечение станут копии серьёзного уровня - потребуется управление сложной механизацией крыла и различными системами, имитирующими функции прототипа.
  • Точность, время отклика, разрешение основных каналов управления (количество точек) . Эксплуатируя большинство самолётов начального уровня, Вы вряд ли заметите разницу в точности и быстродействии систем радиоуправления, однако ситуация изменится, если речь идёт о полноценной пилотажной модели. Ещё более критичны эти параметры для 3D вертолётов и гоночных моделей. Помимо электронной «начинки», на точность влияет и механика - предпочтительны ручки управления на подшипниках;
  • Актуальность. Покупая систему радиоуправления убедитесь, что для выбранной аппаратуры выпускаются приёмники, аккумуляторы и другие аксессуары, осуществляется поддержка производителя;
  • Совместимость стандартов. Изучите ситуацию в клубе, либо на поле, где Вы собираетесь летать и узнайте, какие системы радиоуправления используют опытные коллеги. Совместимость протоколов, PPM разъёмов и файловых систем даёт огромные возможности: обучение с инструктором при помощи кабеля «тренер-ученик», получение готовых профилей настроек моделей, возможность обмениваться приёмниками и многое другое.
  • Прочность и долговечность материалов. Если Вы планируете летать раз в неделю в спокойной манере - на этот пункт можно обращать меньше внимания, однако для интенсивно тренирующихся спортсменов и хобби-пилотов, выбравших авиамоделизм как основное увлечение, проблема износа аппаратуры не должна возникать в принципе. Кроме того, качественно выполненную вещь приятно держать в руках!
  • Наличие специализированных приёмников. Этот пункт мы умышленно поместили в конец списка в виду его специфичности. Приёмники, поставляемые с комплектами аппаратуры как правило делятся на классы Full Range (большая дальность, для средних и больших моделей) и Park Flyer - для небольших самолётов (не более метра размахом) и мини-вертолётов. Для моделей-гигантов могут пригодится приёмники с мощной шиной питания - это очень удобно и позволяет избежать использования преобразователей напряжения. Для максимально облегчённых зальных самолётов класса F3P требуются микро-приёмники весом менее грамма. Многие контроллеры современных мультикоптеров и вертолётные системы стабилизации работают только по шине последовательного подключения. Такую технологию, называемую S.Bus, предлагает знаменитый японский производитель - компания Futaba.

Надеемся, что эти пункты помогли Вам понять собственные потребности и упростят процесс выбора. Теперь поговорим о том, на какие условные классы можно разделить авиамодельные системы радиоуправления и приведём примеры наиболее успешных товаров брендов и .

Аппаратура радиоуправления начального уровня

Эти комплекты предназначены для тех, кто желает максимально сэкономить и не определился, насколько важное место будет занимать моделизм в его жизни. Такие системы предназначены для простых моделей самолётов и мультикоптеров. После перехода на более продвинутую аппаратуру, передатчик можно использовать для тренировок на симуляторе. Характерные особенности:

  • 4-6 каналов управления;
  • Отсутствие каких-либо настроек, за исключением реверса каналов, отсутствие дисплея;
  • Отсутствие возможности сохранение настроек модели;
  • Невозможность использования для вертолётов с коллективным шагом основного ротора;
  • Невысокая цена.

Самая дешёвая система радиоуправления в нашем каталоге, имеет 4 канала управления. Выгодное отличие от моделей конкурентов - наличие цифровых триммеров (триммер невозможно сместить, когда аппаратура выключена, положение остаётся в памяти передатчика до следующего включения) и дельта-микшера, что позволяет использовать i4 для моделей схемы «летающее крыло». Система совместима со всеми приёмниками, использующими протокол AFHDS2 - их можно не менять переходе на более продвинутую аппаратуру того же производителя. Уникальный форм-фактор: малый вес и тонкий корпус.

