Видят ли змеи. Змея — описание, характеристика, строение

Комментарий от YariniCeteri

After you pass the bridge that slows you after the third boss you enter the "bazaar" area where you"ll see nearly 100 snekdudes patrolling throughout. In order to move on you need to grab two eyes, one on either side of the room, and deposit them into the skull at the far end of the room. Though this achievement reads semi-weird, you simply need to deposit both eyes into the skull within 10 seconds of the first one, and do not need to run them both from their stands to the skull within 10 seconds (which was our original understanding).

If you have an orb and are melee"d by any mob, it will drop the eye. In addition to the generic snekmob, there are special snekmobs called "Orb Guardians". Most of these are stealthed, but there"s 1 near each eye, 1 in between each eye and the skull, and 1-3 in the middle of the room. If the orbs are picked up they will forget ALL ELSE IN THE WORLD and go straight for the person holding the orbs. If they reach the person they"ll knock the orb out of their hands and then pick it up, and then slowly run back to the stand the eye came from. The only way to get them to drop the eye is to kill them. We used this to our advantage, though our strat is heavily comp dependent.

What worked for us was to pick up one eye, allow it to be grabbed by an Orb Guardian, and then had our DK grip the add as far as he could get it. We continued gripping the add (took about 3 grips) until it was right next to the skull, then had one of our druids spam Entangling Roots on it to keep it from moving (essentially keeping one eye next to the skull) and then the rest of the group went over to the other eye and slowly got it across the room with grips as well. Once both eyes were near the skull, we killed all the Orb Guardians, and then grabbed both eyes and dropped them in together. Before you deposit the first eye be sure the second one is ready, because the Org Guardians respawn, and if you throw one in and then get the other one stolen by a brand new Orb Guardian, you likely won"t kill it within 10 seconds.

Would love to hear how groups with other comps managed, since we basically lucked out with a very good comp (we actually ended up using Blood DK, Veng DH, Prot Pally, Feral Druid Resto Druid).

Also when the skull opens up and you don"t get the achieve, don"t be immediately worried. Ours didn"t pop up for a good 5-10 seconds after the door was open.

My btag is FrostyShot#1667 if you have any questions about the metas. (US Servers)

Комментарий от Nightswifty

For this achievement you will want to use class utility abilities to crowd control the Страж сферы while you get both eyes closer. Note that there are several Страж сферы throughout the room that will attempt to steal your eye back, there is one near each eye, one in between the eyes and the skull, and a few more in the middle of the room.

Комментарий от St3f

We used WL gate and the orb bugged into the ground. We couldn"t open the door and progress further and had to skip the last boss. Pretty much all of the achievements in this dungeon are totally *!@#ed.

Комментарий от Tatahe

This achiev is bugged, we got 2 guardians with orbs be next to the door, we killed both and then when we click the orbs to place it into the door, only one got there and the other despawned so we need to reset the instance cause the orb was completely missing it never respawned again...

Комментарий от Errno

My group got this after resetting the instance once because of an interesting bug.

We brought left orb to the right side so we can handle mobs better. We then started moving both orbs on the right side. At one point I decided to throw the orb, but it intersected with the other player holding the other orb. Instead of getting 2 debuffs / orbs on him or just not intersecting with him, the orb completely despawned . So we were one orb short and we couldn"t even move on to the next boss. We had to reset the instance and clear all the way back. We were then very careful when throwing the orbs not to intersect them with the other orb holder so it won"t bug. We also tried to keep the orbs a bit separated. After we got them close to snake head we just did a countdown and used them on the head at the same time. Achievement popped up after around 10 seconds even though we were all scratching our heads believing we somehow failed it.

So the strategy we used was:
1. Clear one side
2. Bring first orb to other side
3. Move orbs to head while killing/stunning mobs (to be safe don"t throw the orb or if you do careful it does not intersect with other orb holder) .
4. Use at same time and profit.

Комментарий от drlinux

This achievement is completely bugged!

We had to reset the instance 3 times, still no luck: Orbs keep bugging in, one disappears and only one will remain. Nothing can fix the issue, not even dying then running back to the eyes, they ain"t just magically reappear (at the 3rd try, we prayed to the God for the orbs to be there, buuuuuut nope)..
So yeah, You have to actually reset the whole instance and kill everything along the way, including the first three boss (because *giggle* ...obviously, you can"t just simply skip them, why on the earth could you) - wasting time, and obviously getting no loot because of the reset.

Pro tip: If you move waaay TOO close to the skull, the orb will then be automatically thrown into the skull (without actually clicking on it)... thus resulting in a timer fail, if your other mate is too far away - by this "profiting" another nasty instance reset (we had to learn this at our own mistakes). Now I don"t know if it"s a bug or not, but it"s a good to know stuff.

Don"t get me wrong, I don"t have any problems with the mechanics, not even the quick respawn, and not even that the orb will be resetted if it"s on the ground for too long.. But come on, 2 orbs bugging into 1? ... That"s ridiculous. For a moment I thought that maybe, just MAYBE if 2 orbs bugged into 1, perhaps that one orb would count as two (it does make sense, isn"t it?).. but guess what: nope ! :)

PS: already opened a ticket because this is the most annoying bugged achievement in my wow career...

Змея — животное типа хордовые, класса пресмыкающиеся, отряда чешуйчатые, подотряда змеи (Serpentes). Как и все рептилии, они являются холоднокровными животными, поэтому их существование зависит от температуры окружающего воздуха.

