Влияние космоса на планету земля. Влияние космической погоды на планету земля

4. КОСМОС И ЧЕЛОВЕК

Все описанные выше проявления космической погоды можно условно характеризовать как технические, а физические основы их влияния в общем известны - это прямое воздействие потоков заряженных частиц и электромагнитных вариаций. Однако невозможно не упомянуть и о других аспектах солнечно - земных связей, физическая сущность которых не вполне ясна, а именно о влиянии солнечной переменности на климат и биосферу.

РИС. 3 Изменение солнечной активности влияет на живую природу. На срезе ствола сосны хорошо видно, что ширина годичных колец и, следовательно, скорость роста дерева меняются с периодом около одиннадцати лет

Перепады полного потока излучения Солнца даже во время сильных вспышек составляют менее одной тысячной солнечной постоянной, то есть, казалось бы, они слишком малы, чтобы непосредственно изменять тепловой баланс атмосферы Земли. Тем не менее существует ряд косвенных доказательств, приведённых в книгах А.Л. Чижевского и других исследователей, свидетельствующих о реальности солнечного влияния на климат и погоду. Отмечалась, например, выраженная цикличность различных погодных вариаций с периодами, близкими к 11 - и 22 - летним периодам солнечной активности. Эта периодичность отражается и на объектах живой природы - она заметна по изменению толщины древесных колец (рис. 3).

В настоящее время широкое распространение получили прогнозы влияния геомагнитной активности на состояние здоровья людей. Мнение о зависимости самочувствия людей от магнитных бурь уже твёрдо устоялось в общественном сознании и даже подтверждается некоторыми статистическими исследованиями: например, количество людей, госпитализированных „скорой помощью“, и число обострений сердечно - сосудистых заболеваний явно возрастает после магнитной бури. Однако с точки зрения академической науки доказательств собрано ещё недостаточно. Кроме того, в человеческом организме отсутствует какой - либо орган или тип клеток, претендующих на роль достаточно чувствительного приёмника геомагнитных вариаций. В качестве альтернативного механизма воздействия магнитных бурь на живой организм часто рассматривают инфразвуковые колебания -- звуковые волны с частотами менее одного герца, близкими к собственной частоте многих внутренних органов. Инфразвук, возможно, излучаемый активной ионосферой, может резонансным образом воздействовать на сердечно - сосудистую систему человека. Остаётся только заметить, что вопросы зависимости космической погоды и биосферы ещё ждут своего внимательного исследователя и к настоящему времени остаются, наверное, самой интригующей частью науки о солнечно - земных связях.

В целом же влияние космической погоды на нашу жизнь можно, вероятно, признать существенным, но не катастрофичным. Магнитосфера и ионосфера Земли неплохо защищают нас от космических угроз. В этом смысле интересно было бы проанализировать историю солнечной активности, пытаясь уяснить, что может ждать нас в будущем. Во - первых, в настоящее время отмечается тенденция к увеличению влияния солнечной активности, связанная с ослаблением нашего щита -- магнитного поля Земли -- более чем на 10 процентов за последние полвека и одновременным удвоением магнитного потока Солнца, служащего основным посредником при передаче солнечной активности.

Во - вторых, анализ солнечной активности за всё время наблюдений солнечных пятен (с начала XVII века) показывает, что солнечный цикл, в среднем равный 11 годам, существовал не всегда. Во второй половине XVII века, во время так называемого минимума Маундера, солнечных пятен практически не наблюдалось в течение нескольких десятилетий, что косвенно свидетельствует и о минимуме геомагнитной активности. Однако идеальным для жизни этот период назвать трудно: он совпал с так называемым малым ледниковым периодом -- годами аномально холодной погоды в Европе. Случайно это совпадение или нет, современной науке доподлинно неизвестно.

В более ранней истории отмечались и периоды аномально высокой солнечной активности. Так, в некоторые годы первого тысячелетия нашей эры полярные сияния постоянно наблюдались в Южной Европе, свидетельствуя о частых магнитных бурях, а Солнце выглядело помутневшим, возможно, из - за наличия на его поверхности огромного солнечного пятна или корональной дыры -- ещё одного объекта, вызывающего повышенную геомагнитную активность. Начнись такой период непрерывной солнечной активности сегодня, связь и транспорт, а с ними вся мировая экономика оказались бы в тяжелейшем положении.

Влияние космической погоды на планету Земля

Болезни и эпидемии, которые преследовали человечество на протяжении всей его истории, зависят от условий в космосе и, прежде всего на солнце. Они определенным образом зависят от солнечной активности. Связь эпидемий с космосом, а точнее...

Земля как планета солнечной системы. Проблемы целостного освоения Земли

Космические достижения СССР

спутник полет космос ракета Первым космонавтом должен быть человек, который помимо хорошего здоровья, обладает сильной волей, быстрыми реакциями...

Космические достижения СССР в 1957-1961 годах

Человек издавна мечтал о полёте в космос. Но это была всего лишь мечта. Лишь на наших глазах эта мечта превратилась в трудную практическую задачу. Ныне же полёт человека в космос стал реальной действительностью...

Космічна погода

В цілому ж вплив космічної погоди на наше життя можна, ймовірно, визнати істотним, але не катастрофічним. Магнітосфера і іоносфера Землі непогано захищають нас від космічних погроз...

Месяц ясный

Из литературных источников и интернета я узнала, что о Луне многое знали уже древние греки. Демокрит полагал, что пятна на Луне - это огромные горы и долины. Аристотель показал шарообразность формы Луны. Греки понимали...

Перспективы освоения космоса и Луны

Помочь космонавту, вышедшему в открытый космос, очень трудно. Выходы в открытый космос опасны по множеству различных причин. Первая -- возможность столкновения с космическим мусором...

Проблема контакта с внеземными цивилизациями

По мнению ряда анатомов, человек продолжает, хотя и медленно, изменяться. Благодаря прогрессирующей цефализации, объем и масса мозга непрерывно увеличиваются, а череп постепенно округляется. Отмирают зубы и мизинцы на ногах...


Вернадский высказывал предположение, что революционные изменения в морфологии живых существ соотносимы с так называемыми критическими периодами геологической истории планеты, движущие пружины которых выходят за пределы только земных явлений. Речь, возможно, идет о каком-то пока не понятом и не исследованном космическом воздействии. Интенсивность не только геологических процессов, но и эволюционно-органических "связана с активностью биосферы, с космичностью ее вещества. Причины лежат вне планеты". Становление предков современного человека находится в прямой связи с ритмическими изменениями климата нашей планеты, которые являются результатом интегрального отражения взаимодействия всех геосфер нашей планеты друг с другом и с космосом. Космические воздействия слагаются из гравитационных и корпускулярных. Первые связаны с изменением орбит Земли и Солнца под воздействием других планет и галактик, им присущ средне- и долгопериодический характер (все известные климатические циклы, начиная с цикла продолжительностью 35-45 тыс. лет и кончая циклом 200 тыс. лет, так или иначе связаны с орбитальными циклами). Вторые пока еще не исследованы, вероятно, они являются причиной короткопериодических климатических ритмов с длительностью в единицы, десятки, сотни и первые тысячи лет.

Обусловленные гравитацией колебания скорости вращения Земли, ее углового момента вызывают изменения атмосферно-океанической циркуляции, тогда как колебания потока корпускулярных частиц ответственны за изменения стратосферных течений. Немаловажную роль в обоих случаях играет магнитное поле Земли. Однако до сих пор механизм этой глубокой связи магнитного поля с климатом, а через него и со всей биосферой, не выяснен. Установлено, что орбитальные климатические ритмы (400 тыс.; 1,2; 2,5; 3,7 млн. лет) являются рабочими хронометрами биосферы, среди них - 400-тысячелетний ритм служит основной причиной крупнопериодических изменений климата и эволюции органического мира. Этот ритм выявлен геологами из последовательности ледниковых событий и только потом обнаружен астрономами. Внутри данный ритм членится на 6-8 фаз, причем становление и развитие живого вещества биосферы, в том числе и предков человека, полностью подчиняются этому климатическому ритму с его фазами.

С циклическими (периодическими) процессами мы встречаемся на различных уровнях развития материи, начиная космическими и кончая социальными процессами. Данные науки свидетельствуют о том, что ритм и периодичность управляют Вселенной, живыми организмами, социальными явлениями. Ритм как бы "запрограммирован" сущностью движения, без которого бесконечный мир просто не может существовать, он выступает в качестве основного закона природы и общества. Ритмы крайне разнообразны, их нельзя сводить друг к другу, ибо на каждом уровне иерархической Вселенной мы встречаемся с качественно различными ритмическими процессами и структурами.

Наличие циклических процессов в явлениях жизни позволяет выдвинуть предположение о существовании циклических закономерностей в топологии энантиоморфного биологического пространства - времени. Пространство это имеет энантиоморфную (право-левую) природу и принципиально отличается от пространства неживого вещества. Получается так, что если неживое вещество состоит из равного количества правых и левых молекул, то в живых органических системах используется только одна из этих форм. В дальнейшем было установлено, что живые организмы содержат левые аминокислоты и правые сахара. Таким образом, все белки живых организмов состоят из левых аминокислот.