Программируемая аппаратура для моделей среднего уровня

Системы из этой группы, по статистике, пользуются наибольшим спросом, что не удивляет - при их невысокой стоимости, функционала достаточно для подавляющего большинства хоббийных моделей всех классов. Характерные особенности:

  • 6-8 каналов управления;
  • Наличие меню для самолётов и вертолётов;
  • Память на несколько моделей, настройка основных параметров: расходы, экспоненты, выключение двигателя, флапероны;
  • Наличие нескольких линейных микшеров (задают линейную зависимость воздействия одного канала управления на другой);
  • Небольшой жидкокристаллический дисплей для отображения параметров.

Самая популярная модель в линейке. Помимо перечисленных выше особенностей, система имеет базовые функции телеметрии - Вы можете контролировать напряжение на приёмнике модели. Меню аппаратуры - простое и интуитивно понятное. Компактный размер и минимальный вес делают i6 интересной не только для начинающих, но и для опытных моделистов - в качестве второго передатчика для путешествий. Обновлённая версия имеет сенсорный дисплей и доработана специально для применения с мультикоптерами.

Младшая модель в линейке легендарного японского бренда. Имеет простой интерфейс меню и продуманную эргономику, гибкость в настройках - большая по сравнению с FlySky i6. Кассету для батареек можно заменить на Ni-MH или Li-Po аккумулятор. Система совместима со всеми авиамодельными приёмниками Futaba, использующими протоколы FHSS и S-FHSS. Стандартный PPM-разъём Futaba на задней крышке передатчика популярен среди производителей симуляторов, благодаря чему не придётся подбирать переходник. Антенна убрана в удобную ручку для переноски передатчика.

Аппаратура, получившая признания как «народная». 9 каналов управления, лёгкая смена высокочастотного модуля и наличие сторонней прошивки OpenTX - всё это сделало систему хорошим выбором для любителей экспериментов и максимально гибких настроек. Богатый функционал и небольшая цена компенсируют даже такие мелкие недочёты, как дешёвые материалы и упрощённый дизайн корпуса. Аппаратура выпускается под несколькими брендами, однако изначальным производителем является компания FlySky.

Аппаратура радиоуправления продвинутого любительского уровня - на стыке хобби и спорта

Системы, перечисленные в этом разделе, подходят для всех моделей, включая самые сложные - 3D-пилотажные самолёты-гиганты и реактивные копии, а также спортивные планеры. Функциональные возможности соответствуют требованиям опытного моделиста. Рекомендуем ознакомиться с полным описанием каждой из перечисленных систем радиоуправления. Несколько характерных для всей группы особенностей:

  • 8-16 каналов управления;
  • Наличие полноценного планерного меню в дополнение к самолётному и вертолётному;
  • Дополнительные функции: микшеры по точкам, логические выключатели по нескольким условиям;
  • Наличие большего количества тумблеров и ручек, свободное присвоение функций;
  • Возможность обмена настройками моделей с коллегами, использующими аналогичную аппаратуру;
  • Продуманная эргономика, ручки управления на подшипниках, широкое применение металла и мягкого пластика в конструкции;
  • Дисплей больших размеров для более наглядного вывода информации.

Определённо - классика жанра, система выпускается с 2012 года и не теряет актуальности благодаря большому заделу на будущее, заложенному производителем. Среди заметных дополнительных функций - микшеры по точкам, логические выключатели, режимы виртуального кольца и точки висения для вертолётов, а также специализированные микшеры для планеров. Аппаратура имеет 14 каналов управления (12 пропорциональных и 2 дискретных). Программное обеспечение - обновляемое, производитель издаёт новые официальные прошивки. Использован протокол передачи данных FASST - помимо максимальной точности и помехозащищённости, это означает, что перед Вами - большой выбор узкоспециализированных приёмников под конкретные задачи. Благодаря продуманной эргономике, эта система хорошо показала себя в спорте высоких достижений, завоевав популярность среди пилотов, выступающих в классе метательных планеров F3K.