Змея — описание, характеристика, строение. Как выглядит змея?

Тело змеи имеет вытянутую форму и может достигать в длину от 10 сантиметров до 9 метров, а вес змеи колеблется от 10 грамм до более 100 килограмм. Самцы меньше самок, но обладают более длинным хвостом. Форма тела этих рептилий разнообразна: оно может быть коротким и толстым, длинным и тонким, а морские змеи имеют сплюснутое тело, напоминающее ленту. Поэтому внутренние органы этих чешуйчатых тоже имеют вытянутое строение.

Внутренние органы поддерживаются более чем 300 парами ребер, подвижно соединенных со скелетом.

Треугольная голова змеи имеет челюсти с эластичными связками, что дает возможность заглатывать пищу большого размера.

Многие змеи являются ядовитыми и используют яд как способ охоты и средство самообороны. Так как змеи глухие, то для ориентации в пространстве они помимо зрения используют способность улавливать вибрационные волны и тепловое излучение.

Главным информационным датчиком является раздвоенный язык змеи, позволяющий при помощи особых рецепторов внутри неба «собирать информацию» об окружающей среде. Змеиные веки – это сросшиеся прозрачные пленки, чешуйки, покрывающие глаза, поэтому змеи не моргают и даже спят с открытыми глазами.

Кожа змей покрыта чешуйками, количество и форма которых зависит от вида рептилии. Раз в полгода змея сбрасывает старую кожу – этот процесс называется линькой.

Кстати, окраска змеи бывает как однотонной у видов, обитающих в умеренном поясе, так и пестрой у представителей тропиков. Рисунок может быть продольный, поперечно-кольцевой или пятнистый.

Виды змей, названия и фотографии

Сегодня ученым известно более 3460 видов змей, проживающих на планете, среди которых наиболее известными являются аспиды, гадюки , морские змеи, ужи (не представляющие для человека опасности), ямкоголовые змеи, ложноногие змеи, имеющие оба легких, а также рудиментарные остатки тазовых костей и задних конечностей.

Рассмотрим несколько представителей подотряда змеи:

  • Королевская кобра (гамадриад) (Ophiophagus hannah )

Самая гигантская ядовитая змея на земле. Отдельные представители вырастают до 5,5 м, хотя средние размеры взрослых особей обычно не превышают 3-4 м. Яд королевской кобры - смертельный нейротоксин, приводящий к летальному исходу за 15 минут. Научное название королевской кобры дословно означает «поедатель змей», ведь это единственный вид, представители которого питаются себе подобными змеями. Самки обладают исключительным материнским инстинктом, неотлучно охраняя кладку яиц и полностью обходясь без пищи до 3 месяцев. Королевская кобра обитает в тропических лесах Индии, Филиппин и на островах Индонезии. Продолжительность жизни составляет более 30 лет.

  • Черная мамба (Dendroaspis polylepis )

Африканская ядовитая змея, вырастающая до 3 м, является одной из самых быстрых змей, способных передвигаться со скоростью 11 км/ч. Высокотоксичный змеиный яд приводит к смерти за считанные минуты, хотя черная мамба не агрессивна и нападает на человека только в целях самозащиты. Свое название представители вида черная мамба получили благодаря черной окраске полости рта. Кожа змеи, как правило, имеет оливковый, зеленый или коричневый окрас с металлическим блеском. В пищу употребляет мелких грызунов, птиц и летучих мышей.

  • Жестокая змея (пустынный тайпан) (Oxyuranus microlepidotus )

Наиболее ядовитая из сухопутных змей, яд которой в 180 раз сильнее яда кобры. Этот вид змей распространен в пустынях и на сухих равнинах Австралии. Представители вида достигают в длину 2,5 м. Окрас кожи меняется в зависимости от сезона: в сильную жару - соломенный, при похолодании становится темно-коричневым.

  • Габонская гадюка (кассава) (Bitis gabonica )

Ядовитая змея, обитающая в африканских саваннах, является одной из самых больших и толстых гадюк длиной до 2 м и обхватом тела почти в 0,5 м. Все особи, принадлежащие данному виду, имеют голову характерной, треугольной формы с небольшими рожками, расположенными между ноздрями. Габонская гадюка отличается спокойным характером, редко нападая на людей. Относится к типу живородящих змей, размножается раз в 2-3 года, принося от 24 до 60 особей потомства.

  • Анаконда (Eunectes murinus )

Гигантская (обыкновенная, зеленая) анаконда относится к подсемейству удавов, в прежние времена змею так и называли - водяной удав. Массивное туловище длиной от 5 до 11 м может иметь вес свыше 100 кг. Неядовитая рептилия водится в малопроточных реках, озерах и заводях тропической части Южной Америки, от Венесуэлы до острова Тринидад. Питается игуанами, кайманами, водоплавающей птицей и рыбой.

  • Питон (Pythonidae )

Представитель семейства неядовитых змей отличается гигантскими размерами от 1 до 7,5 м в длину, причем самки питона гораздо крупнее и мощнее самцов. Ареал распространяется по всему восточному полушарию: тропические леса, болота и саванны африканского континента, Австралии и Азии. Рацион питонов состоит из мелких и средних млекопитающих. Взрослые особи целиком заглатывают леопардов, шакалов и дикобразов, а потом долго переваривают. Самки питонов откладывают яйца и насиживают кладку, путем сокращения мышц повышая температуру в гнезде на 15 -17 градусов.