Отсюда Пастер сделал вывод, что продуцирование оптически активных соединений в одной-единственной форме (правой или левой) является исключительной привилегией жизни.

Давались разные объяснения этому загадочному феномену. Пастер полагал, что асимметрия (хиральность) жизни обусловлена космической асимметрией или неким космическим фактором. Этой идеи придерживался В.И. Вернадский, указывая на право-левый характер галактических спиралей и на право-левую природу космического вакуума. Диссимметрию живого существа Вернадский понимает как "особое, строго определенное состояние пространства".

Данная идея не получила достаточного осмысления в современной науке. Вернадский предложил нетрадиционный и оригинальный подход к объяснению происхождения и сущности жизни. Пространство-время он рассматривает не в аспекте его проявления в природе, а как фактор, определяющий специфические черты биологической организации материи. Так, асимметрия живого вещества является следствием особой топологии пространственно-временного субстрата, в котором "не могут одинаково образоваться... правые и левые молекулы химических соединений". Хиральность - атрибутивное свойство биологического пространства-времени, которое пока еще не известным нам образом воздействует на вещество.

Вернадский обосновал положение, что все характеристики жизни и времени совпадают: и жизнь, и время необратимы; они никогда не текут вспять; они всегда направлены одинаковым образом - из прошлого в будущее, т. е. асимметричны. Время биологически содержательно, оно строится причинно-обусловленными событиями: сменой поколений. Рассмотренное таким образом время ничуть не похоже на физическое или космическое бесструктурное аморфное время, не имеющее никакого содержания, а только мерные единицы, причем способ их получения не имеет принципиального значения.

Биологическое время, как называет его Вернадский, имеет совершенно четкие мерные единицы, которые нельзя заменить никакими другими. Если все время существования жизни представить как единый монолит, то его "секундами" будут сами организмы. Какие именно из них выбрать за эталонные единицы для всего живого - вопрос науки. Сам Вернадский считал мерными единицами делящиеся бактерии. Их изучение должно дать нам представление о внутреннем строении пространства и времени.

На основании исторического материала крупный русский ученый В.М. Бехтерев сделал вывод, "что везде и всюду появление коллективной деятельности, как и проявление индивидуальной жизни, подчиняется закону ритма, имеющего, таким образом, всеобщее значение". Человек как биосоциальное существо фокусирует в себе многообразие ритмов, порожденное биологической и социокультурной эволюцией.

Вся человеческая деятельность - от организма до истории - пронизана самыми разнообразными ритмами. Так, специальный анализ выявил строгие закономерности в ритмических процессах центральной нервной системы животных и человека. Эти закономерности отражают чувствительность нервных процессов к скорости и ускорениям внешних ритмических воздействий. На основе этого выдвигается предположение о возможности возникновения более высоких, а именно, психологических форм отражения на основе филогенетически древних собственных ритмических образований мозга.

У каждого живого существа и у каждой социальной системы есть свой внутренний ритм. Но все они настраиваются на те колебания, которые оказывают на них влияние, и вынуждены приспосабливаться к ним тем больше, чем колебания сильнее. Могут быть и конкурирующие ритмы, но побеждают более мощные. И среди них вне конкуренции стоит Солнце как колебательный источник энергии, влияющий на все живое на Земле. Если оно оказывает влияние и на общественные явления, то их изучение становится крайне важным для настройки на солнечные и другие космические колебания, особенно если те носят периодический характер. Космическое влияние следует рассматривать в синтезе с внутренней цикличностью биологической и социальной жизни.

В то же время Солнце, как внешний и мощный источник энергии, настраивает все земные процессы, в том числе и в обществе. Циклы Солнца - это часы, регистрирующие смену его активности. И если бы удалось установить, что смена солнечной активности связана со сменой социальных форм общественной жизни, то можно было бы говорить о настройке социальных циклов на солнечные или хотя бы о влиянии солнечной цикличности на социальные перемены. И если бы связь удалось установить, то человечество получило бы в свои руки мощный ускоритель полезных эффектов и гаситель негативных. Например, было бы известно, когда лучше начинать крупные реформы в обществе - в год негативного или пассивного Солнца. Проведение перемен и их прогнозирование осветилось бы разумом более высокого порядка. Конечно, необходимо исследовать и использовать весь комплекс космических ритмов для настраивания социальных процессов. Поэтому конечная цель изучения всех ритмических процессов - это сознательное управление ими в пределах человеческих возможностей.

Основателем гелиобиологии является известный русский ученый АЛ. Чижевский. Его основная научная линия - исследование влияния солнечной активности на все живое.

Главная идея А.Л. Чижевского - это связь исторических событий с солнечной активностью. Вот одна из его центральных мыслей, высказанная в книге "Физические факторы исторического процесса": "Более или менее длительные исторические события, продолжающиеся в течение нескольких лет и получающие решительное проявление в эпоху максимума солнцедеятельности, а также сопутствующая этим событиям эволюция идеологий, массовых настроений и пр., протекают по всеобщему историческому циклу, претерпевая следующие ясно обнаруживаемые этапы:

Период минимальной возбудимости;

Период нарастания возбудимости;

Период максимальной возбудимости;

Период падения возбудимости.

Эти четыре этапа (назовем их периодами) стремятся быть вполне одновременными с соответствующими им эпохами солнцедеятельности: минимумом пятен, нарастанием максимума, максимумом и убыванием максимума с переходом в минимум".

Такова, если говорить предельно кратко, идея функциональной связи общественной возбудимости (войн, революций, массовых движений) с солнечной активностью. Связь эта, если она есть, может быть только статистической, т. е. не соблюдаться во всех случаях. И это понятно, потому что на любое социальное явление влияет множество факторов. Из них мы обычно отдаем приоритет экономическим и политическим противоречиям - социальным двигателям исторического прогресса. Тем не менее, если эта связь хотя бы в небольшом числе случаев имеет место, она должна исследоваться и учитываться. Необходимость этого важна еще и потому, что она, возможно, ведет к доказательству великой гипотезы об универсальности явления цикличности всех земных и космических процессов. "И кто знает, - пишет А.Л. Чижевский, - быть может, мы, "дети Солнца", представляем собой лишь слабый отзвук тех вибраций стихийных сил космоса, которые проходят окрест Земли, слегка коснулись ее, настроив в унисон дотоле дремавшие в ней возможности..." Там же он пишет: "Среди великого разнообразия массовых явлений в разные времена перед нами всей ясней и ясней обнаруживается стихийный ритм в их жизни, одновременность в биении их пульса, одновременные смены мощных подъемов и глубоких падений. И представим себе, что мы изучили этот ритм, овладели им так, что можем управлять, можем прогнозировать подъемы и спады. Представим и поймем, как возрос бы эффект наших действий и скольких потерь можно было избежать, что дает такая методика для выявления новых закономерностей в мировой истории".

Изучив историю 80 стран и народов за 2500 лет, А.Л. Чижевский показал, что с приближением к годам максимума солнечной активности количество исторических событий с участием масс увеличивается и достигает своей наибольшей величины в эти годы. Наоборот, в минимумы активности солнца наблюдается минимум массовых действий.

Всегда считалось, что из прошлого можно извлекать уроки для будущего, ибо в основе эволюции общества лежит вполне определенная ритмичность (ее анализ дан в известной 12-томной работе А. Тойнби "Исследования по истории"). Эта ритмичность оказывала помощь в предвидении тенденций развития общественной системы или ее подсистем. Например, исследование исторических колебаний в развитии экономики привело к открытию в ней законов циклов, которые используются в процессе планирования будущего. Однако мы живем в эпоху, не имеющую исторического прецедента, в эпоху невиданных раньше изменений и открытий. Поэтому весьма опасно экстраполировать тенденции прошлого на будущее, ибо механизмы саморегуляции общественной системы оказались неэффективными.



Благодаря взаимосвязи всего существующего космос оказывает активное влияние на самые различные процессы жизни на Земле.

В. И. Вернадский, говоря о факторах, влияющих на развитие биосферы, указывал среди прочих и космическое влияние. Так, он подчеркивал, что без космических светил, в частности, без Солнца, жизнь на Земле не могла бы существовать. Живые организмы трансформируют космическое излучение в земную энергию (тепловую, электрическую, химическую, механическую) в масштабах, определяющих существование биосферы.

На существенную роль космоса в появлении жизни на Земле указывал шведский ученый, Нобелевский лауреат С. Аррениус . По его мнению, занос жизни на Землю из космоса был возможен в виде бактерий благодаря космической пыли и энергии. Не исключал возможности появления жизни на Земле из космоса и В. И. Вернадский.

Влияние космоса на происходящие на Земле процессы (например, Луны на морские приливы и отливы, солнечные затмения) люди подметили еще в древности. Однако многие века связь космоса с Землей осмысливалась чаще на уровне научных гипотез и догадок или вообще вне рамок науки. Во многом это было обусловлено ограниченными возможностями человека, научной базы и имевшегося инструментария. В XXстолетии знания о влиянии космоса на Землю существенно пополнились. В этом есть заслуга и российских ученых, в первую очередь, представителей русского космизма – А. Л. Чижевского, К. Э. Циолковского, Л. Н. Гумилева, В. И. Вернадского и др.