Одна из самых «молодых» моделей в линейке японского бренда. Аппаратура, создана по новой концепции - богатый и гибкий функционал при использовании более дешёвого в реализации протокола S-FHSS (приёмники, соответственно, более доступны по цене). Хороший выбор для желающих получить максимум от хоббийных моделей. Впервые в истории производителя система имеет четвёртое меню - специально для мультикоптеров. Передача данных между передатчиками одной модели - беспроводная. Аппаратура позволяет использовать расширенную телеметрию - данные о состоянии различных систем модели передаются в реальном времени на землю. Добавлены дополнительные триммеры закрылков, которые при желании можно переназначить для управления каналами и функциями. Чувствительность всех триммеров регулируется в отдельном подменю.

Звучит смело, но i10 - это мечта моделистов нескольких поколений! Представьте себе хоббийную аппаратуру, по функционалу не уступающую флагманским моделям ведущих брендов. Компании FlySky удалось воплотить эту идею в жизнь - фактически, отличие от верхних спортивных систем радиоуправления - только в меньшей скорости отработки и незначительно меньшей точности, возможности при этом на уровне запросов самых взыскательных пользователей. Впервые в истории, передатчик использует операционную систему Android. Все функции богато проиллюстрированы и выводятся на цветной сенсорный дисплей. Доступна телеметрия, причём благодаря последовательному подключению можно получать показания даже с одинаковых датчиков, отвечающих за разные системы модели. Меню систем i10, предлагаемых нашей компанией, переведено на русский язык! Работает с приёмниками AFHDS 2, AFHDS 2A и AFHDS.

Флагманские системы радиоуправления

Системы, о которых мы коротко расскажем в этой категории находятся на самом острие прогресса в сфере RC моделизма и обладают максимальными функциональными возможностями. Мы не будем выделять несколько преимуществ и особенностей - их слишком много, чтобы поместить их в формат краткой обзорной статьи. Рекомендуем ознакомиться с полными описаниями приведённых ниже систем радиоуправления!

Флагман линейки авиамодельных систем радиоуправления японской корпорации Futaba. Первая в истории бренда 18-канальная система управления. Высокочастотный модуль работает в режимах FASST, FASSTest (с телеметрией) и S-FHSS. Передатчик использует специально разработанную операционную систему и оснащён большим цветным сенсорным дисплеем. Высокие характеристики и возможности системы 18MZ подтверждены спортсменами высочайшего уровня - эту аппаратуры используют такие пилоты, как 8-кратный Чемпион Мира в классе FAI F3A Кристоф Пьезан-Ле Ру (Cristophe Paysant-Le Roux, Франция) и наш соотечественник, трёхкратный победитель турнира Jet World Masters (Чемпион Мира в классе реактивных моделей-копий по версии IJMC), Виталий Робертус.

В 2016 году корпорация Futaba откликнулась на пожелания моделистов со всего мира, не знающих компромиссов при выборе аппаратуры радиоуправления, но при этом не готовых купить 18MZ из-за самой высокой на рынке цены. 18SZ по возможностям максимально приближается к флагману - различия в меньшем количестве микшеров, тумблеров и ручек и уменьшенном дисплее. Меню доработано для ещё большей простоты в восприятии. Также добавлено мультикоптерное меню и новый протокол передачи данных (в дополнение к трём имеющимся) - T-FHSS, позволяющий использовать телеметрию на относительно недорогих приёмниках. Один передатчик для всех моделей, от самых простых до элитной спортивной техники - это очень удобно!

*Чтобы не уменьшать ресурс дорогой аппаратуры радиоуправления, тренируясь на симуляторе, Вы можете приобрести , повторяющий эргономику и функции передатчика.

) - заимствованный англоязычный термин, обозначающий в разговорной речи совокупность всех электронных систем, разработанных для использования в авиации в качестве бортовой электроники. В отечественной нормативно-эксплуатационной документации этот термин не используется, также он не популярен у авиационных специалистов.

В общем смысле - это электронные системы коммуникации, навигации, отображения и управления различными устройствами - от сложных (например, радара) до простейших (например, поискового прожектора полицейского вертолёта).