  • Африканские яичные змеи (яйцееды) (Dasypeltis scabra )

Представители семейства ужовых, питающиеся исключительно птичьими яйцами. Обитают в саваннах и редколесьях экваториальной части африканского континента. Особи обоих полов вырастают длиной не более 1 метра. Подвижные кости черепа змеи дают возможность широко раскрывать рот и глотать очень крупные яйца. При этом удлиненные шейные позвонки проходят сквозь пищевод и подобно консервному ножу вспарывают яичную скорлупу, после чего содержимое перетекает в желудок, а скорлупа отхаркивается.

  • Лучистая змея (Xenopeltis unicolor )

Неядовитые змеи, длина которых в редких случаях достигает 1 м. Свое название рептилия получила за радужный отлив чешуи, имеющей темно-коричневый цвет. Роющие змеи обитают в рыхлых почвах лесов, возделанных полей и садов Индонезии, Борнео, Филиппин, Лаоса, Таиланда, Вьетнама и Китая. В качестве кормовых объектов используют мелких грызунов и ящериц.

  • Червеобразная слепозмейка (Typhlops vermicularis )

Небольшие змейки, длиной до 38 см, внешне напоминают дождевых червей. Абсолютно безвредных представителей можно встретить под камнями, дынями и арбузами, а также в зарослях кустарников и на сухих каменистых склонах. Питаются жуками, гусеницами, муравьями и их личинками. Зона распространения простирается от Балканского полуострова до Кавказа, Средней Азии и Афганистана. Российские представители этого вида змей обитают в Дагестане.

Где обитают змеи?

Ареал распространения змей не включает в себя только Антарктиду, Новую Зеландию и острова Ирландии. Многие из них живут в тропических широтах. В природе змеи обитают в лесу, степях, на болотах, в знойных пустынях и даже в океане. Активный образ жизни рептилии ведут как днем, так и ночью. Виды, проживающие в умеренных широтах, в зимнее время впадают в спячку.

Чем питаются змеи в природе?

Почти все змеи являются хищниками, исключение составляет мексиканская травоядная змея. Рептилии могут употреблять пищу всего несколько раз в год. Одни змеи питаются крупными и мелкими грызунами или земноводными, а другие предпочитают птичьи яйца. В рацион морских змей входит рыба. Существует даже змея, питающаяся змеями: королевская кобра может поедать представителей своего семейства. Все змеи легко перемещаются по любым поверхностям, волнообразно изгибая тело, могут плавать и «перелетать» с дерева на дерево, сокращая мускулатуру.

Размножение змей. Как размножаются змеи?

Несмотря на тот факт, что по образу жизни змеи являются одиночными особями, в период спаривания они становятся довольно общительными и «любвеобильными». Брачный танец двух разнополых змей порой настолько удивителен и интересен, что однозначно завораживает внимание. Змей самец готов часами увиваться вокруг своей «избранницы», добиваясь ее согласия на оплодотворение. Пресмыкающиеся отряда змей являются яйцекладущими, а некоторые змеи способны рожать живых детенышей. Величина змеиной кладки варьируется от 10 до 120 000 яиц в зависимости от вида змеи и среды ее обитания.

Достигая половой зрелости к двум годам, змеи начинают спариваться. Самец ищет свою «даму» по запаху, обвивает шею самки своим телом, высоко поднимаясь над поверхностью земли. Кстати, в это время даже неядовитые особи бывают очень агрессивны из-за волнения и возбужденности.

Спаривание змей происходит в клубке, но сразу же после этого пара расползается и больше никогда не встречается. К новорожденным детенышам родители змеи не проявляют никакого интереса.

Свою кладку змея старается сделать в максимально укромном месте: корни растений, расщелины в камнях, трухлявые пни – будущей «мамочке» важен каждый тихий уголок. Отложенные яйца развиваются довольно быстро – всего за полтора-два месяца. Появившиеся на свет змейки и змееныши абсолютно самостоятельны, ядовитые особи имеют яд, но вот охотиться эти малыши могут лишь на мелких насекомых. Половой зрелости пресмыкающиеся достигают на второй год жизни. Средняя продолжительность жизни змеи достигает 30 лет.

Что такое змеиный яд? Это слюна, вырабатываемая слюнными железами ядовитых особей. Ее целебные свойства известны сотни лет: с добавлением яда змей фармацевты изготавливают гомеопатические препараты, кремы, мази и бальзамы. Эти средства помогают при ревматических заболевания суставов и при остеохондрозах. Тем не менее, столкнуться с ядовитым укусом этого пресмыкающегося в природе может быть не только неприятно и очень болезненно, но и смертельно опасно.

Что делать, если укусила змея? Первая помощь

  • Если вас укусила змея, и при этом вы не знаете, была она ядовитая или неядовитая, в любом случае следует удалить из микро-ранки слюну змеи! Можно отсосать и быстро сплюнуть яд, можно выдавить его, но все эти манипуляции будут эффективны лишь первые одну-полторы минуты после укуса.
  • Однозначно укушенного нужно срочно доставить в медучреждение (в больницу).
  • При этом желательно визуально запомнить, как выглядела змея, ведь ее принадлежность к определенному виду максимально важна для медиков, которые будут назначать пострадавшему противозмеиную сыворотку.
  • Если укушена конечность (рука, нога), то ее не нужно перетягивать: данная манипуляция не локализует распространение яда змеи, но вполне может привести к токсической асфиксии пораженных тканей.
  • Никогда не паникуйте! Учащенное от волнения сердцебиение быстрее разгоняет кровь по организму, тем самым способствуя распространению змеиного яда по организму.
  • Обеспечьте укушенному абсолютный покой, теплое питье и как можно скорее доставьте его к профессиональным медикам.