Понять, оценить и выявить масштабы влияний космоса, и прежде всего Солнца, на земную жизнь и ее проявления во многом удалось А. Л. Чижевскому . Об этом красноречиво свидетельствуют названия его работ: «Физические факторы исторического процесса», «Земное эхо солнечных бурь» и т. п.

Ученые давно обратили внимание на проявления активности Солнца (пятна, факелы на его поверхности, протуберанцы). Эта активность в свою очередь оказалась связанной с электромагнитными и другими колебаниями мирового пространства. А. Л. Чижевский, проведя многочисленные научные исследования по астрономии, биологии и истории, пришел к выводу о значительном влиянии Солнца и его активности на биологические и социальные процессы на Земле («Физические факторы исторического процесса»).

В 1915 г. 18-летний А Л. Чижевский, самозабвенно изучавший астрономию, химию и физику, обратил внимание на синхронность образования солнечных пятен и на одновременную активизацию боевых действий на фронтах Первой мировой войны. Накопленный и обобщенный статистический материал позволил ему сделать данное исследование научным и убедительным.

Смысл его концепции, основанной на богатом фактическом материале, состоял в доказательстве существования космических ритмов и зависимости биологической и общественной жизни на Земле от пульса космоса. К. Э. Циолковский так оценил труд своего коллеги: «Молодой ученый пытается обнаружить функциональную зависимость между поведением человечества и колебаниями в деятельности Солнца и путем вычислений определить ритм, циклы и периоды этих изменений и колебаний, создавая, таким образом, новую сферу человеческого знания». Все эти широкие обобщения и смелые мысли высказываются Чижевским впервые, что придает им большую ценность и возбуждает интерес. Этот труд является примером слияния различных наук воедино на монистической почве физико-математического анализа.

Лишь через много лет высказанные А. Л. Чижевским мысли и выводы о влиянии Солнца на земные процессы были подтверждены на практике. Многочисленные наблюдения показали неоспоримую зависимость массовых всплесков нервно-психических и сердечно-сосудистых заболеваний у людей при периодических циклах активности Солнца. Прогнозы так называемых “неблагоприятных дней” для здоровья – обычное дело в наши дни.

Интересна мысль Чижевского о том, что магнитные возмущения на Солнце в силу единства Космоса могут серьезно сказываться на проблеме здоровья руководителей государств. Ведь во главе большинства правительств многих стран стоят немолодые люди. Происходящие на Земле и в космосе ритмы, конечно же, влияют и на их здоровье и самочувствие. Особенно это опасно в условиях тоталитарных, диктаторских режимов. А если во главе государства стоят аморальные или психически ущербные личности, то их патологические реакции на космические возмущения могут привести к непредсказуемым и трагическим последствиям как для народов своих стран, так и всего человечества в условиях, когда многие страны обладают мощным оружием уничтожения.

Особое место занимает утверждение Чижевского о том, что Солнце существенно влияет не только на биологические, но и социальные процессы на Земле. Социальные конфликты (войны, бунты, революции), по убеждению А. Л. Чижевского, во многом предопределяются поведением и активностью нашего светила. По его подсчетам, во время минимальнойсолнечной активности происходит минимум массовых активных социальных проявлений в обществе (примерно 5 %). Во время же пика активности Солнца их число достигает 60 %.

Многие идеи А. Л. Чижевского нашли свое применение в области космических и биологических наук. Они подтверждают неразрывное единство человека и космоса, указывают на их тесное взаимовлияние.

Весьма оригинальными были космические идеи первого представителя русского космизма Н. Ф. Федорова . Он возлагал большие надежды на будущее развитие науки. Именно она, по мнению Н. Ф. Федорова, поможет человеку продлить его жизнь, а в перспективе сделать бессмертным. Расселение людей на другие планеты из-за большого скопления станет необходимой реальностью. Космос для Федорова – активное поприще человеческой деятельности. В серединеXIXв. он предлагал свой вариант перемещения людей в космическом пространстве. По мнению мыслителя, для этого надо будет овладеть электромагнитной энергией земного шара, что позволит регулировать его движение в мировом пространстве и превратит Землю в космический корабль (“земноход”) для полетов в космос. В перспективе, по замыслам Федорова, человек объединит все миры и станет “планетоводом”. В этом особенно тесно проявится единство человека и космоса.

Идеи Н. Ф. Федорова о расселении людей на другие планеты развивал гениальный ученый в области ракетостроения К. Э. Циолковский . Ему принадлежит также ряд оригинальных философских идей. Жизнь, по Циолковскому, вечна: «После каждой смерти получается одно и то же – рассеяние. Мы всегда жили и всегда будем жить, но каждый раз в новой форме и, разумеется, без памяти о прошлом…Кусочек материи подвержен бесчисленному ряду жизней, хотя и разделенных громадными промежутками времени…». В этом мыслитель весьма близок к индусским учениям о переселении душ, а также к Демокриту.

На основании диалектической в своей основе идеи о всеобщей жизни, везде и всегда существующей посредством перемещающихся и вечно живых атомов, Циолковский пытался построить целостный каркас “космической философии”.

Ученый полагал, что жизнь и разум на Земле не являются единственными во Вселенной. Правда, в качестве доказательства он использовал лишь утверждение о том, что Вселенная безгранична, и считал это вполне достаточным, иначе «какой бы смысл имела Вселенная, если бы не была заполнена органическим, разумным, чувствующим миром?». На основании сравнительной молодости Земли им делается вывод о том, что на других «старших планетах жизнь гораздо более совершенна». Более того, она активно влияет на другие уровни жизни, включая земную.

В своей философской этике Циолковский сугубо рационалистичен и последователен. Возводя в абсолют идею постоянного совершенствования материи, Циолковский видит этот процесс следующим образом. Не имеющее границ космическое пространство населено разумными существами различного уровня развития. Есть планеты, которые по развитию разума и могущества достигли высшей степени и опередили другие. Эти “совершенные” планеты, пройдя все муки эволюции и зная свое печальное прошедшее и былое несовершенство, обладают моральным правом регулировать жизнь на других, примитивных пока планетах, избавлять их население от мук развития.

Именно таким образом Циолковский представляет себе технологию “гуманитарной помощи”. “Совершенный мир” берет все заботы на себя. На других, более низких по развитию планетах им поддерживается и поощряется только “хорошее”. «Всякое уклонение ко злу или страданиям тщательно исправляется. Каким путем? Да, путем отбора: плохое, или уклонившееся к дурному, оставляется без потомства…Могущество совершенных проникает на все планеты, на все возможные места жизни и всюду. Эти места заселяются их собственнымзрелым родом. Не подобно ли это тому, как огородник уничтожает на своей земле все негодныерастения и оставляет только самые лучшие овощи! Если и вмешательство не помогает, и ничего, кроме страданий, не предвидится, то и весь живой мир безболезненно уничтожается…».

К. Э. Циолковский наиболее глубоко из современников изучал и освещал философскиепроблемы освоения космоса. Он полагал, что Земле во Вселенной принадлежит особая роль. Земля относится к более поздним планетам, «подающим надежду». Лишь небольшому числу таких планет будет дано право на самостоятельное развитие и мучения, в том числе и Земле.

В ходе эволюции со временем будет образован союз всех разумных высших существ космоса. Сначала в виде союза населяющих ближайшие солнца, затем – союза союзов и так далее, до бесконечности, поскольку бесконечна сама Вселенная.

Нравственная, космическая задача Земли – внести свой вклад в совершенствование космоса. Оправдать свое высокое предназначение в деле совершенствования мира земляне могут, лишь покинув Землю и выйдя в космос. Поэтому Циолковский видит свою личную задачу в помощи землянам по организации переселения на другие планеты и расселения их по всей Вселенной. Он подчеркивал, что суть его космической философии заключается «в переселении с Земли и в заселении Космоса». Именно поэтому изобретение ракеты для Циолковского было отнюдь не самоцелью (как полагают некоторые, видя в нем лишь ученого-ракетостроителя), а методом проникновения в глубины космоса.

Ученый полагал, что многие миллионы лет постепенно совершенствуют природу человека и его общественную организацию. В ходе эволюции человеческий организм претерпит существенные изменения, которые превратят человека, по существу, в разумное “животное-растение”, искусственно перерабатывающее солнечную энергию. Тем самым будет достигнут полный простор для его воли и независимости от среды обитания. В конце концов, человечество сможет эксплуатировать все околосолнечное пространство и солнечную энергию. А со временем земное население расселится по всему околосолнечному пространству.

Идеи К. Э. Циолковского о единстве разнообразных миров космоса, его постоянном совершенствовании, в том числе и самого человека, о выходе человечества в космос заключают в себе важный мировоззренческий и гуманистический смысл.

Сегодня уже возникают и практические проблемы влияния человека на космос. Так, в связи с регулярными космическими полетами есть вероятность непреднамеренного заноса в космос,в частности, на другие планеты, живых организмов. Ряд земных бактерий способен подолгу выдерживать самые экстремальные температурные, радиационные и иные условия существования. Температурная амплитуда существования у некоторых видов одноклеточных достигает 600 градусов. Как они себя поведут в иной неземной среде – предсказать невозможно.