В Военно-воздушных силах РФ исторически сложилось чёткое деление бортового оборудования летательных аппаратов (ЛА) на бортовое радиоэлектронное оборудование (БРЭО, для своей работы оно излучает и/или принимает радиоволны) и авиационное оборудование (АО). Большинство систем АО тоже содержат в своём составе электронные компоненты и узлы, но во время своей работы не используют радиоволны. На борту военных летательных аппаратов также присутствуют системы авиационного вооружения (АВ), которые в абсолютном большинстве содержат электронные узлы, но являются отдельным видом оборудования.

В гражданской авиации СССР и РФ системы АО И РЭО объединены и обслуживаются специалистами по АиРЭО.

История

Термин «авионика» появился на Западе в начале 1970. К этому моменту электронная техника достигла такого уровня развития, когда стало возможно применять электронные устройства в бортовых авиационных системах, и за счет этого существенно улучшать качественные показатели применения авиации. Тогда же появились и первые бортовые электронные вычислители (компьютеры), а также принципиально новые автоматизированные и автоматические системы управления и контроля.

Первоначально основным заказчиком и потребителем авиационной электроники были военные. Логика развития военной авиации быстро привела к ситуации, когда военные ЛА не могут не только выполнять боевые задачи без использования электронных технических средств, но даже и просто летать на требуемых режимах полёта. Сейчас стоимость систем авионики составляет большую часть общей стоимости летательного аппарата . К примеру, для истребителей F-15 E и F-14 стоимость авионики составляет около 20 % от общей стоимости самолёта.

В настоящее время электронные системы широко применяются и в гражданской авиации, например, системы управления полётом и пилотажно-навигационные комплексы.

Состав авионики

Системы, обеспечивающие управление самолётом

  • Системы связи
  • Системы навигации
  • Системы индикации
  • Системы предупреждения столкновений (TCAS)
  • Системы метеонаблюдения
  • Системы управления самолётом
  • Системы регистрации параметров полёта (средства объективного контроля, или бортовые самописцы)

Системы, обеспечивающие управление системами вооружения

  • Сонары
  • Электронно-оптические системы
  • Системы обнаружения целей
  • Системы управления вооружением

Интерфейсы

Стандарты коммуникации

Конструктивы

Шины расширения

См. также

Напишите отзыв о статье "Авионика"

