Умножение матрицы на матрицу примеры с решением. Основные операции над матрицами (сложение, умножение, транспонирование) и их свойства

Матрицы, познакомьтесь с ее основными понятиями. Определяющими элементами матрицы являются ее диагонали - и побочная. Главная начинается с элемента в первом ряду, первом столбце и продолжается до элемента последнего столбца, последнего ряда (то есть идет слева направо). Побочная же диагональ начинается наоборот в первом ряду, но последнем столбце и продолжается до элемента, имеющего координаты первого столбца и последнего ряда (идет справа налево).

Для того чтобы перейти к следующим определениям и алгебраическим операциям с матрицами, изучите виды матриц. Самые простые из них - это квадратная, единичная, нулевая и обратная. В совпадает число столбцов и строк. Транспонированная матрица, назовем ее В, получается из матрицы А, путем замены столбцов на строки. В единичной все элементы главной диагонали - единицы, а другие - нули. А в нулевой даже элементы диагоналей нулевые. Обратная матрица - это та, на которую исходная матрица приходит к единичному виду.

Также матрица может быть симметрична относительно главной или побочной осей. То есть элемент, имеющий координаты а(1;2), где 1 - это номер строки, а 2 - столбца, равен а(2;1). А(3;1)=А(1;3) и так далее. Матрицы согласованными - это те, где количество столбцов одной равно количеству строк другой (такие матрицы можно перемножать).

Главные действия, которые можно совершить с матрицами - это сложение, умножение и нахождение определителя. Если матрицы одинакового размера, то есть имеют равное количество строк и столбцов, то их можно сложить. Складывать необходимо элементы, стоящие на одинаковых местах в матрицах, то есть а (m;n) сложите с в (m;n), где m и n - это соответствующие координаты столбца и строки. При сложении матриц действует главное правило обычного арифметического сложения - при перемене мест слагаемых сумма не меняется. Таким образом, если вместо простого элемента а стоит выражение а+в, то его можно сложить в элементом с другой соразмерной матрицы по правилам а+(в+с)= (а+в)+с.

Умножать можно согласованные матрицы, которым дано выше. При этом получается матрица, где каждый элемент - это сумма попарно перемноженных элементов строки матрицы А и столбца матрицы В. При перемножении очень важен порядок действий. m*n не равно n*m.

Также одно из главных действий - это нахождение . Еще его называют детерминантом и обозначают так: det. Эта величина определяется по модулю, то есть никогда не бывает отрицательной. Легче всего найти детерминант у квадратной матрицы 2х2. Для этого необходимо перемножить элементы главной диагонали и вычесть из них перемноженные элементы побочной диагонали.

Назначение сервиса . Матричный калькулятор предназначен для решения матричных выражений, например, таких как, 3A-CB 2 или A -1 +B T .

Инструкция . Для онлайн решения необходимо задать матричное выражение. На втором этапе необходимо будет уточнить размерность матриц.

Действия над матрицами

Допустимые операции: умножение (*), сложение (+), вычитание (-), обратная матрица A^(-1) , возведение в степень (A^2 , B^3), транспонирование матрицы (A^T).

Допустимые операции: умножение (*), сложение (+), вычитание (-), обратная матрица A^(-1) , возведение в степень (A^2 , B^3), транспонирование матрицы (A^T).
Для выполнения списка операций используйте разделитель точка с запятой (;). Например, для выполнения трех операций:
а) 3А+4В
б) АВ-ВА
в) (А-В) -1
необходимо будет записать так: 3*A+4*B;A*B-B*A;(A-B)^(-1)

Матрица - прямоугольная числовая таблица, имеющая m строк и n столбцов, поэтому схематически матрицу можно изображать в виде прямоугольника.
Нулевой матрицей (нуль-матрицей) называют матрицу, все элементы которой равны нулю и обозначают 0.
Единичной матрицей называется квадратная матрица вида


Две матрицы A и B равны , если они одинакового размера и их соответствующие элементы равны.
Вырожденной матрицей называется матрица, определитель которой равен нулю (Δ = 0).