В настоящее время человек начинает активно использовать космос для решения конкретных технологических задач, будь то выращивание редких кристаллов, сварка и другие работы. И уже давно получили признание космические спутники как средство сбора и передачи разнообразной информации.

Влияние космической погоды на планету Земля

ВВЕДЕНИЕ

2. ОПАСНО! РАДИАЦИЯ!

ВВЕДЕНИЕ

Солнце является центром нашего мира. Миллиарды лет оно удерживает планеты около себя и обогревает их. Земля остро чувствует изменения солнечной активности, проявляющиеся в настоящее время главным образом в виде 11-летних циклов. Во время всплесков активности, учащающихся в максимумах цикла, в короне Солнца рождаются интенсивные потоки рентгеновского излучения и энергичных заряженных частиц – солнечных космических лучей, а также происходят выбросы огромных масс плазмы и магнитного поля (магнитных облаков) в межпланетное пространство.

В XX веке земная цивилизация незаметно переступила в своём развитии очень важный рубеж. Техносфера – область человеческой активности – расширилась далеко за пределы границ естественной среды обитания – биосферы. Эта экспансия носит как пространственный – за счёт освоения космического пространства, так и качественный характер – за счёт активного использования новых видов энергии и электромагнитных волн. Но всё равно для инопланетян, смотрящих на нас с далёкой звезды, Земля остаётся всего лишь песчинкой в океане плазмы, заполняющем Солнечную систему и всю Вселенную, и нашу стадию развития можно сравнить скорее с первыми шагами ребёнка, чем с достижением зрелости. Новый мир, открывшийся человечеству, не менее сложен и, как, впрочем, и на Земле, далеко не всегда дружественен. При его освоении не обошлось без потерь и ошибок, но мы постепенно учимся распознавать новые опасности и преодолевать их. А опасностей этих немало. Это и радиационный фон в верхних слоях атмосферы, и потеря связи со спутниками, самолётами и наземными станциями, и даже катастрофические аварии на линиях связи и электропередач, происходящие во время мощных магнитных бурь.

1. ОБЩИЕ СВЕДЕНИЯ О СОЛНЕЧНО – ЗЕМНЫХ СВЯЗЯХ

солнечная активность космический ионосфера

Солнечная активность оказывает широкое воздействие на процессы, происходящие на нашей планете. Солнечная активность дает о себе знать на Земле двумя типами излучения: электромагнитным (от гамма – лучей с длиной волны примерно 0,01А до километровых радиоволн) и корпускулярным (потоки заряженных частиц, имеющие плотность от нескольких до десятков частиц в 1 см3 с энергиями от сотен до миллионов эВ). На пути к Земле они встречают многочисленные преграды, главными из которых являются магнитные поля в межпланетном и околоземном пространстве. Это обстоятельство сказывается на них по – разному. Электромагнитное излучение беспрепятственно проникает в верхние слои земной атмосферы, где оно в основном поглощается и преобразуется. Поверхности Земли достигает лишь радиация Солнца в ближнем ультрафиолете и видимой области спектра, интенсивность которой почти не зависит от солнечной активности, и в узком участке радиоспектра (от примерно 1 мм до 30 м), которая очень слаба. Основным объектом приложения воздействия этого типа солнечного излучения являются ионосфера, своеобразное зеркало, отражающее радиоволны к Земле, и нейтральная атмосфера Земли. Что же касается корпускулярного излучения Солнца, то оно испытывает на себе воздействие межпланетного магнитного поля и геомагнитного поля в такой степени, что попадает в земную атмосферу в совершенно неузнаваемом виде. И уже только после этого оно взаимодействует с частицами ионосферы и нейтральной атмосферы Земли. Верхние слои земной атмосферы легко поддаются воздействию солнечной активности, и поэтому иногда характеристики происходящих в них изменений даже используют в качестве косвенных индексов солнечной активности. Совсем иначе обстоит дело с воздействием солнечной активности на тропосферу, нижнюю часть земной атмосферы, которая определяет климат и погоду на Земле. До сравнительно недавнего времени многие очень метеорологи утверждали, что погода на Земле обусловлена чем угодно, только не солнечной активностью.

Это явилось своеобразной реакцией на другую крайнюю точку зрения, заключавшуюся в том, что любое нарушение погодных условий в любом месте на Земле может быть вызвано проходящей в это время по диску Солнца активной областью. В качестве главного аргумента против такого воздействия выдвигалась большая инерция земной атмосферы и ее практически полная изолированность от внешних воздействий, тем более таких слабых в энергетическом отношении, как солнечная активность. Кроме того, отмечалась неустойчивость обнаруженных статистических связей, а иногда даже полное их отсутствие. Тем не менее детальный анализ проблемы Солнце – тропосфера привел к заключению, что солнечная активность определенно воздействует и на нижнюю часть атмосферы нашей планеты. Только оно сказывается лишь в неустойчивых областях. Еще более трудным для решения выглядит вопрос о воздействии солнечной активности на биосферу Земли.

Если в проблеме Солнце – тропосфера ни один из предложенных физических механизмов пока не получил всеобщего признания, то здесь вообще дело к настоящему времени не продвинулось дальше обнаружения статистических связей между характеристиками солнечной активности и деятельностью живых организмов, в том числе человека, и некоторых соображений о возможной физической природе такого воздействия. К тому же и такие исследования сильно затруднены созидательной деятельностью человека, которая нередко приводит к уменьшению или полному исчезновению ранее отмечавшихся нежелательных процессов (например, некоторых видов инфекционных заболеваний). Тем не менее в последние годы все больше исследователей склоняется к мнению, что воздействие солнечной активности на биосферу Земли определенно существует, причем оно бывает как непосредственным, так и связанным с изменениями погоды и климата.

2. ВЛИЯНИЕ РАДИАЦИИ

Пожалуй, одним из наиболее ярких проявлений враждебности космического пространства к человеку и его творениям, кроме, конечно, почти полного по земным меркам вакуума, является радиация – электроны, протоны и более тяжёлые ядра, разогнанные до огромных скоростей и способные разрушать органические и неорганические молекулы. О вреде, который радиация наносит живым существам, хорошо известно, но достаточно большая доза облучения (то есть количество энергии, поглощённой веществом и пошедшей на его физическое и химическое разрушение) может выводить из строя и радиоэлектронные системы.

Электроника страдает также и от „единичных сбоев“, когда частицы особо высокой энергии, проникая глубоко внутрь электронной микросхемы, изменяют электрическое состояние её элементов, сбивая ячейки памяти и вызывая фальшивые срабатывания. Чем сложнее и современнее микросхема, тем меньше размеры каждого элемента и тем больше вероятность сбоев, которые могут привести к её неправильной работе и даже к остановке процессора. Эта ситуация по своим последствиям схожа с внезапным зависанием компьютера в разгар набора текста, с той лишь разницей, что аппаратура спутников, вообще говоря, предназначена для автоматической работы. Для исправления ошибки приходится ждать следующего сеанса связи с Землёй при условии, что спутник будет способен выйти на связь.

Первые следы радиации космического происхождения на Земле были обнаружены австрийцем Виктором Гессом ещё в 1912 году. Позднее, в 1936 году, за это открытие он получил Нобелевскую премию. Атмосфера эффективно защищает нас от космического излучения: поверхности Земли достигает совсем не много так называемых галактических космических лучей с энергиями выше нескольких гигаэлектронвольт, рождённых за пределами Солнечной системы. Поэтому изучение энергичных частиц за пределами атмосферы Земли сразу стало одной из основных научных задач космической эры. Первый эксперимент по измерению их энергии был поставлен группой советского исследователя Сергея Вернова в 1957 году. Действительность превзошла все ожидания - приборы зашкалило. Спустя год руководитель аналогичного американского эксперимента Джеймс Ван Аллен понял, что это не сбой в работе прибора, а реально существующие мощнейшие потоки заряженных частиц, не относящихся к галактическим лучам. Энергия этих частиц недостаточно велика, чтобы они могли достигать поверхности Земли, но в космосе этот „недостаток“ с лихвой компенсируется их количеством. Основным источником радиации в окрестностях Земли оказались высокоэнергичные заряженные частицы, „живущие“ во внутренней магнитосфере Земли, в так называемых радиационных поясах.

РИС. 1 В геомагнитном поле заряженные частицы с определёнными скоростями могут захватываться в так называемые „магнитные бутылки“: траектории электронов и протонов (1) длительное время „привязаны“ к силовым линиям (2), многократно отражаясь от их околоземных концов (3) и медленно дрейфуя вокруг Земли (4).