Ссылки

Отрывок, характеризующий Авионика

Побуждения людей, стремящихся со всех сторон в Москву после ее очищения от врага, были самые разнообразные, личные, и в первое время большей частью – дикие, животные. Одно только побуждение было общее всем – это стремление туда, в то место, которое прежде называлось Москвой, для приложения там своей деятельности.
Через неделю в Москве уже было пятнадцать тысяч жителей, через две было двадцать пять тысяч и т. д. Все возвышаясь и возвышаясь, число это к осени 1813 года дошло до цифры, превосходящей население 12 го года.
Первые русские люди, которые вступили в Москву, были казаки отряда Винцингероде, мужики из соседних деревень и бежавшие из Москвы и скрывавшиеся в ее окрестностях жители. Вступившие в разоренную Москву русские, застав ее разграбленною, стали тоже грабить. Они продолжали то, что делали французы. Обозы мужиков приезжали в Москву с тем, чтобы увозить по деревням все, что было брошено по разоренным московским домам и улицам. Казаки увозили, что могли, в свои ставки; хозяева домов забирали все то, что они находили и других домах, и переносили к себе под предлогом, что это была их собственность.
Но за первыми грабителями приезжали другие, третьи, и грабеж с каждым днем, по мере увеличения грабителей, становился труднее и труднее и принимал более определенные формы.
Французы застали Москву хотя и пустою, но со всеми формами органически правильно жившего города, с его различными отправлениями торговли, ремесел, роскоши, государственного управления, религии. Формы эти были безжизненны, но они еще существовали. Были ряды, лавки, магазины, лабазы, базары – большинство с товарами; были фабрики, ремесленные заведения; были дворцы, богатые дома, наполненные предметами роскоши; были больницы, остроги, присутственные места, церкви, соборы. Чем долее оставались французы, тем более уничтожались эти формы городской жизни, и под конец все слилось в одно нераздельное, безжизненное поле грабежа.
Грабеж французов, чем больше он продолжался, тем больше разрушал богатства Москвы и силы грабителей. Грабеж русских, с которого началось занятие русскими столицы, чем дольше он продолжался, чем больше было в нем участников, тем быстрее восстановлял он богатство Москвы и правильную жизнь города.
Кроме грабителей, народ самый разнообразный, влекомый – кто любопытством, кто долгом службы, кто расчетом, – домовладельцы, духовенство, высшие и низшие чиновники, торговцы, ремесленники, мужики – с разных сторон, как кровь к сердцу, – приливали к Москве.
Через неделю уже мужики, приезжавшие с пустыми подводами, для того чтоб увозить вещи, были останавливаемы начальством и принуждаемы к тому, чтобы вывозить мертвые тела из города. Другие мужики, прослышав про неудачу товарищей, приезжали в город с хлебом, овсом, сеном, сбивая цену друг другу до цены ниже прежней. Артели плотников, надеясь на дорогие заработки, каждый день входили в Москву, и со всех сторон рубились новые, чинились погорелые дома. Купцы в балаганах открывали торговлю. Харчевни, постоялые дворы устраивались в обгорелых домах. Духовенство возобновило службу во многих не погоревших церквах. Жертвователи приносили разграбленные церковные вещи. Чиновники прилаживали свои столы с сукном и шкафы с бумагами в маленьких комнатах. Высшее начальство и полиция распоряжались раздачею оставшегося после французов добра. Хозяева тех домов, в которых было много оставлено свезенных из других домов вещей, жаловались на несправедливость своза всех вещей в Грановитую палату; другие настаивали на том, что французы из разных домов свезли вещи в одно место, и оттого несправедливо отдавать хозяину дома те вещи, которые у него найдены. Бранили полицию; подкупали ее; писали вдесятеро сметы на погоревшие казенные вещи; требовали вспомоществований. Граф Растопчин писал свои прокламации.

27 сентября 2002 г. на военно-воздушной базе «Лохегаон» (г. Пуна, примерно в 100 км к юго-востоку от Бомбея), состоялась официальная церемония передачи индийским ВВС первых самолетов Су-30МКИ. Главный маршал авиации Индии Кришнасвами тогда сказал: «Точность наведения систем вооружения – просто феноменальная. Вообще, это очень необычный самолет. Ни в одной стране мире нет ничего подобного» . Отвечая на вопросы журналистов, министр обороны Индии Джордж Фернандес заявил: «Без тени сомнения хочу подчеркнуть, что данная сделка оказалась возможной потому, что мы имеем тесные связи с Россией. Ни одна страна в мире не оказалась в состоянии предоставить такие возможности для укрепления национальной безопасности, как Россия» .

Оружие – товар политический. На стороне России – длительная позитивная история военно-технического сотрудничества с Дели, начавшаяся ровно 45 лет назад с поставки в Индию самых современных по тем временам истребителей МиГ-21. Москва, в отличие от Запада, не использовала ВТС для оказания на Дели давления и не вводила политически мотивированных эмбарго на поставку оружия. У наших стран нет противоречий ни по одному из существенных военно-политических вопросов. Общность интересов и намерение развивать политическое, экономическое, военное и военно-техническое сотрудничество были подтверждены в декабре 2008 г. в ходе визита в Дели президента России.