Определим основные операции над матрицами .

Сложение матриц

Определение . Суммой двух матриц и одинакового размера называется матрица тех же размеров, элементы которой находятся по формуле . Обозначается C = A+B.

Пример 6 . .
Операция сложения матриц распространяется на случай любого числа слагаемых. Очевидно, что A+0=A .
Еще раз подчеркнем, что складывать можно только матрицы одинакового размера; для матриц разных размеров операция сложения не определена.

Вычитание матриц

Определение . Разностью B-A матриц B и A одинакового размера называется такая матрица C, что A+ C = B.

Умножение матриц

Определение . Произведением матрицы на число α называется матрица , получающаяся из A умножением всех ее элементов на α, .
Определение . Пусть даны две матрицы и , причем число столбцов A равно числу строк B. Произведением A на B называется матрица , элементы которой находятся по формуле .
Обозначается C = A·B.
Схематически операцию умножения матриц можно изобразить так:

а правило вычисления элемента в произведении:

Подчеркнем еще раз, что произведение A·B имеет смысл тогда и только тогда, когда число столбцов первого сомножителя равно числу строк второго, при этом в произведении получается матрица, число строк которой равно числу строк первого сомножителя, а число столбцов равно числу столбцов второго. Проверить результат умножения можно через специальный онлайн-калькулятор .

Пример 7 . Даны матрицы и . Найти матрицы C = A·B и D = B·A.
Решение. Прежде всего заметим, что произведение A·B существует, так как число столбцов A равно числу строк B.


Заметим, что в общем случае A·B≠B·A , т.е. произведение матриц антикоммутативно.
Найдем B·A (умножение возможно).

Пример 8 . Дана матрица . Найти 3A 2 – 2A.
Решение.

.
; .
.
Отметим следующий любопытный факт.
Как известно, произведение двух отличных от нуля чисел не равно нулю. Для матриц подобное обстоятельство может и не иметь места, то есть произведение ненулевых матриц может оказаться равным нуль-матрице.


Данное методическое пособие поможет Вам научиться выполнять действия с матрицами : сложение (вычитание) матриц, транспонирование матрицы, умножение матриц, нахождение обратной матрицы. Весь материал изложен в простой и доступной форме, приведены соответствующие примеры, таким образом, даже неподготовленный человек сможет научиться выполнять действия с матрицами. Для самоконтроля и самопроверки Вы можете бесплатно скачать матричный калькулятор >>> .

Я буду стараться минимизировать теоретические выкладки, кое-где возможны объяснения «на пальцах» и использование ненаучных терминов. Любители основательной теории, пожалуйста, не занимайтесь критикой, наша задача – научиться выполнять действия с матрицами .

Для СВЕРХБЫСТРОЙ подготовки по теме (у кого «горит») есть интенсивный pdf-курс Матрица, определитель и зачёт!

Матрица – это прямоугольная таблица каких-либо элементов . В качестве элементов мы будем рассматривать числа, то есть числовые матрицы. ЭЛЕМЕНТ – это термин. Термин желательно запомнить, он будет часто встречаться, не случайно я использовал для его выделения жирный шрифт.

Обозначение: матрицы обычно обозначают прописными латинскими буквами

Пример: рассмотрим матрицу «два на три»:

Данная матрица состоит из шести элементов :

Все числа (элементы) внутри матрицы существуют сами по себе, то есть ни о каком вычитании речи не идет:

Это просто таблица (набор) чисел!

Также договоримся не переставлять числа, если иного не сказано в объяснениях. У каждого числа свое местоположение, и перетасовывать их нельзя!

Рассматриваемая матрица имеет две строки:

и три столбца:

СТАНДАРТ : когда говорят о размерах матрицы, то сначала указывают количество строк, а только потом – количество столбцов. Мы только что разобрали по косточкам матрицу «два на три».