Известно, что почти дипольное магнитное поле внутренней магнитосферы Земли создаёт особые зоны „магнитных бутылок“, в которых заряженные частицы могут „захватываться“ на длительное время, вращаясь вокруг силовых линий. При этом частицы периодически отражаются от околоземных концов силовой линии (где магнитное поле увеличивается) и медленно дрейфуют вокруг Земли по окружности. В наиболее мощном внутреннем радиационном поясе хорошо удерживаются протоны с энергиями вплоть до сотен мегаэлектронвольт. Дозы облучения, которые можно получить при его пролёте, настолько велики, что долго в нём рискуют держать только научно – исследовательские спутники. Пилотируемые корабли прячутся на более низких орбитах, а большинство спутников связи и навигационных космических аппаратов находится на орбитах выше этого пояса. Наиболее близко к Земле внутренний пояс подходит в точках отражения. Из – за наличия магнитных аномалий (отклонений геомагнитного поля от идеального диполя) в тех местах, где поле ослаблено (над так называемой бразильской аномалией), частицы достигают высот 200–300 километров, а в тех, где оно усилено (над восточно – сибирской аномалией), - 600 километров. Над экватором пояс отстоит от Земли на 1500 километров. Сам по себе внутренний пояс довольно стабилен, но во время магнитных бурь, когда геомагнитное поле ослабевает, его условная граница спускается ещё ближе к Земле. Поэтому положение пояса и степень солнечной и геомагнитной активности обязательно учитываются при планировании полётов космонавтов и астронавтов, работающих на орбитах высотой 300–400 километров.

Во внешнем радиационном поясе наиболее эффективно удерживаются энергичные электроны. „Население“ этого пояса очень нестабильно и многократно возрастает во время магнитных бурь за счёт вброса плазмы из внешней магнитосферы. К сожалению, именно по внешней периферии этого пояса проходит геостационарная орбита, незаменимая для размещения спутников связи: спутник на ней неподвижно „висит“ над одной точкой земного шара (её высота около 36 тысяч километров). Поскольку радиационная доза, создаваемая электронами, не столь велика, то на первый план выходит проблема электризации спутников. Дело в том, что любой объект, погружённый в плазму, должен находиться с ней в электрическом равновесии. Поэтому он поглощает некоторое количество электронов, приобретая отрицательный заряд и соответствующий „плавающий“ потенциал, примерно равный температуре электронов, выраженной в электронвольтах. Появляющиеся во время магнитных бурь облака горячих (до сотен килоэлектронвольт) электронов придают спутникам дополнительный и неравномерно распределённый, из - за различия электрических характеристик элементов поверхности, отрицательный заряд. Разности потенциалов между соседними деталями спутников могут достигать десятков киловольт, провоцируя спонтанные электрические разряды, выводящие из строя электрооборудование. Наиболее известным следствием такого явления стала поломка во время одной из магнитных бурь 1997 года американского спутника TELSTAR, оставившая значительную часть территории США без пейджерной связи. Поскольку геостационарные спутники обычно рассчитаны на 10–15 лет работы и стоят сотни миллионов долларов, то исследования электризации поверхностей в космическом пространстве и методы борьбы с ней обычно составляют коммерческую тайну.

Ещё один важный и самый нестабильный источник космической радиации - это солнечные космические лучи. Протоны и альфа - частицы, ускоренные до десятков и сотен мегаэлектронвольт, заполняют Солнечную систему только на короткое время после солнечной вспышки, но интенсивность частиц делает их главным источником радиационной опасности во внешней магнитосфере, где геомагнитное поле ещё слишком слабо, чтобы защитить спутники. Солнечные частицы на фоне других, более стабильных источников радиации „отвечают“ и за кратковременные ухудшения радиационной обстановки во внутренней магнитосфере, в том числе и на высотах, используемых для пилотируемых полётов.

Наиболее глубоко в магнитосферу энергичные частицы проникают в приполярных районах, так как частицы здесь могут большую часть пути свободно двигаться вдоль силовых линий, почти перпендикулярных к поверхности Земли. Приэкваториальные районы более защищены: там геомагнитное поле, почти параллельное земной поверхности, изменяет траекторию движения частиц на спиральную и уводит их в сторону. Поэтому трассы полётов, проходящие в высоких широтах, значительно более опасны с точки зрения радиационного поражения, чем низкоширотные. Эта угроза относится не только к космическим аппаратам, но и к авиации. На высотах 9–11 километров, где проходит большинство авиационных маршрутов, общий фон космической радиации уже настолько велик, что годовая доза, получаемая экипажами, оборудованием и часто летающими пассажирами, должна контролироваться по правилам, установленным для радиационно опасных видов деятельности. Сверхзвуковые пассажирские самолеты „Конкорд“, поднимающиеся на ещё большие высоты, имеют на борту счётчики радиации и обязаны лететь, отклоняясь к югу от кратчайшей северной трассы перелёта между Европой и Америкой, если текущий уровень радиации превышает безопасную величину. Однако после наиболее мощных солнечных вспышек доза, полученная даже в течение одного полёта на обычном самолёте может быть больше, чем доза ста флюорографических обследований, что заставляет всерьёз рассматривать вопрос о полном прекращении полётов в такое время. К счастью, всплески солнечной активности подобного уровня регистрируются реже, чем один раз за солнечный цикл - 11 лет.

3. ВЗБУДОРАЖЕННАЯ ИОНОСФЕРА

На нижнем этаже электрической солнечно - земной цепи расположена ионосфера - самая плотная плазменная оболочка Земли, буквально как губка впитывающая в себя и солнечное излучение, и высыпания энергичных частиц из магнитосферы. После солнечных вспышек ионосфера, поглощая солнечное рентгеновское излучение, нагревается и раздувается, так что плотность плазмы и нейтрального газа на высоте нескольких сотен километров увеличивается, создавая значительное дополнительное аэродинамическое сопротивление движению спутников и пилотируемых кораблей. Пренебрежение этим эффектом может привести к „неожиданному“ торможению спутника и потере им высоты полёта. Пожалуй, самым печально известным случаем такой ошибки стало падение американской станции „Скайлэб“, которую „упустили“ после крупнейшей солнечной вспышки, произошедшей в 1972 году. К счастью, во время спуска с орбиты станции „Мир“ Солнце было спокойным, что облегчило работу российским баллистикам.

Однако, возможно, наиболее важным для большинства обитателей Земли эффектом оказывается влияние ионосферы на состояние радиоэфира. Плазма наиболее эффективно поглощает радиоволны только вблизи определённой резонансной частоты, зависящей от плотности заряженных частиц и равной для ионосферы примерно 5–10 мегагерцам. Радиоволны более низкой частоты отражаются от границ ионосферы, а волны более высокой - проходят сквозь неё, причём степень искажения радиосигнала зависит от близости частоты волны к резонансной. Спокойная ионосфера имеет стабильную слоистую структуру, позволяя за счёт многократных отражений принимать радиосигнал диапазона коротких волн (с частотой ниже резонансной) по всему земному шару. Радиоволны с частотами выше 10 мегагерц свободно уходят через ионосферу в открытый космос. Поэтому радиостанции УКВ - и FM - диапазонов можно слышать только в окрестностях передатчика, а на частотах в сотни и тысячи мегагерц связываются с космическими аппаратами.

Во время солнечных вспышек и магнитных бурь количество заряженных частиц в ионосфере увеличивается, причём так неравномерно, что создаются плазменные сгустки и „лишние“ слои. Это приводит к непредсказуемому отражению, поглощению, искажению и преломлению радиоволн. Кроме того, нестабильные магнитосфера и ионосфера и сами генерируют радиоволны, заполняя шумом широкий диапазон частот. Практически величина естественного радиофона становится сравнимой с уровнем искусственного сигнала, создавая значительные затруднения в работе систем наземной и космической связи и навигации. Радиосвязь даже между соседними пунктами может стать невозможной, но взамен можно случайно услышать какую-нибудь африканскую радиостанцию, а на экране локатора увидеть ложные цели (которые нередко принимают за „летающие тарелки“). В приполярных районах и зонах аврорального овала ионосфера связана с наиболее динамичными областями магнитосферы и поэтому наиболее чувствительна к приходящим от Солнца возмущениям. Магнитные бури в высоких широтах могут практически полностью блокировать радиоэфир на несколько суток. При этом, естественно, замирают и многие другие сферы деятельности, например авиасообщение. Именно поэтому все службы, активно использующие радиосвязь, ещё в середине XX века стали одними из первых реальных потребителей информации о космической погоде.

РИС. 2 Число аварий в энергосетях США в районах повышенного риска (близких к авроральной зоне) возрастает вслед за уровнем геомагнитной активности. В годы минимума активности вероятности аварий в опасных и безопасных районах практически уравниваются. 1. Уровень геомагнитной активности 2. Число аварий в геомагитно – опасных 3. Число аварий в безопасных районах

Наименее защищены от подобного влияния воздушные низковольтные линии связи. И действительно, значительные помехи, возникавшие во время магнитных бурь, были отмечены уже на самых первых телеграфных линиях, построенных в Европе в первой половине XIX века. Сообщения об этих помехах можно, вероятно, считать первыми историческими свидетельствами нашей зависимости от космической погоды. Получившие распространение в настоящее время волоконно-оптические линии связи к такому влиянию нечувствительны, но в российской глубинке они появятся ещё нескоро. Значительные неприятности геомагнитная активность должна доставлять и железнодорожной автоматике, особенно в приполярных районах. А в трубах нефтепроводов, зачастую тянущихся на многие тысячи километров, индуцированные токи могут значительно ускорять процесс коррозии металла.