С тех пор прошло десять лет, а создание самолета началось еще раньше. В 1993 г. на базе истребителя-перехватчика Су-30 ОКБ Сухого предложило создать новый самолет для фронтовой авиации. Первое впечатление о самолете Су-30К у индийской делегации было примерно таким: машина хороша, устойчивость и управляемость великолепные, двигатели вполне устраивают, но бортовое радиоэлектронное оборудование (БРЭО) хотелось бы иметь более современное, а номенклатуру применяемого управляемого вооружения намного шире. Хотя эти требования первоначально не были отмечены в протоколе, но буквально через месяц, после того как делегация отчиталась перед командованием ВВС, ОКБ Сухого сообщили, что индийская сторона предлагает подумать о более современном «борте».

20 апреля 1994 г. в Дели состоялось заседание российско-индийской рабочей группы по сотрудничеству в области авиации, на котором рассматривалась возможность производства самолета в Индии. 30 ноября 1996 г. в Иркутске был подписан контракт на поставку в Индию 40 самолетов Су-30К. Контрактом определялись четыре стадии поставок в течение пяти лет. Этапность определялась условиями контракта, в соответствии с которым поставка самолетов заказчику должна была осуществляться отдельными партиями, по мере отработки соответствующих систем и оборудования с постепенным наращиванием боевых возможностей самолета.

Первые четыре истребителя Су-30К отправили в Индию в 1997 году. Контракт предусматривал, что самолеты Су-30К первых партий будут представлять собой серийные Су-30 с незначительными изменениями в навигационной системе и БРЭО, а к 2000 г. планировалось перейти на уровень машины фактически нового поколения – Су-30МКИ с совершенно новым бортовым оборудованием и двигателями с управляемым вектором тяги (УВТ).

Весной 1995 г. на основании предварительного протокола, подписанного обеими сторонами, в ОКБ Сухого развернулись работы по теме, которая получила рабочее обозначение Су-30И (И – «индийский»). Кроме конструктивных изменений, связанных с установкой переднего горизонтального оперения (ПГО) и новых двигателей, на самолете должна была устанавливаться новая система дистанционного управления (СДУ), с включением двигателя с УВТ в общий контур управления. По составу БРЭО ясности было меньше, однозначно был определен только тип РЛС, но впервые в истории отечественного авиастроения речь шла об установке на борту и об интеграции в состав БРЭО импортного комплектующего оборудования. Как правило, такого рода интеграция представляет собой чрезвычайно сложную техническую задачу. При создании истребителя Су-30МКИ российским конструкторам пришлось искать пути совмещения таких элементов, как российский радар, французские средства визуализации и навигации, индийский компьютер управления радаром, индийский резервный компьютер управления самолетом, израильский индикатор на лобовом стекле (ИЛС), тепловизионный подвесной контейнер целеуказания LDP «Lightning» При этом Индия должна была не просто получить готовые самолеты, но и принять практическое участие в опытно-конструкторской разработке бортовых систем. В ОКБ в 1997 г. началось создание стенда комплексирования и полунатурного моделирования, на котором в дальнейшем была успешно выполнена стендовая отработка БРЭО, в том числе, с использование моделей реального времени. Это позволило существенно сократить время на отработку оборудования в ходе летных испытаний самолета. Естественно, что вся ответственность за создание «интернационального» бортового оборудования и соответствие его характеристик требованиям контракта осталась лежать на ОКБ Сухого, а всю работу по интеграции БРЭО поручили ОАО «Раменское приборостроительное конструкторское бюро» (РПКБ).

Именно здесь, в РПКБ, в 1970-е годы были разработаны новые поколения инерциальных систем и навигационных комплексов, обеспечившие реализацию основных функций интеграции бортового радиоэлектронного оборудования, создана первая в стране система навигации принципиально нового вида с использованием физических полей Земли. В 1980-х годах РПКБ разработало несколько поколений различных приборов, систем и комплексов бортового оборудования для многих типов самолетов и вертолетов. В 1990-е годы РПКБ решило задачу создания сложных многоуровневых интегрированных комплексов БРЭО на базе магистрально-модульного принципа и открытой архитектуры аппаратуры и программно-математического обеспечения для новых и модернизируемых самолетов и вертолетов, разработан целый ряд бортовых вычислительных машин высокого быстродействия на базе современных импортных микросхем и собственная операционная система реального времени. В 2000-2010 гг. на предприятии была создана конкурентоспособная высокоинтеллектуальная авионика, выполненная с использованием самых современных конструктивных решений и прогрессивных технологий, реализована концепция «стеклянной кабины», в рамках которой были разработаны «умные» цветные многофункциональные жидкокристаллические индикаторы (МФИ) и пульты управления, образующие единое информационно-управляющее поле летательного аппарата.