Достаточно давно ученые наблюдают за поведением змей. Главными органами для считывания информации являются тепловая чувствительность и обоняние.

Обоняние – основной орган. Змея постоянно работает раздвоенным языком, беря пробы воздуха, грунта, воды и окружающих змею предметов.

Тепловая чувствительность. Уникальный орган чувств, которым обладают змеи. позволяет «видеть» млекопитающих на охоте даже в полной темноте. У гадюки – это сенсоры-рецепторы, расположенные в глубоких канавках на морде. У такой змеи, как гремучая, — это два больших пятна на голове. Гремучая змея не просто видит теплокровную добычу, она знает расстояние до нее и направление движения.
Глаза змеи покрыты полностью сросшимися прозрачными веками. Зрение у разных видов змей может различаться, но служит главным образом для отслеживания перемещения добычи.

Все это интересно, а что же все-таки со слухом?

Абсолютно точно известно, что у змей нет органов слуха в привычном для нас понимании. Барабанная перепонка, слуховые косточки и улитка, передающие звук через нервные волокна в мозг, полностью отсутствуют.


Однако слышать, вернее, чувствовать, присутствие других животных, змеи умеют. Ощущение передаются через колебания почвы. Так пресмыкающиеся охотятся и прячутся от опасности. Эта способность воспринимать опасность называется вибрационной чувствительностью. Вибрацию змеи ощущают всем телом. Через вибрацию передаются змее даже очень низкие звуковые частоты.

Совсем недавно появилась нашумевшая статья зоологов из датского Университета Орхуса (Aarhus University, Denmark) которые исследовали воздействие на нейроны головного мозга питона от включенного в воздухе динамика. Выяснилось, что основы слуха у подопытного питона присутствуют: есть внутреннее и внешнее ухо, но барабанной перепонки нет -передача сигнала идет прямо в череп. Удалось зафиксировать даже частоты «услышанные» костями питона: 80-160 Гц. Это крайне узкий низкочастотный диапазон. Человек, как известно, слышит 16-20000 Гц. Впрочем, обладают ли подобными способностями остальные змеи, пока не известно.

Органы, позволяющие змеям «видеть» тепловое излучение, дают крайне расплывчатое изображение. Тем не менее у змеи в мозгу формируется четкая тепловая картина окружающего мира. Немецкие исследователи выяснили, как такое может быть.

Некоторые виды змей обладают уникальной способностью улавливать тепловое излучение, позволяющей им «разглядывать» окружающий мир в абсолютной темноте. Правда, они «видят» тепловое излучение не глазами, а специальными чувствительными к теплу органами (см. рисунок).

Строение такого органа очень просто. Рядом с каждым глазом располагается отверстие диаметром около миллиметра, которое ведет в небольшую полость примерно такого же размера. На стенках полости расположена мембрана, содержащая матрицу из клеток-терморецепторов размером примерно 40 на 40 клеток. В отличие от палочек и колбочек сетчатки глаза, эти клетки реагируют не на «яркость света» тепловых лучей, а на локальную температуру мембраны.

Этот орган работает как камера-обскура, прототип фотоаппаратов. Мелкое теплокровное животное на холодном фоне испускает во все стороны «тепловые лучи» — далекое инфракрасное излучение с длиной волны примерно 10 микрон. Проходя через дырочку, эти лучи локально нагревают мембрану и создают «тепловое изображение». Благодаря высочайшей чувствительности клеток-рецепторов (детектируется разница температур в тысячные доли градуса Цельсия!) и неплохому угловому разрешению, змея может заметить мышь в абсолютной темноте с довольно большого расстояния.

С точки зрения физики как раз хорошее угловое разрешение и представляет собой загадку. Природа оптимизировала этот орган так, чтобы лучше «видеть» даже слабые источники тепла, то есть попросту увеличила размер входного отверстия — апертуры. Но чем больше апертура, тем более размытое получается изображение (речь идет, подчеркнем, про самое обычное отверстие, безо всяких линз). В ситуации со змеями, где апертура и глубина камеры примерно равны, изображение оказывается настолько размытым, что из него ничего, кроме «где-то поблизости есть теплокровное животное», извлечь нельзя. Тем не менее опыты со змеями показывают, что они могут определять направление на точечный источник тепла с точностью около 5 градусов! Как же змеям удается достичь столь высокого пространственного разрешения при таком ужасном качестве «инфракрасной оптики»?

Раз реальное «тепловое изображение», говорят авторы, сильно размыто, а «пространственная картина», возникающая у животного в мозгу, довольно четкая, значит существует некий промежуточный нейроаппарат на пути от рецепторов к мозгу, который как бы настраивает резкость изображения. Этот аппарат не должен быть слишком сложным, иначе змея очень долго «обдумывала» бы каждое полученное изображение и реагировала бы на стимулы с запаздыванием. Более того, по мнению авторов этот аппарат вряд ли использует многоступенчатые итеративные отображения, а является, скорее, каким-то быстрым одношаговым преобразователем, работающим по навсегда зашитой в нервную систему программе.

В своей работе исследователи доказали, что такая процедура возможна и вполне реальна. Они провели математическое моделирование того, как возникает «тепловое изображение», и разработали оптимальный алгоритм многократного улучшения его четкости, окрестив его «виртуальной линзой».

Несмотря на громкое название, использованный ими подход, конечно, не является чем-то принципиально новым, а всего лишь разновидность деконволюции — восстановления изображения, испорченного неидеальностью детектора. Это процедура, обратная смазыванию картинки, и она широко применяется при компьютерной обработке изображений.

В проведенном анализе, правда, был важный нюанс: закон деконволюции не требовалось угадывать, его можно было вычислить исходя из геометрии чувствительной полости. Иными словами, было заранее известно, какое конкретно изображение даст точечный источник света в любом направлении. Благодаря этому совершенно размытое изображение можно было восстановить с очень хорошей точностью (обычные графические редакторы со стандартным законом деконволюции с этой задачей бы и близко не справились). Авторы предложили также конкретную нейрофизиологическую реализацию этого преобразования.

Сказала ли эта работа какое-то новое слово в теории обработки изображений — вопрос спорный. Однако она, несомненно, привела к неожиданным выводам касательно нейрофизиологии «инфракрасного зрения» у змей. Действительно, локальный механизм «обычного» зрения (каждый зрительный нейрон снимает информацию со своей маленькой области на сетчатке) кажется столь естественным, что трудно представить что-то сильно иное. А ведь если змеи действительно используют описанную процедуру деконволюции, то каждый нейрон, дающий свой вклад в цельную картину окружающего мира в мозгу, получает данные вовсе не из точки, а из целого кольца рецепторов, проходящего по всей мембране. Можно только удивляться, как природа умудрилась сконструировать такое «нелокальное зрение», компенсирующее дефекты инфракрасной оптики нетривиальными математическими преобразованиями сигнала.

Показать комментарии (30)

Свернуть комментарии (30)

    Почему-то мне кажется, что обратное преобразование размытой картинки, при условии, что есть лишь двумерный массив пикселей, математически невозможно. Насколько я понимаю, компьютерные алгоритмы повышения резкости просто создают субъективную иллюзию более резкого изображения, но они не могут раскрыть того, что замыто на изображении.

    Разве не так?

    Кроме того, непонятна логика, из которой следует, что сложный алгоритм заставлял бы змею задумываться. Насколько мне известно, мозг -- это параллельный компьютер. Сложный алгоритм в нём не обязательно приводит к увеличеню временнЫх затрат.

    Мне кажется, что процесс точнения должен быть иным. Как была установлена точность работы инфракрасных глаз? Наверняка, по какому-либо действию змеи. Но любое действие продолжительно и допускает коррекцию в своём процессе. На мой взгляд, змея может "инфравидеть" с той точностью, которая и ожидается и начинать движение, исходя из этой информации. Но потом, в процессе движения, постоянно её уточнять и приходить к финалу так, словно общая точность была выше.

    Ответить

    • Отвечаю по пунктам.

      1. Обратное преобразование -- это резкой получение картинки (какую создавал бы объект с линзой типа глаза), исходя из имеющейся размытой. При этом обе картинки -- двумерные, проблем с этим никаких нет. Если нет никаких необратимых искажений при размытии (типа совершенно непрозрачный заслон или насыщение сигнала в каком-то пикселе), то размытие можно представить себе как обратимый оператор, действующий в пространстве двумерных картинок.

      Там есть технические трудности с учетом шумов, так что оператор деконволюции выглядит чуть сложнее, чем описано выше, но тем не менее выводится однозначно.

      2. Компьютерные алгоритмы улучшают резкость, предполагая что размытие было по гауссиане. Они ведь не знают детально тех аберраций и т.п., котрые были у снимавшей камеры. Специальные программы, правда, способны на большее. Например если при анализе снимков звездного неба
      в кадр попадает звезда, то с ее помощью можно восстановить резкость лучше, чем стандатрными методами.

      3. Сложный алгоритм обработки -- это имелось в виду многоэтапный. В принципе, обрабатывать изображения можно итеративно, пуская по одной и той же простой цепочке изображение снова и снова. Асимптотически оно тогда может стретиться к какому-то "идеальному" изображению. Так вот, авторы показывают, что такая обработка, по меньшей мере, не является необходимой.

      4. Деталей экспериментов со змеями я не знаю, надо будет почитать.

      Ответить

      • 1. Я этого не знал. Мне казалось, что размытие (недостаточная резкозть) -- это необратимое преобразование. Допустим, на изображении объективно присутствует некое размытое облако. Как система узнает, что это облако не надо делать резким и что это его истинное состояние?

        3. На мой взгляд, итеративное преобразование можно реализовать сделав просто несколько последовательно подключённых слоёв нейронов и тогда преобразование будет проходить за один шаг, но быть итеративным. Сколько нужно итераций, столько и сделать слоёв.

        Ответить

        • Вот простой пример размытия. Дан набор значений (x1,x2,x3,x4).
          Глаз видит не этот набор, а набор (y1,y2,y3,y4), получающийся таким образом:
          y1 = x1 + x2
          y2 = x1 + x2 + x3
          y3 = x2 + x3 + x4
          y4 = x3 + x4

          Очевидно, если вы заранее знаете закон размытия, т.е. линейный оператор (матрицу) перехода от иксов к игрекам, то вы можете сосчитать обратную матрицу перехода (закон деконволюции) и по заданным игрекам восстановить иксы. Если, конечно, матрица обратима, т.е. нет необратимых искажений.

          Про несколько слоев -- конечно, отмести такой вариант нельзя, но это кажется так неэкономно и так легко нарушимо, что вряд ли стоит ожидать, что эволюция выберет этот путь.

          Ответить

          "Очевидно, если вы заранее знаете закон размытия, т.е. линейный оператор (матрицу) перехода от иксов к игрекам, то вы можете сосчитать обратную матрицу перехода (закон деконволюции) и по заданным игрекам восстановить иксы. Если, конечно, матрица обратима, т.е. нет необратимых искажений." Не путайте математику с измерениями. Маскировка младшего заряда погрешностями достаточно не линейна, чтоб испортить результат обратной операции.

          Ответить

    • "3. На мой взгляд, итеративное преобразование можно реализовать сделав просто несколько последовательно подключённых слоёв нейронов и тогда преобразование будет проходить за один шаг, но быть итеративным. Сколько нужно итераций, столько и сделать слоёв." Нет. Следующий слой начинает обработку ПОСЛЕ предыдущего. Конвейер не позволяет ускорить обработку конкретной порции информации, кроме случаев, когда применяется ради того, чтоб каждую операцию поручить специализированному исполнителю. Он позволяет начинать обработку СЛЕДУЮЩЕГО КАДРА до того, как обработан предыдущий.

      Ответить

"1. Обратное преобразование -- это резкой получение картинки (какую создавал бы объект с линзой типа глаза), исходя из имеющейся размытой. При этом обе картинки -- двумерные, проблем с этим никаких нет. Если нет никаких необратимых искажений при размытии (типа совершенно непрозрачный заслон или насыщение сигнала в каком-то пикселе), то размытие можно представить себе как обратимый оператор, действующий в пространстве двумерных картинок." Нет. Размытие - это уменьшение количества информации, создать её заново невозможно. Можно увеличить контраст, но если это не сводится к настройке гаммы, то только ценой шума. При размытии любой пиксел усредняется по соседним. СО ВСЕХ СТОРОН. После этого не известно, откуда именно в его яркость что то добавилось. То ли слева, то ли справа, то ли сверху, то ли снизу, то ли по диагонали. Да, направление градиента говорит о том, откуда шла основная добавка. Ни инфы в этом ровно столько же, как в самой размытой картинке. То есть разрешение низкое. А мелочи только ещё лучше маскируются шумом.

Ответить

Мне кажется, что авторы эксперимента просто "наплодили лишние сущности". Разве в реальной среде обитания змей бывает абсолютная темнота? - насколько мне известно, нет. А если абсолютной темноты нет, то даже самой размытой "инфракрасной картинки" более чем достаточно, вся ее "функция" - дать команду начать охоту "приблизительно в таком-то направлении", а дальше в дело вступает самое обычное зрение. Авторы эксперимента ссылаются на слишком большую точность выбора направления - 5 градусов. Но разве это действительно большая точность? По-моему, ни в каких условиях - ни в реальной среде, ни в лабораторных - с такой "точностью" охота не увенчается успехом (если змея будет ориентироваться только так). Если же говорить о невозможности даже такой "точности" из-за слишком примитивного устройства обработки инфракрасного излучения, то и тут, по-видимому, можно не согласиться с немцами: у змеи два таких "устройства", а это дает ей возможность "с ходу" определить "право", "лево" и "прямо" с дальнейшей постоянной коррекцией направления вплоть до момента "визуального контакта". Но даже если у змеи только одно такое "устройство", то и в этом случае она с легкостью будет определять направление - по разности температуры на разных участках "мембраны" (не даром ведь она улавливает изменения в тысячные доли градуса по Цельсию, для чего-то это нужно!) Очевидно, находящийся "прямо" объект будет "отображаться" картинкой более или менее равной интенсивности, находящийся "слева" - картинкой с большей интенсивностью правой "части", находящийся "справа" - картинкой с большей интенсивностью левой части. Только и всего. И не нужно никаких сложных немецких нововведений в выработавшуюся за миллионы лет змеиную природу:)

Ответить

"Мне кажется, что процесс точнения должен быть иным. Как была установлена точность работы инфракрасных глаз? Наверняка, по какому-либо действию змеи. Но любое действие продолжительно и допускает коррекцию в своём процессе. На мой взгляд, змея может "инфравидеть" с той точностью, которая и ожидается и начинать движение, исходя из этой информации. Но потом, в процессе движения, постоянно её уточнять и приходить к финалу так, словно общая точность была выше." Вот только помесь балометра со светорегистрирующей матрицей и так то очень инерционна, а от тепла мыши откровенно тормозит. А бросок змеи на столько стремителен, что и зрение на колбочках с палочками не успевает. Ну может и не по вине непосредственно колбочек, там и аккомодация хрусталика тормозит, и обработка. Но даже вся система работает быстрей и всё равно не успевает. Единственное возможное решение при таких датчиках - все решения принять заранее, используя тот факт, что до броска времени достаточно.

Ответить

"Кроме того, непонятна логика, из которой следует, что сложный алгоритм заставлял бы змею задумываться. Насколько мне известно, мозг -- это параллельный компьютер. Сложный алгоритм в нём не обязательно приводит к увеличеню временнЫх затрат." Для распараллелизации сложного алгоритма нужно много узлов, они имеют приличные размеры и тормозят уже из-за медленного прохождения сигналов. Да, это не повод отказываться от параллелизма, но если требования совсем уж жёсткие, то единственный способ уложиться по времени при параллельной обработке больших массивов - юзать на столько простые узлы, что обмениваться промежуточными результатами между собой они не могут. А это требует захардить весь алгоритм, так как принимать решения они уже не смогут. И последовательно тоже получится обработать много информации в единственном случае - если единственный процессор работает быстро. А это тоже требует хардить алгоритм. Уровень реализации хардовый так и так.

Ответить

>Немецкие исследователи выяснили, как такое может быть.



но воз, кажется, и ныне там.
Можно сходу предложить пару алгоритмов, которые, возможно, будут решать вопрос. Но будут ли они иметь отношение к реальности?

Ответить

  • > Хотелось бы хотя бы косвенных подтверждений, что оно именно так, а не иначе.

    Конечно, авторы осторожны в высказываниях и не говорят, что они доказали, что именно так и функционирует инфразрение у змей. Они лишь доказали, что для разрешения "парадокса инфразрения" не требуется слишком больших вычислительных ресурсов. Они лишь надеются, что похожим образом работает орган змей. Так это или нет на самом деле, должны доказать физиологи.

    Ответить

    > Есть т.н. байндинг проблема, которая заключается в том каким образом человек и животное понимают, что ощущения в различных модальностях (зрение, слух, тепло и пр.) относятся к одному и тому же источнику.

    На мой взгляд, в мозгу существует целостная модель реального мира, а не отдельные осколки-модальности. Например, в мозгу совы существует объект "мышь", в котором есть как бы соответствующие поля, в которых хранится информация о том, как мышь выглядит, как она слышна, как пахнет и так далее. Во время восприятия происходит конвертация стимулов в термины этой модели, то есть, создаётся объект "мышь", его поля заполняются писком и обликом.

    То есть, вопрос ставится не так, как сова понимает, что и писк и запах относятся к одному источнику, а как сова ПРАВИЛЬНО понимает отдельные сигналы?

    Методом узнавания. Даже сигналы одной и той же модальности не так-то легко отнести к одному объекту. Например, мышиный хвост и мышиные уши вполне могли бы быть отдельными предметами. Но сова видит их не отдельно, а как части целой мыши. Всё дело в том, что у неё в голове есть прообраз мыши, с которым она сопоставляет части. Если части "ложатся" на прообраз, то они составляют целое, если не ложатся, то не составляют.

    Это легко понять на собственном примере. Рассмотрим слово "УЗНАВАНИЕ". Посмотрим на него внимательно. Фактически, это просто совокупность букв. Даже просто совокупность пикселей. Но мы не можем этого увидеть. Слово нам знакомо и потому сочетание букв неизбежно вызывает у нас в мозгу цельный образ, от которого прямо-таки невозможно отделаться.

    Так же и сова. Она видит хвостик, видит ушки, примерно в некотором направлении. Видит характерные движения. Слышит шуршание и писк примерно из этого же направления. Чувствует особый запах с той стороны. И это знакомое сочетание стимулов, точно так же как для нас знакомое сочетание букв, вызывает у неё в мозгу образ мыши. Образ цельный, расположенный в цельном образе окружающего пространства. Образ существует независимо и, по мере совиных наблюдений, может очень сильно уточняться.

    Думаю, тоже самое происходит и со змеёй. И как в такой ситуации можно вычислить точность одного только зрительного или инфразрительного анализатора, мне непонятно.

    Ответить

    • Как мне кажется, узнавание образа -- это уже иной процесс. Речь идет не про реакцию змеи на образ мышки, а о превращении пятен в инфраглазу в образ мышки. Теоретически, можно представить ситуацию, что змея вообще не инфравидит мышку, а сразу кидается в определенном направлении, если ее инфраглаз увидит кольцевые круги определенной формы. Но это кажется маловероятным. Ведь ОБЫЧНЫМИ-то глазами земя видит именно профиль мышки!

      Ответить

      • Мне кажется, что может происходить следующее. Возникает плохое изображение на инфрасетчатке. Оно преобразуется в расплывчатый образ мышки, достаточный для того, чтобы змея мышку опознала. Но в этом образе нет ничего "чудесного", он адекватен способностям инфраглаза. Змея начинает приблизительный бросок. В процессе броска её голова движется, инфраглаз смещается относительно цели и в общем приближается к ней. Образ в голове постоянно дополняется и его пространственное положение уточняется. А движение постоянно корректируется. В итоге финал броска выглядит так, словно бросок был основан на невероятно точной информации о положении цели.

        Это мне напоминает наблюдение за собой, когда я иногда могу поймать упавший стакан прям как нидзя:) А секрет в том, что так поймать я могу только тот стакан, который я сам и уронил. То есть, я точно знаю, что стакан надо будет ловить и начинаю движение заранее, корректируя его в самом процессе.

        Я читал также, что аналогичные выводы были сделаны из наблюдений за человеком в невесомости. Когда человек нажимает кнопку в невесомости, он должен промахнуться вверх, так как привычные для весящей руки усилия некорректны для невесомости. Но человек не промахивается (если он внимателен), именно из-за того, что в наши движения постоянное втроена возможность коррекции "на лету".

        Ответить

"Есть т.н. байндинг проблема, которая заключается в том каким образом человек и животное понимают, что ощущения в различных модальностях (зрение, слух, тепло и пр.) относятся к одному и тому же источнику.
Есть множество гипотез http://www.dartmouth.edu/~adinar/publications/binding.pdf
но воз, кажется, и ныне там.
Можно сходу предложить пару алгоритмов, которые, возможно, будут решать вопрос. Но будут ли они иметь отношение к реальности?" А вот это похоже. Не реагировать на холодные листья, как бы они ни двигались и ни выглядели, но при наличии тёплой мыши где то там атаковать то, что и в оптике похоже на мышь и при этом попадает в область. Или же нужна какая то очень уж дикая обработка. Не в смысле длинного последовательного алгоритма, а в смысле умения нарисовать узоры на ногтях дворницкой метлой. Некоторые азиаты даже это умеют хардить так, что успевают миллиарды транзисторов делать. И тот ещё датчик.

Ответить

>в мозгу существует целостная модель реального мира, а не отдельные осколки-модальности.
Вот и еще одна гипотеза.
Ну как же без модели? Без модели никак.Конечно, возможно и простое узнавание в знакомой ситуации. Но, например, впервые попав в цех, где работают тысячи станков человек способен выделить звук одного конкретного станка.
Неприятность может заключаться в том, что разные люди используют разные алгоритмы. И даже один человек может пользоваться разными алгоритмами в разных ситуациях. Со змеями, кстати, такое тоже не исключено. Правда, эта крамольная мысль может стать надгробным камнем статистическим медодам исследования. Чего психология не перенесет.

По моему, такие умозрительные статьи имеют право на существование, но нужно хотябы довести до схемы эксперимента по проверке гипотезы. Например, исходя из модели расчитать возможные траектории движения змеи. А физиологи пусть сравнивают их с реальными. Если поймут о чем речь.
Иначе, как с байндинг проблемой. Когда я читаю очередную ничем не подкрепленную гипотезу, это вызывает только улыбку.

Ответить

  • > Вот и еще одна гипотеза.
    Странно, не думал, что эта гипотеза нова.

    В слюбом случае, она имеет подтверждения. Например, люди с ампутированными конечностями, часто утверждают, что продолжают их чувствовать. Ещё например, хорошие автомобилисты утверждают, что "чувствуют" края своей машины, расположение колёс и т.д.

    Это наводит на мысль, что никакой разницы между двумя случаями нет. В первом случае есть врождённая модель своего тела, а ощущения лишь наполняют её содержанием. Когда конечность удаляют, модель конечности ещё некоторое время существует и вызывает ощущения. Во втором случае есть приобретённая модель автомобиля. От автомобиля непосредственно сигналов в организм не поступает, а поступают косвенные сигналы. Но итог тот же: модель существует, наполняется содержанием и ощущается.

    Вот, кстати, хороший пример. Попросим автомобилиста наехать на камешек. Он наедет очень точно и даже скажет, наехал, или нет. Это значит, что он по вибрациям чувствует колесо. Следует ли из этого, что существует какой-то алгоритм "виртуальной вибролинзы", которая по вибрациям восстанавливает изображение колеса?

    Ответить

Довольно любопытно, что если источник света 1, и довольно сильный, то направление на него несложно определить даже с закрытыми глазами - надо поворачивать голову, пока свет не начнёт светить одинаково в оба глаза, и тогда свет спереди. Тут не надо придумывать некакие супер-пупер нейронные сети во восстановлению изображения - всё просто до ужаса, и вы можете это проверить сами.

Ответить

Написать комментарий

Из всего множества различных животных живущих на Земле, глаза змеи способны различать цвета и оттенки. Зрение для змеи играет большую роль в жизни, хотя и не является основным чувством для ознакомления с внешним миром. Змей на нашей планете около . Как многие знают ещё со школы, змеи относятся к отряду чешуйчатых. Ареал обитания у них - это территории с теплым или умеренным климатом. .

Как же устроены глаза змеи?

Змеиный глаз, в отличие от других животных, не отличается остротой зрения. А все потому, что их глаза покрыты тонкой кожистой пленкой, они очень мутные, и это сильно сказывается на видимости. Во время линьки змея расстается со старой кожей, а вместе с ней и с пленкой. Поэтому после линьки змеи особенно «глазасты». Зрение у них на несколько месяцев становится острее и отчетливее. Из-за пленки на глазах люди с древних времен придавали змеиному взгляду особенную холодность и гипнотическую силу.

Большинство змей, живущих рядом с человеком, являются безобидными, и никакой опасности для человека не представляют. Но встречаются и ядовитые. Ядом змеи пользуются для охоты и защиты

В зависимости от образа охоты - в дневное или в ночное время суток, форма зрачка змей изменяется. К примеру, у зрачок круглый, а и змеи, ведущие сумеречную охоту, приобрели вертикальные и вытянутые глаза с длинными щелями.

Но самыми необычными глазами обладает вид плетевидых змей. Их глаз очень похож на замочную скважину расположенную горизонтально. Из-за такого необычного строения глаз змея умело пользуется своим бинокулярным зрением - то есть каждый глаз формирует цельную картинку мира.

Но главным органом чувств у змей все же является обоняние. Этот орган является основным для термолокации гадюк и питонов. Обоняние позволяет в кромешной тьме уловить тепло своих жертв и достаточно точно определить их месторасположение. Змеи, являющиеся неядовитыми, душат или оборачивают своим телом жертву, а есть и такие, кто заглатывают добычу живьем. В большинстве своем змеи имеют небольшие размеры, не более одного метра. Во время охоты глаза змеи фокусируются на одной точке, а их раздвоенный язык благодаря органу Якобсона отслеживает тончайшие запахи в воздухе.