В линиях электропередач, работающих на переменном токе частотой 50–60 Гц, индуцированные токи, меняющиеся с частотой менее 1 Гц, практически вносят только небольшую постоянную добавку к основному сигналу и должны были бы слабо влиять на суммарную мощность. Однако после аварии, произошедшей во время сильнейшей магнитной бури 1989 года в канадской энергетической сети и оставившей на несколько часов половину Канады без электричества, такую точку зрения пришлось пересмотреть. Причиной аварии оказались трансформаторы. Тщательные исследования показали, что даже небольшая добавка постоянного тока может вывести из строя трансформатор, предназначенный для преобразования переменного тока. Дело в том, что постоянная составляющая тока вводит трансформатор в неоптимальный режим работы с избыточным магнитным насыщением сердечника. Это приводит к избыточному поглощению энергии, перегреву обмоток и в конце концов к аварии всей системы. Последовавший анализ работоспособности всех энергетических установок Северной Америки выявил и статистическую зависимость между количеством сбоев в зонах повышенного риска и уровнем геомагнитной активности.

4. КОСМОС И ЧЕЛОВЕК

Все описанные выше проявления космической погоды можно условно характеризовать как технические, а физические основы их влияния в общем известны – это прямое воздействие потоков заряженных частиц и электромагнитных вариаций. Однако невозможно не упомянуть и о других аспектах солнечно - земных связей, физическая сущность которых не вполне ясна, а именно о влиянии солнечной переменности на климат и биосферу.

РИС. 3 Изменение солнечной активности влияет на живую природу. На срезе ствола сосны хорошо видно, что ширина годичных колец и, следовательно, скорость роста дерева меняются с периодом около одиннадцати лет

Перепады полного потока излучения Солнца даже во время сильных вспышек составляют менее одной тысячной солнечной постоянной, то есть, казалось бы, они слишком малы, чтобы непосредственно изменять тепловой баланс атмосферы Земли. Тем не менее существует ряд косвенных доказательств, приведённых в книгах А.Л. Чижевского и других исследователей, свидетельствующих о реальности солнечного влияния на климат и погоду. Отмечалась, например, выраженная цикличность различных погодных вариаций с периодами, близкими к 11 - и 22 - летним периодам солнечной активности. Эта периодичность отражается и на объектах живой природы – она заметна по изменению толщины древесных колец (рис. 3).

В настоящее время широкое распространение получили прогнозы влияния геомагнитной активности на состояние здоровья людей. Мнение о зависимости самочувствия людей от магнитных бурь уже твёрдо устоялось в общественном сознании и даже подтверждается некоторыми статистическими исследованиями: например, количество людей, госпитализированных „скорой помощью“, и число обострений сердечно - сосудистых заболеваний явно возрастает после магнитной бури. Однако с точки зрения академической науки доказательств собрано ещё недостаточно. Кроме того, в человеческом организме отсутствует какой - либо орган или тип клеток, претендующих на роль достаточно чувствительного приёмника геомагнитных вариаций. В качестве альтернативного механизма воздействия магнитных бурь на живой организм часто рассматривают инфразвуковые колебания - звуковые волны с частотами менее одного герца, близкими к собственной частоте многих внутренних органов. Инфразвук, возможно, излучаемый активной ионосферой, может резонансным образом воздействовать на сердечно - сосудистую систему человека. Остаётся только заметить, что вопросы зависимости космической погоды и биосферы ещё ждут своего внимательного исследователя и к настоящему времени остаются, наверное, самой интригующей частью науки о солнечно - земных связях.

В целом же влияние космической погоды на нашу жизнь можно, вероятно, признать существенным, но не катастрофичным. Магнитосфера и ионосфера Земли неплохо защищают нас от космических угроз. В этом смысле интересно было бы проанализировать историю солнечной активности, пытаясь уяснить, что может ждать нас в будущем. Во - первых, в настоящее время отмечается тенденция к увеличению влияния солнечной активности, связанная с ослаблением нашего щита - магнитного поля Земли - более чем на 10 процентов за последние полвека и одновременным удвоением магнитного потока Солнца, служащего основным посредником при передаче солнечной активности.

Во - вторых, анализ солнечной активности за всё время наблюдений солнечных пятен (с начала XVII века) показывает, что солнечный цикл, в среднем равный 11 годам, существовал не всегда. Во второй половине XVII века, во время так называемого минимума Маундера, солнечных пятен практически не наблюдалось в течение нескольких десятилетий, что косвенно свидетельствует и о минимуме геомагнитной активности. Однако идеальным для жизни этот период назвать трудно: он совпал с так называемым малым ледниковым периодом - годами аномально холодной погоды в Европе. Случайно это совпадение или нет, современной науке доподлинно неизвестно.

В более ранней истории отмечались и периоды аномально высокой солнечной активности. Так, в некоторые годы первого тысячелетия нашей эры полярные сияния постоянно наблюдались в Южной Европе, свидетельствуя о частых магнитных бурях, а Солнце выглядело помутневшим, возможно, из - за наличия на его поверхности огромного солнечного пятна или корональной дыры - ещё одного объекта, вызывающего повышенную геомагнитную активность. Начнись такой период непрерывной солнечной активности сегодня, связь и транспорт, а с ними вся мировая экономика оказались бы в тяжелейшем положении.

5. КОСМОС И ЭПИДЕМИИ

Болезни и эпидемии, которые преследовали человечество на протяжении всей его истории, зависят от условий в космосе и, прежде всего на солнце. Они определенным образом зависят от солнечной активности. Связь эпидемий с космосом, а точнее, с солнечной активностью, исследовалась многими учеными. Возникновение эпидемий и пандемий холеры показывает четкую связь с уровнем солнечной активности. Очаги холеры расположены в Юго - Восточной Азии. Для этих мест характерны скученность населения и низкие санитарно - гигиенические условия. Здесь только треть городских жителей пользуется водопроводом. Только 10 % городов здесь имеют удовлетворительное водоснабжение. Качество питьевой воды остается низким. Это поддерживает возможность возникновения эпидемических вспышек кишечных инфекций. Таким образом, сохраняются условия для интенсивной циркуляции возбудителей инфекционных болезней.

Собственно развитие кишечных инфекций зависит от природных факторов не только в тропических широтах. Эта зависимость прослеживается и в умеренных широтах, но она менее выражена. При кишечных инфекциях играет определенную роль перенос возбудителей мухами. Численность мух зависит от температуры и осадков.

Есть и другие причины, по которым кишечные инфекции способны поддерживаться сколь угодно долго. Сточные воды современного города имеют более высокую температуру. Они отличаются иным химическим составом и кислотностью. Кроме того, широко употребляются щелочные моющие средства. В условиях повышенной температуры воды, содержащей множество белковых примесей, успешно развивается щелочеломовый холерный вибрион.

Эпидемии, которые охватывают значительную часть мира, называют пандемиями. Всемирное распространение холера получила неоднократно. Так, в 1816 году она вышла за пределы Азии после эпидемии в Индии. Это была первая пандемия холеры. Она началась в год максимума солнечной активности (1816 год) и окончилась в год минимума солнечной активности (1823 год). В последующем холера еще пять раз распространялась столь же широко, то есть имели место ее пандемии. Холера распространяется человеческими массами. Недаром само слово «эпидемия» означает в переводе с греческого «среди людей».

На многие процессы на Земле одновременно влияют и человек, и космос. Это касается, в частности, озонного слоя. Что же касается эпидемий и пандемий, то их возникновение и распространение зависит, конечно, не только от солнечной активности. Они определяются суммой социальных факторов, которые способствуют развитию инфекции. Но конкретные сроки проявления эпидемий и пандемий связаны с циклической солнечной активностью. Именно в годы максимальной солнечной активности холерные пандемии резко усиливаются и охватывают огромные пространства. При низкой солнечной активности, как правило, холера не наблюдается.

А теперь рассмотрим эпидемии гриппа. А. Л. Чижевский проанализировал данные об эпидемиях гриппа за 500 лет и установил, что период эпидемий гриппа составляет в среднем 11,3 года. Он сопоставил эпидемии гриппа с солнечной активностью. Оказалось, что большинство эпидемических эпох приходится на периоды, когда солнечная активность нарастает или же уменьшается, то есть эпидемии возникают между минимумом - максимумом и максимумом - минимумом солнечной активности. Начало эпидемии гриппа, которая расположена между одним минимумом и другим, либо отстает от ближайшего максимума, либо опережает его. Конечно, влияние активности Солнца на эпидемии гриппа проявляется только в среднем. Эпидемии могут различно располагаться на кривой солнечной активности в зависимости от действия других причин. Но они появляются преимущественно именно за 2 - 3 года до или после максимума солнечной активности.

Период между двумя волнами одной и той же эпидемии гриппа оказался равным в среднем трем годам. Длительность отдельной эпидемии гриппа в одном периоде, рассчитанная как среднее арифметическое, оказалась равной двум годам.

Пределы колебаний максимумов солнечной активности по годам были сопоставлены с пределами колебаний эпидемий гриппа. Было установлено, что эти пределы налагаются один на другой, составляя между собой большие периоды, свободные от эпидемий гриппа. Эти периоды приходятся на годы минимума солнечной активности.

Таким образом, распространение эпидемий гриппа не является произвольным, а находится в прямой связи с изменением солнечной активности.

В годы минимальной солнечной активности встречаются только небольшие пространственно - изолированные эпидемии гриппа, тогда как в периоды максимальной солнечной активности пандемии гриппа стихийно охватывают огромные территории и уносят наибольшее число жертв.

Рассмотрим связь между возникновением и распространением чумы и солнечной активностью. Отсутствие даже в течение длительного времени заболеваний чумой среди людей в каком - либо месте еще не означает, что вирус чумы здесь отсутствует. Чума может возродиться после 10 - летнего ее отсутствия, так как чумой вирус может храниться в организме животного, например, крысы. Какие - то факторы модифицируют патогенную способность чумного вируса и тем самым кладут начало эпидемии чумы или же прекращают ее победоносное шествие.

При максимальной солнечной активности эпидемии чумы имеют больше шансов возникнуть и широко распространиться, чем при низкой солнечной активности.

Эпидемиологи установили, что эпидемии дифтерии происходят приблизительно через 10 лет. Продолжительность каждой эпидемии равна нескольким годам со светлыми промежутками между эпидемиями в 6 – 7 лет. Заболеваемость дифтерией изменяется в фазе или противофазе с солнечной активностью. Часто максимумы заболеваемости отстают или упреждают максимумы солнечной активности. Кривые заболеваемости дифтерией сохраняют то же число подъемов и падений, то есть то же число максимумов и минимумов, что и кривая солнечной активности.

Эпидемическое воспаление оболочек головного и спинного мозга – цереброспинальный менингит – также зависит от солнечной активности. Его возбудителем является менингококк, хорошо изученный в лаборатории. Возникновение и обострение цереброспинального менингита приходится на периоды максимальной солнечной активности. Эпохи минимумов солнечной активности характеризуются ослаблением и сокращением этих эпидемий.

Анализ данных показал, что годы солнечных максимумов сопровождались эпидемиями цереброспинального менингита. На эпохи минимумов солнечной активности приходились только окончания и затухания эпидемий.

Исследовалось также и влияние атмосферного электричества на различные эпидемии. Была установлена связь между изменением атмосферного электричества и рядом физиологических процессов и нервно - психических явлений в организме человека. Максимум физиологического воздействия для всех исследованных явлений наступает спустя один день после максимума величины атмосферного электричества.

Жизнедеятельность всей микрофлоры на Земле зависит от солнечной активности. Степень предрасположенности человека к заболеваниям также находится в зависимости от солнечной активности благодаря колебаниям физико - химических реакций организма. Весь органический мир от микро - до макроорганизмов ощущает изменение в притоке энергии от Солнца.

Семь первых исторических эпидемий бешенства приходятся на эпохи максимумов, а остальные – то на максимумы, то на минимумы. Промежуточные же годы – между максимумами и минимумами – остаются более или менее свободными от заболеваний.

Сопоставление данных о солнечной активности и заболеваемостью ревматизмом, также показало, что скачки заболеваний видны как в максимумы, так и в минимумы солнечной активности. Но в максимумы солнечной активности эти скачки значительно больше, чем в минимумы. Такого же рода двойной период отмечен и в магнитных бурях, когда в минимумы солнечной активности видно усиление магнитной активности.

Говоря о связи эпидемического процесса с солнечной активностью, надо отметить, что эта связь сложная. Процесс распространения инфекционных заболеваний имеет разветвленные связи с другими процессами в биосфере, которые также связаны с солнечной активностью. Надо рассматривать три звена эпидемического процесса. Первое звено – это «семя», то есть резервуар возбудителя. Второе звено – «сеятель». Это передающий фактор. Третье звено – «почва». Это чувствительный организм. Другими словами, надо рассматривать такую последовательность: источник возбудителя инфекции, механизмы его передачи и затем восприимчивый коллектив людей.

Надо отметить, что, как и солнечная активность, инфекционные заболевания характеризуются изменением от сезона к сезону. Сезонные подъемы в каждом году складываются с учетом их высоты и продолжительности – и так образуется многолетняя цикличность.

Как же космические факторы, которые связаны с активностью Солнца, оказывают влияние на эпидемический процесс? Во - первых, из Солнца исходит электромагнитное излучение, которое очень быстро достигает Земли. Часть этого излучения достигает ее поверхности, а остальная часть застревает в атмосфере, поглощаясь ею. То излучение, которое проникает в биосферу Земли, непосредственно влияет не только на организм человека, но и на растительный и животный мир. Естественно, оно оказывает влияние и на микроорганизмы.

Но из Солнца исходит не только электромагнитное излучение с разными длинами волн. Как уже говорилось, от него исходят и заряженные частицы. Это и легкие частицы, и тяжелые частицы – ядра химических элементов или ионизированные атомы, то есть ионы. Если путь электромагнитного излучения от Солнца к Земле распространяется по прямой линии, то есть по лучу со скоростью света, то путь заряженных частиц от Солнца к Земле очень непростой. Как мы видели, преградой их движению служит магнитное поле Земли, которое большую часть этих солнечных заряженных частиц отталкивает, не пропускает в околоземное пространство. Благодаря этой защите от солнечной и вообще космической корпускулярной радиации у Земли есть атмосфера, биосфера и имеются условия, необходимые для жизни человека. Если бы у Земли не было магнитной защиты, то она превратилась бы в большую Луну, без атмосферы и без жизни.

Солнечные заряженные частицы деформируют магнитосферу Земли, вызывая тем самым изменение ее магнитного поля. Эти изменения называют магнитными бурями, магнитными возмущениями, пертурбациями. Колебания магнитного поля Земли, которые вызваны действием солнечных заряженных частиц, действуют на организм человека, на животных, на растения. Заряженные частицы, которые все же попадают в атмосферу Земли, меняют ее циркуляцию, то есть изменяют погоду. При этом меняется атмосферное электричество. Как атмосферное электричество, так и погода оказывают влияние на все живое, в том числе и на человека.

Влияние Солнечной Активности на ребенка. Известно, что любая нагрузка даётся детям большим напряжением психических, эмоциональных и физических функций. Во время экстремальных космических и геофизических ситуаций страдает энергетика ребёнка, развиваются функциональные расстройства со стороны нервной, эндокринной, сердечно–сосудистой, дыхательной и других систем. Ребёнок ощущает дискомфорт, который не может объяснить. Появляются нарушения сна, беспокойство, плаксивость, теряется аппетит. Иногда может подниматься температура. После окончания экстремальной ситуации всё приходит в норму, и в этом случае прибегать к лечению неизвестной болезни не нужно. Лекарственная терапия детей, прореагировавших на изменение геомагнитной обстановки, не оправдана и может иметь неблагоприятные последствия. В это время ребёнку больше необходимо внимание близких людей. У детей в такие моменты может появиться повышенная возбудимость, нарушение внимания, некоторые становятся агрессивными, раздражительными, обидчивыми. Ребёнок может более медленно выполнять школьную работу. Непонимание состояния детей в такие периоды со стороны родителей, воспитателей, учителей усугубляет отрицательный эмоциональный фон ребёнка. Могут возникать конфликтные ситуации. Чуткое отношение к ребёнку, поддержка в преодолении психологического и физического дискомфорта – наиболее реальный путь к достижению гармоничного развития детей. Ещё больше трудностей может быть при совпадении повышенной геомагнитной активности с началом учебного года. В этой ситуации, как показывают наблюдения учёных, помогает творческое начало. Другими словами, учебный материал, методика его преподнесения должны вызывать у ребёнка интерес к познанию нового. А это приведёт к удовлетворению потребности в творческой деятельности и станет источником радости. Освоение школьного материала должно быть направлено больше не на механическое запоминание, а на обучение творческого осмысления и использования знаний.

Имеются индивидуальные различия чувствительности человека к воздействию возмущений геомагнитного поля. Так, люди, рождённые в период активного Солнца, менее чувствительны к магнитным бурям. Всё больше данных свидетельствует о том, что сила фактора внешней среды в период развития беременности, а также изменения в самом организме матери определяет устойчивость будущего человека к тем или иным экстремальным условиям и склонность к определённым заболеваниям. Это позволяет предположить, что сила воздействия космических, геофизических и других факторов, их соотношение и ритм воздействия на организм беременной женщины как бы заводят внутренние биологические часы каждого из нас.

Таким образом, путей действия космических факторов на здоровье человека много. Но они все связаны в один жгут, представляют собой единое целое. Это просто разные каналы, соединяющие море солнечной энергии с биосферой Земли. Одни из этих каналов прямые, удобные, и по ним энергия движется быстро и беспрепятственно. Другие – очень запутанные, замысловатые и окольные. Но по ним энергия от Солнца также поступает к Земле, к ее атмосфере, и оказывает воздействие или на атмосферу, или непосредственно на биосферу. Специалисты широко используют термин «солнечно - земные связи». В результате меняется состояние биосферы, состояние здоровья людей. Такие пути действия на здоровье людей и вообще на живые организмы называют косвенными, опосредствованными. Если мы хотим уберечь свое здоровье от неблагоприятного действия этих факторов, мы должны понять пути этого действия. Только так можно разработать различные эффективные меры защиты здоровья от действия космических факторов.

ЗАКЛЮЧЕНИЕ

Космическая погода постепенно занимает подобающее ей место в нашем сознании. Как и в случае с обыкновенной погодой, мы хотим знать, что нас ждёт и в отдалённом будущем, и в ближайшие дни. Для исследований Солнца, магнитосферы и ионосферы Земли развёрнута сеть солнечных обсерваторий и геофизических станций, а в околоземном космосе парит целая флотилия научно - исследовательских спутников. Основываясь на приводимых ими наблюдениях, учёные предупреждают нас о солнечных вспышках и магнитных бурях

Солнце посылает на Землю электромагнитные волны всех областей спектра – от многокилометровых радиоволн до гамма - лучей. Окрестностей Земли достигают также заряжённые частицы разных энергий – как высоких (солнечные космические лучи), так и низких и средних (потоки солнечного ветра, выбросы от вспышек). Наконец, Солнце испускает мощный поток элементарных частиц – нейтрино. Однако воздействие последних на земные процессы пренебрежимо мало: для этих частиц земной шар прозрачен, и они свободно сквозь него пролетают.

Только очень малая часть заряженных частиц из межпланетного пространства попадает в атмосферу Земли (остальные отклоняет или задерживает геомагнитное поле). Но их энергии достаточно для того чтобы вызвать полярные сияния и возмущения магнитного поля нашей планеты, все это неизбежно влияет на все живое и возможно неживое на планете Земля.

ЛИТЕРАТУРА

1. Воронов, Гречнева «Основы современного естествознания»:М., Учебное пособие.

2. Кауров Э. «Человек, Солнце и Магнитные Бури» // "Астрономия" РАН. 19.01.2000г. http://scie ce.ng.ru/astronomy/2000-01-19/4_magnetism.html

3. Мирошниченко Л.И. «Солнечная активность и земля»: М., Наука 1981г.

4. Стоилова И., Димитрова С, Бреус Т. Исследование эффектов солнечно – земных связей на здоровье человека. Солнечно – земная физика Сборник. Выпуск 12. Том 2.

Изменение космической погоды: из одной крайности в другую.

Примерно один раз в 11 лет газеты сообщают о том, что активность Солнца достигла своего апогея во время так называемого “солнечного цикла”, т.е. естественного изменения активности нашего светила. В это время ученые обычно фиксируют увеличение числа солнечных пятен и протуберанцев, потенциально несущих опасность для землян, а интенсивность полярных сияний возрастает.

Повышенная солнечная активность называется “солнечным максимумом”. По прогнозам, в нынешнем году следующий максимум придется на август. Но оказывается, по мнению специалистов, занятых изучением Солнца, повышенное внимание следует уделять не только солнечным максимумам, но и более спокойному периоду солнечной активности - солнечному минимуму, во время которого активность нашего светила не столь велика.

“Во время солнечного минимума влияние космической погоды на нас отнюдь не прекращается, а всего лишь видоизменяется. В результате, мы сталкиваемся с другой крайностью,” - заявляет астрофизик Мадхулика Гухатхакурта (Madhulika Guhathakurta). Она возглавляет проект НАСА “Жизнь со звездой” (“Living With a Star”), в номере “Space Weather” за 19 марта ею в соавторстве была опубликована статья, посвященная солнечной активности.

Сторонники Гухатхакурты считают, что периодические изменения активности Солнца, представляющие собой колебания между солнечным максимумом и минимумом, - это не просто чередование фаз. Каждая из них обладает своей спецификой и может быть по-своему вредоносной.

Солнце является постоянным источником радиации, выбрасывающим потоки заряженных частиц в межпланетное пространство солнечной системы. Космическая погода в околоземном пространстве формируется под влиянием потоков плазмы, магнитных полей и элементарных частиц, устремленных в околоземное пространство.

Во время пика солнечной активности от поверхности солнца в результате вспышек отделяются огромные массы солнечного вещества, извергая в космическое пространство потоки заряженных частиц и радиацию.

И когда все эти массы солнечного вещества сталкиваются с Землей, то в результате спутники могут выйти из строя, а радиосвязь может быть нарушена, что представляет несомненную опасность для космонавтов. Во время гигантских солнечных бурь могут быть повреждены линии электропередач и другие объекты инфраструктуры, расположенные на Земле.

Кроме всего прочего, увеличение интенсивности ультрафиолетового излучения во время солнечного максимума разогревает земную атмосферу, в результате чего ее объем увеличивается, а это, в свою очередь, ведет к увеличению силы лобового сопротивления, действующей на спутники и, в частности, на Международную космическую станцию, тем самым все сильнее притягивая эти объекты к земле.

Для специалистов ЦУП данный факт, конечно же, мало приятен, поскольку из-за этого приходится вновь и вновь “поднимать” спутники и МКС на расчетные орбиты.

Положительный эффект солнечных максимумов заключается в том, что весь космический мусор, заполонивший околоземное пространство, тоже притягивается к Земле. А поскольку частицы мусора сравнительно малы, то, двигаясь под действием силы тяготения, они сгорают в плотных слоях атмосферы, а околоземное пространство очищается.

Теперь возьмем противоположную фазу - солнечный минимум. Здесь все происходит по-другому, и возникают свои опасности: как только солнечный ветер утихает, увеличивается интенсивность потока галактических космических лучей, проникающих в солнечную систему.

В этом случае потоки элементарных частиц с высокой энергией летят на огромных скоростях и, попадая в организм человека, разрушают молекулы ДНК, тем самым увеличивая у астронавтов риск заболевания раком. Именно это является одним из основных препятствий, которое сильно мешает осуществлению недавно заявленного проекта - полет человека на Марс, в соответствии с которым в 2018 году во время солнечного минимума планируется отправить на Красную планету двух землян.

Словом, если космонавты и специалисты ЦУПа считают, что солнечный минимум - время спокойное, то, по мнению г-жи Гухатхакурты, они очень сильно в этом заблуждаются.

Во время солнечного минимума происходит снижение интенсивности ультрафиолетового излучения, в результате чего атмосфера Земли охлаждается, а ее объем уменьшается. Правда, это совсем неплохо для спутников, ведь действующие на них силы гравитации слабеют. Однако отрицательное последствие солнечного минимума состоит в том, что возрастают объемы космического мусора в околоземном пространстве.

Словом, влияние минимумов и максимумов имеет сложный, неоднозначный характер. Именно по этой причине Гухатхакурта вместе с соавтором статьи сравнивает солнечную цикличность с такими явлениями, как Эль-Ниньо и Ла-Нинья. Эти климатические явления также называются “южная осцилляция” в Тихом океане, причем характерное время данной осцилляции - от двух до семи лет.

Подобно солнечным максимуму и минимуму, Эль-Ниньо и Ла-Нинья характеризуются специфическим набором свойств - и положительных, и отрицательных. Так, во время сезона Эль-Ниньо на западное побережье Южной Америки обрушиваются проливные дожди и даже возникают наводнения, в то время как в Новой Англии стоит относительно теплая и сухая погода, а для сельского хозяйства Перу и Эквадора Эль-Ниньо - настоящий подарок. Теперь возьмем другой крайний случай “южной осцилляции” - сезон Ла-Нинья.

В это время в западной части Тихого океана устанавливается очень сухая погода, в Южной Америке возникают наводнения, а в северной части Северной Америки наступает мягкое лето.

Впервые Гухатхакурта решила серьезно заняться исследованием солнечных циклов во время последнего из минимумов солнечной активности, который был зафиксирован в промежутке между 2008 и 2009 годами. В то время количество солнечных пятен было минимальным, однако интенсивность потока космических лучей наоборот достигла самого высокого из уровней, зафиксированных с момента начала космической эры; верхние слои земной атмосферы сильно ослабели, а количество космического мусора увеличилось. “Звучит все это как-то устрашающе, не так ли?” - спрашивает Гухатхакурта.

Как сказал Роберт Ратледж, возглавляющий бюро прогноза погоды Национальной метеорологической службы Космического центра прогнозирования погоды (NOAA), подход к исследованию космической погоды, предложенный Гухатхакуртой, крайне интересен. “Именно так и нужно проводить анализ. И в этом направлении еще многое предстоит сделать”, - продолжает г-н Ратледж.

Большинство людей склонны считать, что на человека влияют лишь солнечные бури, рекордное количество которых наблюдается, как правило, во времена солнечных максимумов. Однако не меньший ущерб может нанести и солнечный минимум, т.е. минимальный уровень солнечной активности, в результате которого может пострадать работа спутников.

Поскольку самый последний солнечный минимум был очень длительным, а солнечная активность в это время была самой низкой, то, по словам Рутледжа, “некоторые модели, описывающие лобовое сопротивление [спутников] в земной атмосфере, начали давать сбой. И этого никто не ожидал”.

ИноСми по материалам