Сегодня ОАО РПКБ работает в международных стандартах, в том числе и натовских военных стандартах MIL-STD, а продукция по своим техническим характеристикам находится на уровне лучших мировых образцов и поставляется во многие страны мира. Многие из этих технических решений были с успехом использованы при разработке самолета Су-30МКИ, и открыли перспективы по дальнейшей модернизации самолетов и по наращиванию его боевых характеристик и возможностей.

На сегодняшний день летные характеристики самолетов Су-30МКИ справедливо считаются одними из лучших в мире. Это неоднократно демонстрировалось на множестве аэрошоу и в ходе различных учений. Но боевая эффективность самолета и его преимущества над потенциальным противником сегодня определяется не столько аэродинамикой и тягой двигателей, хотя, несомненно, это тоже очень важно, сколько возможностями его БРЭО (и, разумеется, подготовленностью летчика).

В рамках работ по лицензионному производству Су-30МКИ на индийском заводе корпорации HAL в г. Насике 28 ноября 2004 г. состоялась торжественная церемония, в ходе которой был поднят в воздух первый серийный Су-30МКИ индийской сборки. Таким образом, был создан самолет, который можно смело отнести к поколению 4+. Его отличительными чертами стали применение двигателя АЛ-31ФП с УВТ и СДУ, включенные в единый контур управления. В комплексе это обеспечивает возможность реализации на самолете режимов сверхманевренности. Применение мощной импульсно-доплеровской РЛС с поворотной ФАР обеспечивает большие дальности обнаружения и сопровождения, многоканальность, возможность работы по наземным целям. Реализация принципа «стеклянной кабины» с применением широкоэкранных МФИ, – реализация принципа открытой архитектуры борта, обеспечиваемая за счет применения мультиплексного канала информационного обмена (МКИО), выполненного в соответствии со стандартом MIL-STD-1553B, широкая интеграция систем БРЭО импортного и отечественного производства позволили создать современный комплекс.

Вся координация работы комплекса БРЭО в самолете Су-30МКИ была возложена на БЦВМ разработки РПКБ. Сюда стекается информация от всех систем комплекса, обрабатывается и затем предоставляется экипажу. Поэтому РПКБ в первую очередь отвечает за комплексирование аппаратуры и программно-математическое обеспечение всего оборудования, а также решает все вопросы по интеграции БРЭО самолета Су-30МКИ. Это задачи взаимодействия систем связи РЭП и общесамолетных систем, САУ, СДУ, задачи управления оружием с тепловыми головками, с лазерным наведением, неуправляемым оружием, навигационные задачи, задачи сбора информации на борту и передачи ее на индикацию. И самая главная задача – это задача построения кабины.

В части БРЭО Су-30МКИ отличался универсальной РЛС, системой индикации на многофункциональных жидкокристаллических цветных дисплеях с большой разрешающей способностью, новым оптико-электронным многофункциональным прицельно-навигационным комплексом на базе современных ЭВМ с инерциальной навигационной системой на лазерных гироскопах и с системой спутниковой навигации (GPS), и принципиально новой системой объективного контроля с фиксированием не только рабочих параметров систем самолета, но и внешней тактической обстановки.

Тем не менее, с момента рождения самолета Су-30МКИ прошло достаточно много времени и за это время появились новые системы, которые позволяют повысить боевую эффективность самолета. Хотя стоит отметить, что с точки зрения обеспечения насущных задач обороны, такой страны как Индия, ничего лучше, чем Су-30МКИ, на сегодняшний день нет. Это подтверждает хотя бы тот факт, что варианты Су-30МКИ выиграли учебные бои с современным американским истребителем четвертого поколения F-18E/F в Малайзии и французским истребителем «Rafale» в Алжире.