Если количество строк и столбцов матрицы совпадает, то матрицу называют квадратной , например: – матрица «три на три».

Если в матрице один столбец или одна строка , то такие матрицы также называют векторами .

На самом деле понятие матрицы мы знаем еще со школы, рассмотрим, например точку с координатами «икс» и «игрек»: . По существу, координаты точки записаны в матрицу «один на два». Кстати, вот Вам и пример, почему порядок чисел имеет значение: и – это две совершенно разные точки плоскости.

Теперь переходим непосредственно к изучению действий с матрицами :

1) Действие первое. Вынесение минуса из матрицы (внесение минуса в матрицу) .

Вернемся к нашей матрице . Как вы наверняка заметили, в данной матрице слишком много отрицательных чисел. Это очень неудобно с точки зрения выполнения различных действий с матрицей, неудобно писать столько минусов, да и просто в оформлении некрасиво выглядит.

Вынесем минус за пределы матрицы, сменив у КАЖДОГО элемента матрицы знак :

У нуля, как Вы понимаете, знак не меняется, ноль – он и в Африке ноль.

Обратный пример: . Выглядит безобразно.

Внесем минус в матрицу, сменив у КАЖДОГО элемента матрицы знак :

Ну вот, гораздо симпатичнее получилось. И, самое главное, выполнять какие-либо действия с матрицей будет ПРОЩЕ. Потому что есть такая математическая народная примета: чем больше минусов – тем больше путаницы и ошибок .

2) Действие второе. Умножение матрицы на число .

Пример:

Всё просто, для того чтобы умножить матрицу на число, нужно каждый элемент матрицы умножить на данное число. В данном случае – на тройку.

Еще один полезный пример:

– умножение матрицы на дробь

Сначала рассмотрим то, чего делать НЕ НАДО :

Вносить дробь в матрицу НЕ НУЖНО, во-первых, это только затрудняет дальнейшие действия с матрицей, во-вторых, затрудняет проверку решения преподавателем (особенно, если – окончательный ответ задания).

И, тем более, НЕ НАДО делить каждый элемент матрицы на минус семь:

Из статьи Математика для чайников или с чего начать , мы помним, что десятичных дробей с запятой в высшей математике стараются всячески избегать.

Единственное, что желательно сделать в этом примере – это внести минус в матрицу:

А вот если бы ВСЕ элементы матрицы делились на 7 без остатка , то тогда можно (и нужно!) было бы поделить.

Пример:

В этом случае можно и НУЖНО умножить все элементы матрицы на , так как все числа матрицы делятся на 2 без остатка .

Примечание: в теории высшей математики школьного понятия «деление» нет. Вместо фразы «это поделить на это» всегда можно сказать «это умножить на дробь». То есть, деление – это частный случай умножения.

3) Действие третье. Транспонирование матрицы .

Для того чтобы транспонировать матрицу, нужно ее строки записать в столбцы транспонированной матрицы.

Пример:

Транспонировать матрицу

Строка здесь всего одна и, согласно правилу, её нужно записать в столбец:

– транспонированная матрица.

Транспонированная матрица обычно обозначается надстрочным индексом или штрихом справа вверху.

Пошаговый пример:

Транспонировать матрицу

Сначала переписываем первую строку в первый столбец:

Потом переписываем вторую строку во второй столбец:

И, наконец, переписываем третью строку в третий столбец:

Готово. Грубо говоря, транспонировать – это значит повернуть матрицу набок.

4) Действие четвертое. Сумма (разность) матриц .

Сумма матриц действие несложное.
НЕ ВСЕ МАТРИЦЫ МОЖНО СКЛАДЫВАТЬ. Для выполнения сложения (вычитания) матриц, необходимо, чтобы они были ОДИНАКОВЫМИ ПО РАЗМЕРУ.

Например, если дана матрица «два на два», то ее можно складывать только с матрицей «два на два» и никакой другой!

Пример:

Сложить матрицы и

Для того чтобы сложить матрицы, необходимо сложить их соответствующие элементы :

Для разности матриц правило аналогичное, необходимо найти разность соответствующих элементов .

Пример:

Найти разность матриц ,

А как решить данный пример проще, чтобы не запутаться? Целесообразно избавиться от лишних минусов, для этого внесем минус в матрицу :

Примечание: в теории высшей математики школьного понятия «вычитание» нет. Вместо фразы «из этого вычесть это» всегда можно сказать «к этому прибавить отрицательное число». То есть, вычитание – это частный случай сложения.

5) Действие пятое. Умножение матриц .

Какие матрицы можно умножать?

Чтобы матрицу можно было умножить на матрицу нужно, чтобы число столбцов матрицы равнялось числу строк матрицы .

Пример:
Можно ли умножить матрицу на матрицу ?

Значит, умножать данные матрицы можно.

А вот если матрицы переставить местами, то, в данном случае, умножение уже невозможно!

Следовательно, выполнить умножение невозможно:

Не так уж редко встречаются задания с подвохом, когда студенту предлагается умножить матрицы, умножение которых заведомо невозможно.

Следует отметить, что в ряде случаев можно умножать матрицы и так, и так.
Например, для матриц, и возможно как умножение , так и умножение

Это понятие, которое обобщает все возможные операции, производимые с матрицами. Математическая матрица - таблица элементов. О такой таблице, где m строк и n столбцов, говорят, что это матрица имеет размерность m на n .

Общий вид матрицы:

Для решения матриц необходимо понимать, что такое матрица и знать основные ее параметры. Основные элементы матрицы:

  • Главная диагональ, состоящая из элементов а 11 ,а 22 …..а mn .
  • Побочная диагональ, состоящая из элементов а 1n ,а 2n-1 …..а m1 .

Основные виды матриц:

  • Квадратная - такая матрица, где число строк = числу столбцов (m=n ).
  • Нулевая - где все элементы матрицы = 0.
  • Транспонированная матрица — матрица В , которая была получена из исходной матрицы A путем замены строк на столбцы.
  • Единичная - все элементы главной диагонали = 1, все остальные = 0.
  • Обратная матрица — матрица, при умножении на которую исходная матрица даёт в результате единичную матрицу.

Матрица может быть симметричной относительно главной и побочной диагонали. Т.е., если а 12 =а 21 , а 13 =а 31 ,….а 23 =а 32 …. а m-1n =а mn-1 , то матрица симметрична относительно главной диагонали. Симметричными могут быть лишь квадратные матрицы.

Методы решения матриц.

Почти все методы решения матрицы заключаются в нахождении ее определителя n -го порядка и большинство из них довольно громоздки. Чтобы найти определитель 2го и 3го порядка есть другие, более рациональные способы.

Нахождение определителей 2-го порядка.

Для вычисления определителя матрицы А 2го порядка, необходимо из произведения элементов главной диагонали вычесть произведение элементов побочной диагонали:

Методы нахождения определителей 3го порядка.

Ниже приведены правила для нахождения определителя 3го порядка.

Упрощенно правило треугольника, как одного из методов решения матриц , можно изобразить таким образом:

Другими словами, произведение элементов в первом определителе, которые соединены прямыми, берется со знаком "+"; так же, для 2го определителя - соответствующие произведения берутся со знаком "-", то есть по такой схеме:

При решении матриц правилом Саррюса , справа от определителя дописывают первые 2 столбца и произведения соответствующих элементов на главной диагонали и на диагоналях, которые ей параллельны, берут со знаком "+"; а произведения соответствующих элементов побочной диагонали и диагоналей, которые ей параллельны, со знаком "-":

Разложение определителя по строке или столбцу при решении матриц.

Определитель равен сумме произведений элементов строки определителя на их алгебраические дополнения. Обычно выбирают ту строку/столбец, в которой/ом есть нули. Строку либо столбец, по которой/ому ведется разложение, будут обозначать стрелкой.

Приведение определителя к треугольному виду при решении матриц.

При решении матриц методом приведения определителя к треугольному виду, работают так: с помощью простейших преобразований над строками либо столбцами, определитель становится треугольного вида и тогда его значение, в соответствии со свойствами определителя, будет равно произведению элементов, которые стоят на главной диагонали.

Теорема Лапласа при решении матриц.

Решая матрицы по теореме Лапласа, необходимо знать непосредственно саму теорему. Теорема Лапласа: Пусть Δ - это определитель n -го порядка. Выбираем в нем любые k строк (либо столбцов), при условии k n - 1 . В таком случае сумма произведений всех миноров k -го порядка, содержащихся в выбранных k строках (столбцах), на их алгебраические дополнения будет равна определителю.

Решение обратной матрицы.

Последовательность действий для решения обратной матрицы :

  1. Понять, квадратная ли данная матрица. В случае отрицательного ответа становится ясно, что обратной матрицы для нее не может быть.
  2. Вычисляем алгебраические дополнения.
  3. Составляем союзную (взаимную, присоединённую) матрицу C .
  4. Составляем обратную матрицу из алгебраических дополнений: все элементы присоединённой матрицы C делим на определитель начальной матрицы. Итоговая матрица будет искомой обратной матрицей относительно заданной.
  5. Проверяем выполненную работу: умножаем матрицу начальную и полученную матрицы, результатом должна стать единичная матрица.

Решение систем матриц.

Для решения систем матриц наиболее часто используют метод Гаусса.

Метод Гаусса — это стандартный способ решения систем линейных алгебраических уравнений (СЛАУ) и он заключается в том, что последовательно исключаются переменные, т.е., при помощи элементарных изменений систему уравнений доводят до эквивалентной системы треугольного вида и из нее, последовательно, начиная с последних (по номеру), находят каждый элемент системы.

Метод Гаусса является самым универсальным и лучшим инструментом для нахождения решения матриц. Если у системы бесконечное множество решений или система является несовместимой, то ее нельзя решать по правилу Крамера и матричным методом.

Метод Гаусса подразумевает также прямой (приведение расширенной матрицы к ступенчатому виду, т.е. получение нулей под главной диагональю) и обратный (получение нулей над главной диагональю расширенной матрицы) ходы. Прямой ход и есть метод Гаусса, обратный - метод Гаусса-Жордана. Метод Гаусса-Жордана отличается от метода Гаусса лишь последовательностью исключения переменных.

Матрицы и определители

1. 1 Матрицы. Понятия.

Прямоугольной матрицей размера m x n называется совокупность mn чисел, расположенных в виде прямоугольной таблицы, содержащей m строк и n столбцов. Мы будем записывать матрицу в виде

или сокращенно в виде A = (a ij) (i = ; j = ). Числа a ij , составляющие данную матрицу, называются ее элементами; первый индекс указывает на номер строки, второй - на номер столбца. Две матрицы A = (a ij) и B = (b ij) одинакового размера называются равными, если попарно равны их элементы, стоящие на одинаковых местах, то есть A = B, если a ij = b ij .

Матрица, состоящая из одной строки или одного столбца, называется соответственно вектор-строкой или вектор-столбцом. Вектор-столбцы и вектор-строки называют просто векторами.

Матрица, состоящая из одного числа, отождествляется с этим числом. Матрица размера m x n , все элементы которой равны нулю, называются нулевой матрицей и обозначается через 0. Элементы матрицы с одинаковыми индексами называют элементами главной диагонали. Если число строк матрицы равно числу столбцов, то есть m = n , то матрицу называют квадратной порядка n . Квадратные матрицы, у которых отличны от нуля лишь элементы главной диагонали, называются диагональными матрицами и записываются так:

.

Если все элементы a ii диагональной матрицы равны 1, то матрица называется единичной и обозначается буквой Е:

Квадратная матрица называется треугольной, если все элементы, стоящие выше (или ниже) главной диагонали, равны нулю. Транспонированием называется такое преобразование матрицы, при котором строки и столбцы меняются местами с сохранением их номеров. Обозначается транспонирование значком Т наверху.

Пусть дана матрица (4.1). Переставим строки со столбцами. Получим матрицу

A T = ,

которая будет транспонированной по отношению к матрице А. В частности, при транспонировании вектора-столбца получается вектор-строка и наоборот.

Основные операции над матрицами.

Основными арифметическими операциями над матрицами являются умножение матрицы на число, сложение и умножение матриц.



Перейдем к определению основных операций над матрицами.

Сложение матриц : Суммой двух матриц, например: A и B, имеющих одинаковое количество строк и столбцов, иными словами, одних и тех же порядков m и n называется матрица С = (Сij)(i = 1, 2, …m; j = 1, 2, …n) тех же порядков m и n, элементы Cij которой равны.

Cij = Aij + Bij (i = 1, 2, …, m; j = 1, 2, …, n) (1.2)

Для обозначения суммы двух матриц используется запись C = A + B. Операция составления суммы матриц называется их сложением

Итак по определению имеем:

+ =

=

Из определения суммы матриц, а точнее из формулы (1.2) непосредственно вытекает, что операция сложения матриц обладает теми же свойствами, что и операция сложения вещественных чисел, а именно:

1) переместительным свойством: A + B = B + A

2) сочетательным свойством: (A + B) + C = A + (B + C)

Эти свойства позволяют не заботиться о порядке следования слагаемых матриц при сложении двух или большего числа матриц.

Умножение матрицы на число :

Произведением матрицы A = (Aij) (i = 1, 2, …, m; j = 1, 2, …, n) на вещественное число называется матрица C = (Cij) (i = 1, 2, … , m; j = 1, 2, …, n), элементы которой равны

Cij = Aij (i = 1, 2, …, m; j = 1, 2, …, n). (1.3)

Для обозначения произведения матрицы на число используется запись C = A или C = A . Операция составления произведения матрицы на число называется умножением матрицы на это число.

Непосредственно из формулы (1.3) ясно, что умножение матрицы на число обладает следующими свойствами:

1) распределительным свойством относительно суммы матриц:

(A + B) = A + B

2) сочетательным свойством относительно числового множителя:

3) распределительным свойством относительно суммы чисел:

( + ) A = A + A.

Замечание: Разностью двух матриц A и B одинаковых порядков естественно назвать такую матрицу C тех же порядков, которая в сумме с матрицей B дает матрицу A. Для обозначения разности двух матриц используется естественная запись: C = A – B.

Перемножение матриц :

Произведением матрицы A = (Aij) (i = 1, 2, …, m; j = 1, 2, …, n), имеющей порядки соответственно равные m и n, на матрицу B = (Bij) (i = 1, 2, …, n;

j = 1, 2, …, p), имеющую порядки соответственно равные n и p, называется матрица C = (Сij) (i = 1, 2, … , m; j = 1, 2, … , p), имеющая порядки, соответственно равные m и p, и элементы Cij, определяемые формулой

Cij = (i = 1, 2, …, m; j = 1, 2, …, p) (1.4)

Для обозначения произведения матрицы A на матрицу B используют запись

C = AB. Операция составления произведения матрицы A на матрицу B называется перемножением этих матриц. Из сформулированного выше определения вытекает, что матрицу A можно умножить не на всякую матрицу B: необходимо чтобы число столбцов матрицы A было равно числу строк матрицы B. Для того чтобы оба произведения AB и BA не только были определены, но и имели одинаковый порядок, необходимо и достаточно, чтобы обе матрицы A и B были квадратными матрицами одного и того же порядка.

Формула (1.4) представляет собой правило составления элементов матрицы C,

являющейся произведением матрицы A на матрицу B. Это правило можно сформулировать и словесно: Элемент Cij, стоящий на пересечении i-й строки и j-го столбца матрицы C = AB, равен сумме попарных произведений соответствующих элементов i-й строки матрицы A и j-го столбца матрицы B. В качестве примера применения указанного правила приведем формулу перемножения квадратных матриц второго порядка

Из формулы (1.4) вытекают следующие свойства произведения матрицы A на матрицу B:

1) сочетательное свойство: (AB) C = A (BC);

2) распределительное относительно суммы матриц свойство:

(A + B) C = AC + BC или A (B + C) = AB + AC.

Вопрос о перестановочном свойстве произведения матриц имеет смысл ставить лишь для квадратных матриц одинакового порядка. Элементарные примеры показывают, что произведений двух квадратных матриц одинакового порядка не обладает, вообще говоря, перестановочным свойством. В самом деле, если положить

A = , B = , то AB = , а BA =

Те же матрицы, для произведения которых справедливо перестанавочное свойство, принято называть коммутирующими.

Среди квадратных матриц выделим класс так называемых диагональных матриц, у каждой из которых элементы, расположенные вне главной диагонали, равны нулю. Среди всех диагональных матриц с совпадающими элементами на главной диагонали особо важную роль играют две матрицы. Первая из этих матриц получается, когда все элементы главной диагонали равны единице, называется единичной матрицей n-ого порядка и обозначается символом E . Вторая матрица получается при всех элементах равных нулю и называется нулевой матрицей n-ого порядка и обозначается символом O. Допустим, что существует произвольная матрица A, тогда

AE = EA = A, AO = OA = O.

Первая из формул характеризует особую роль единичной матрицы Е, аналогичную то роли, которую играет число 1 при перемножении вещественных чисел. Что же касается особой роли нулевой матрицы О, то ее выявляет не только вторая из формул, но и элементарно проверяемое равенство: A + O = O + A = A. Понятие нулевой матрицы можно вводить и не для квадратных матриц.

Ранг матрицы

Рассмотрим прямоугольную матрицу (4.1). Если в этой матрице выделить произвольно k строк и k столбцов, то элементы, стоящие на пересечении выделенных строк и столбцов, образуют квадратную матрицу k -го порядка. Определитель этой матрицы называется минором k-го порядка матрицы А. Очевидно, что матрица А обладает минорами любого порядка от 1 до наименьшего из чисел m и n . Среди всех отличных от нуля миноров матрицы А найдется по крайней мере один минор, порядок которого будет наибольшим. Наибольший из порядков миноров данной матрицы, отличных от нуля, называется рангом матрицы. Если ранг матрицы А равен r , то это означает, что в матрице А имеется отличный от нуля минор порядка r , но всякий минор порядка, большего чем r, равен нулю. Ранг матрицы А обозначается через r(A). Очевидно, что выполняется соотношение

0 ≤ r(A) ≤ min (m,n).

Ранг матрицы находится либо методом окаймления миноров, либо методом элементарных преобразований. При вычислении ранга матрицы первым способом следует переходить от миноров низших порядков к минорам более высокого порядка. Если уже найден минор D k-го порядка матрицы А, отличный от нуля, то требуют вычисления лишь миноры (k+1)-го порядка, окаймляющие минор D, т.е. содержащие его в качестве минора. Если все они равны нулю, то ранг матрицы равен k.

Элементарными называются следующие преобразования матрицы:

1) перестановка двух любых строк (или столбцов),

2) умножение строки (или столбца) на отличное от нуля число,

3) прибавление к одной строке (или столбцу) другой строки (или столбца), умноженной на некоторое число.

Две матрицы называются эквивалентными, если одна из них получается из другой с помощью конечного множества элементарных преобразований.

Эквивалентные матрицы не являются, вообще говоря, равными, но их ранги равны. Если матрицы А и В эквивалентны, то это записывается так:

Канонической матрицей называется матрица, у которой в начале

главной диагонали стоят подряд несколько единиц (число которых

может равняться нулю), а все остальные элементы равны нулю,

например, .

При помощи элементарных преобразований строк и столбцов любую матрицу можно привести к канонической. Ранг канонической матрицы равен числу единиц на ее главной диагонали.

Обратная матрица

Рассмотрим квадратную матрицу

A = .

Обозначим Δ = det A.

Квадратная матрица А называется невырожденной, или неособенной, если ее определитель отличен от нуля, и вырожденной, или особенной, если Δ = 0.

Квадратная матрица В называется обратной для квадратной матрицы А того же порядка, если их произведение А В = В А = Е, где Е - единичная матрица того же порядка, что и матрицы А и В.

Теорема. Для того, чтобы матрица А имела обратную, необходимо и достаточно, чтобы ее определитель был отличен от нуля.

Матрица, обратная матрице А, обозначается через А -1 . Обратная матрица вычисляется по формуле

А -1 = 1/Δ , (4.5)

где А ij - алгебраические дополнения элементов a ij .

Вычисление обратной матрицы по формуле (4.5) для матриц высокого порядка очень трудоемко, поэтому на практике бывает удобно находить обратную матрицу с помощью метода элементарных преобразований (ЭП). Любую неособенную матрицу А путем ЭП только столбцов (или только строк) можно привести к единичной матрице Е. Если совершенные над матрицей А ЭП в том же порядке применить к единичной матрице Е, то в результате получится обратная матрица. Удобно совершать ЭП над матрицами А и Е одновременно, записывая обе матрицы рядом через черту. Отметим еще раз, что при отыскании канонического вида матрицы с целью нахождения ее ранга можно пользоваться преобразованиями строк и столбцов. Если нужно найти обратную матрицу, в процессе преобразований следует использовать только строки или только столбцы.

2. Определители

Для каждой квадратной матрицы определено число, называемое определителем матрицы, детерминантом матрицы или просто определителем (детерминантом).

Определение. Определителем квадратной матрицы первого порядка называется число, равное единственному элементу этой матрицы: A={a}, detA=|A|=a.

Пусть A - произвольная квадратная матрица порядка n, n>1:

Определение Определителем n-го порядка (определителем квадратной матрицы n-го порядка n), n>1, называется число, равное

где - определитель квадратной матрицы полученной из матрицы A вычеркиванием превой строки и j-го столбца.

Для определителей 2-го и 3-го порядка легко получить простые выражения через элементы матрицы.

Определитель 2-го порядка:

Определитель 3-го порядка:

.

2.1. Минор и алгебраическое дополнение элемента

Определение. Минором элемента матрицы называется определитель матрицы, полученной вычеркиванием строки и столбца, в которых расположен элемент. Обозначаем: минор элемента a ij - .

Определение. Алгебраическим дополнением элемента матрицы называется его минор, умноженный на -1 в степени, равной сумме номеров строки и столбца, в которых расположен элемент. Обозначаем: алгебраическое дополнение элемента a ij - .

Таким образом можно переформулировать определение определителя n-го порядка:

определитель n-го порядка, n>1, равен сумме произведений элементов первой строки на их алгебраические дополнения.

Пример.


Теорема о вычислении определителя разложением по любой строке

Теорема. Определитель n-го порядка, n>1, равен сумме произведений элементов любой строки (столбца) на их алгебраические дополнения.

Пример. Вычислим определитель из предыдущего примера разложением по второй строке:

Следствие. Определитель треугольной матрицы равен произведению диагональных элементов. (Доказать самостоятельно).