В настоящее время идут переговоры с индийской стороной о дальнейшей модернизации самолета Су-30МКИ для индийских ВВС и находятся они в завершающей стадии определения технического лица и выбора поставщиков бортового оборудования. При этом налицо достаточно жесткая конкурентная борьба (не только на техническом уровне) между российскими, индийскими и западными компаниями. Стоит отметить, что использование западных комплектующих в составе комплекса БРЭО существующего самолета Су-30МКИ было интересным и в то время необходимым шагом, но сегодня российская промышленность способна предложить системы, ни в чем не уступающие западным образцам. При этом необходимо учесть, что создание нового варианта самолета дело не быстрое, и решения, заложенные сегодня, должны работать, причем работать надежно, не один десяток лет. Предстоящее подписание контракта сегодня означает, что новый самолет появится в эксплуатации примерно в 2017 году.

Стоит отметить, что в комплексе БРЭО все взаимосвязано. Если нужен локатор с большей разрешающей способностью, необходимы и новые индикаторы. Новые индикаторы означают, что необходим новый интерфейс, а это ведет к изменению вычислительной машины и, как следствие, к новым комплексным блокам. Таким образом конструкторское бюро «ведет» кабину, делает вычислительную технику, проводит интеграцию всего БРЭО, создает интерфейс, с использованием мультиплексных и оптоволоконных каналов, а также новое программное обеспечение. При этом структура его будет такова, что даст возможность решать дополнительные задачи и наращивать программное обеспечение «не ломая» всей системы. Модернизированный Су-30МКИ фактически получит совершенно новый комплекс БРЭО и по всем параметрам будет превосходить все существующие варианты.

Термин «авионика» является заимствованным из английского языка и в нашей стране не является популярным даже у авиационных специалистов. Термином этим принято обозначать все электронные системы – от самых сложных до простейших, установленные на борту самолета.

Современная авиационная техника требует качественного и высокопрофессионального подхода к вопросам технического обслуживания и ремонта. Ведь от безупречной работы оборудования зависит комфорт и безопасность пассажиров и экипажа самолета, а также правильная организация непрерывности полетов воздушных судов.

В отечественной авиации принята такая классификация оборудования на борту воздушного судна:

  • оборудование летальных аппаратов;
  • БРЭО – оборудование, которое в процессе функционирования излучает или принимает радиоволны;
  • авиационное оборудование – содержит электронные составляющие, использующие электрический ток и не использующий радиоволны.

Немного истории

В семидесятых годах прошлого века термин «авионика» впервые вошел в лексикон специалистов западных стран. Развитие электроники достигло достаточно высокого уровня, позволяющего использовать ее достижения в авиационной промышленности.

Первые бортовые компьютеры и электронные системы контроля и управления оказались незаменимыми помощниками в организации полетов воздушных судов.

Более активно новые технологии внедрялись в военной авиации. И очень быстро развитие этого направления привело к тому, что боевые самолеты стали своеобразной платформой для различных датчиков и электронных систем.

На сегодняшний день порядка 80 процентов затрат на производство военного самолета – это затраты на авионику. Но и в гражданской авиации стоимость электронного оборудование составляет значительную часть сметы затрат на производство воздушного судна.

  • Система связи – в этом компоненте найдены потенциально уязвимые места и специалисты авиапрома заняты их устранением.
  • Система навигации современного уровня помогает пилоту в ведении самолета по заданному маршруту и в маневрировании при заходе на посадку.
  • Оборудование для регистрации параметров полета. Бортовые самописцы позволяют проанализировать правильность действий экипажа, условия полета и особенности функционирования оборудования на борту воздушного судна.

Перечень этот далеко не полный, но дает общее представление и понятие о смысле, вкладываемом в понятие «авионика».

Системы управления боевым самолетом. Ударная сила: