Точки разрыва функции онлайн калькулятор. Вычисление пределов функций онлайн

Учреждение образования «Белорусская государственная

сельскохозяйственная академия»

Кафедра высшей математики

Методические указания

по изучению темы «Непрерывность функций одной переменной»

студентами бухгалтерского факультета заочной формы получения

образования (НИСПО)

Горки, 2013

Непрерывность функций одной переменной

    Односторонние пределы

Пусть функция
определена на множестве
. Введём понятие односторонних пределов функции при
. Будем рассматривать такие значениях , что
. Это означает, что
, оставаясь всё время слева от
при
то он называетсялевым пределом этой функции в точке (или при
) и обозначается

.

Пусть теперь
, оставаясь всё время справа от, т.е. оставаясь больше. Если при этом существует предел функции
, то он называется правым пределом этой функции в точке и обозначается

.

Левый и правый пределы называются односторонними пределами функции в точке.

Если существуют односторонние пределы функции в точке и они равны между собой, то функция имеет тот же предел в этой точке :



.

Если односторонние пределы функции в точке существуют, но не равны между собой, то предел функции в этой точке не существует .

    Непрерывность функции в точке

Пусть функция
определена на некотором множестве D . Пусть независимая переменная х переходит от одного своего (начального) значения
к другому (конечному) значению. Разность конечного и начального значений называется приращением величины х и обозначается
. Приращение может быть как положительным, так и отрицательным. В первом случае величинах при переходе от кх увеличивается, а во втором случае - уменьшается.

Если независимая переменная х получает некоторое приращение
, то функция
получает приращение
. Так как
, то.

Приращением функции
в точке называется разность, где
– приращение независимой переменной.

Можно дать несколько определений непрерывности функции в точке.



Функция называется непрерывной в интервале , если она непрерывна в каждой точке этого интервала. Геометрически непрерывность функции
в замкнутом интервале означает, что график функции представляет собой сплошную линию без разрывов.

Непрерывные на отрезке функции обладают важными свойствами, которые выражаются следующими утверждениями.

Если функция
непрерывна на отрезке [a , b ], то она ограничена на этом отрезке.

Если функция
непрерывна на отрезке [a , b ], то она достигает на этом отрезке своего наименьшего и наибольшего значений.

Если функция
непрерывна на отрезке [a , b ] и
, то каким бы ни было числоС , заключённое между числами А и В , найдётся точка
, что
.

Из этого утверждения следует, что если функция
непрерывна на [a , b ] и на концах этого отрезка принимает значения разных знаков, то на этом отрезке существует хотя бы одна точка c , в которой функция обращается в нуль.

Справедливо следующее утверждение: если над непрерывными функциями производить арифметические действия, то в результате получается непрерывная функци я.

Пример 1 .

в точке
.

Решение . Значение функции при
есть
. Вычислим односторонние пределы функции в точке
:

Так как односторонние пределы при
равны между собой и равны значению функции в этой точке, то данная функция непрерывна в точке
.

3. Непрерывность элементарных функций

Рассмотрим функцию
. Эта постоянная функция непрерывна в любой точке, так как
.

Функция
также непрерывна в каждой точке
, так как
. Так как
, то на основании приведённого утверждения об арифметических операциях над непрерывными функциями
будет непрерывной. Непрерывными будут такжен функции
.

Аналогично можно показать непрерывность остальных элементарных функций.

Таким образом, любая элементарная функция непрерывна в своей области определения, т.е. область определения элементарной функции совпадает с областью её непрерывности.

    Непрерывность сложной и обратной функций

Пусть функция
непрерывна в точке, а функция
непрерывна в точке
. Тогда сложная функция
непрерывна в точке. Это означает, что если сложная функция составлена из непрерывных функций, то она также будет непрерывной, т.е.непрерывная функция от непрерывной функции есть функция непрерывная . Это определение распространяется на конечное число непрерывных функций.

Из этого определения следует, что под знаком непрерывной функции можно переходить к пределу:

Это означает, что если функция непрерывна, то знак предела и знак функции можно поменять местами.

Пусть функция
определена, строго монотонна и непрерывна на отрезке [a , b ]. Тогда обратная ей функция
определена, строго монотонна и непрерывна на отрезке [A , B ], где
.

    Точки разрыва и их классификаци я

Как уже известно, что если функция
определена на множестве D и в точке
выполняется условие
, то функция непрерывна в этой точке. Если же это условие непрерывности не выполняется, то в точкех 0 функция имеет разрыв.

Точка называетсяточкой разрыва первого рода функции
, если в этой точке функция имеет конечные односторонние пределы, не равные друг другу, т.е. . При этом величина

называется скачком функции
в точке .

Точка называетсяточкой устранимого разрыва функции
, если односторонние пределы функции в этой точке равны друг другу и не равны значению функции в этой точке, т.е. В этом случае для устранения разрыва в точкенужно положить

Точка х 0 называется точкой разрыва второго рода функции
если хотя бы один из односторонних пределов
или
в этой точке либо не существует, либо равен бесконечности.

Пример 2 . Исследовать на непрерывность функцию

.

Решение . Функция определена и непрерывна на всей числовой прямой, за исключением точки
. В этой точке функция имеет разрыв. Найдём односторонние пределы функции в точке
:

Так как в точке
односторонние пределы равны между собой, а функция в этой точке не определена, то точка
является точкой устранимого разрыва. Чтобы устранить разрыв в этой точке, необходимо доопределить функцию, положив
.

Пример 3 . Исследовать на непрерывность функцию

.

Решение . Функция определена и непрерывна на всём множестве действительных чисел, кроме
. В этой точке функция имеет разрыв. Найдём односторонние пределы функции при
:

.

Так как данная функция в точке
имеет конечные односторонние пределы, не равные друг другу, то эта точка является точкой разрыва первого рода. Скачок функции в точке
равен.

Вопросы для самоконтроля знаний

    Что называется приращением аргумента и приращением функции?

    Что называется левосторонним (левым) пределом функции?

    Что называется правосторонним (правым) пределом функции?

    Какая функция называется непрерывной в точке, в интервале?

    Какая точка называется точкой разрыва функции?

    Какая точка называется точкой разрыва первого рода?

    Какая точка называется точкой разрыва второго рода?

    Какая точка называется точкой устранимого разрыва?

Задания для самостоятельной работы

Исследовать функции на непрерывность:


в точке
.

На этом уроке будем учиться устанавливать непрерывность функции. Будем делать это с помощью пределов, причем односторонних - правого и левого, которые совсем не страшны, несмотря на то что записываются как и .

Но что такое вообще непрерывность функции? Пока мы не дошли до строгого определения, проще всего представить себе линию, которую можно начертить, не отрывая карандаш от бумаги. Если такая линия начерчена, то она непрерывна. Эта линия и является графиком непрерывной функции.

Графически функция непрерывна в точке , если её график не "разрывается" в этой точке. График такой непрерывной функции - показан на рисунке ниже.

Определение непрерывности функции через предел. Функция является непрерывной в точке при соблюдении трёх условий:

1. Функция определена в точке .

Если хотя бы одно из перечисленных условий не соблюдено, функция не является непрерывной в точке. При этом говорят, что функция терпит разрыв, а точки на графике, в которых график прерывается, называются точками разрыва функции. График такой функции , терпящей разрыв в точке x=2 - на рисунке ниже.

Пример 1. Функция f (x ) определена следующим образом:

Будет ли эта функция непрерывной в каждой из граничных точек её ветвей, то есть в точках x = 0 , x = 1 , x = 3 ?

Решение. Проверяем все три условия непрерывности функции в каждой граничной точке. Первое условие соблюдается, так как то, что функция определена в каждой из граничных точек, следует из определения функции. Осталось проверить остальные два условия.

Точка x = 0 . Найдём левосторонний предел в этой точке:

.

Найдём правосторонний предел:

x = 0 должны быть найдены при той ветви функции, которая включает в себя эту точку, то есть второй ветви. Находим их:

Как видим, предел функции и значение функции в точке x = 0 равны. Следовательно, функция является непрерывной в точке x = 0 .

Точка x = 1 . Найдём левосторонний предел в этой точке:

Найдём правосторонний предел:

Предел функции и значение функции в точке x = 1 должны быть найдены при той ветви функции, которая включает в себя эту точку, то есть второй ветви. Находим их:

.

Предел функции и значение функции в точке x = 1 равны. Следовательно, функция является непрерывной в точке x = 1 .

Точка x = 3 . Найдём левосторонний предел в этой точке:

Найдём правосторонний предел:

Предел функции и значение функции в точке x = 3 должны быть найдены при той ветви функции, которая включает в себя эту точку, то есть второй ветви. Находим их:

.

Предел функции и значение функции в точке x = 3 равны. Следовательно, функция является непрерывной в точке x = 3 .

Основной вывод: данная функция является непрерывной в каждой граничной точке.

Установить непрерывность функции в точке самостоятельно, а затем посмотреть решение

Непрерывное изменение функции можно определить как изменение постепенное, без скачков, при котором малое изменение аргумента влечёт малое изменение функции .

Проиллюстрируем это непрерывное изменение функции на примере.

Пусть над столом висит на нитке груз. Под действием этого груза нитка растягивается, поэтому расстояние l груза от точки подвеса нити является функцией массы груза m , то есть l = f (m ) , m ≥0 .

Если немного изменить массу груза, то расстояние l изменится мало: малым изменениям m соответствуют малые изменения l . Однако если масса груза близка к пределу прочности нити, то небольшое увеличение массы груза может вызвать разрыв нити: расстояние l скачкообразно увеличится и станет равным расстоянию от точки подвеса до поверхности стола. График функции l = f (m ) изображён на рисунке. На участке этот график является непрерывной (сплошной) линией, а в точке он прерывается. В результате получается график, состоящий из двух ветвей. Во всех точках, кроме , функция l = f (m ) непрерывна, а в точке она имеет разрыв.

Исследование функции на непрерывность может быть как самостоятельной задачей, так и одним из этапов полного исследования функции и построения её графика .

Непрерывность функции на промежутке

Пусть функция y = f (x ) определена в интервале ]a , b [ и непрерывна в каждой точке этого интервала. Тогда она называется непрерывной в интервале ]a , b [ . Аналогично определяется понятие непрерывности функции на промежутках вида ]- ∞, b [ , ]a , + ∞[ , ]- ∞, + ∞[ . Пусть теперь функция y = f (x ) определена на отрезке [a , b ] . Разница между интервалом и отрезком: граничные точки интервала не входят в интервал, а граничные точки отрезка входят в отрезок. Здесь следует упомянуть о так называемой односторонней непрерывности: в точке a , оставаясь на отрезке [a , b ] , мы можем приближаться только справа, а к точке b - только слева. Функция называется непрерывной на отрезке [a , b ] , если она непрерывна во всех внутренних точках этого отрезка, непрерывна справа в точке a и непрерывна слева в точке b .

Примером непрерывной функции может служить любая из элементарных функций. Каждая элементарная функция непрерывна на любом отрезке, на котором она определена. Например, функции и непрерывны на любом отрезке [a , b ] , функция непрерывна на отрезке [0 , b ] , функция непрерывна на любом отрезке, не содержащем точку a = 2 .

Пример 4. Исследовать функцию на непрерывность.

Решение. Проверяем первое условие. Функция не определена в точках - 3 и 3. По меньшей мере одно из условий непрерывности функции на всей числовой прямой не выполняется. Поэтому данная функция является непрерывной на интервалах

.

Пример 5. Определить, при каком значении параметра a непрерывна на всей области определения функция

Решение.

Найдём правосторонний предел при :

.

Очевидно, что значение в точке x = 2 должно быть равно ax :

a = 1,5 .

Пример 6. Определить, при каких значениях параметров a и b непрерывна на всей области определения функция

Решение.
Найдём левосторонний предел функции в точке :

.

Следовательно, значение в точке должно быть равно 1:

Найдём левосторонний функции в точке :

Очевидно, что значение функции в точке должно быть равно :

Ответ: функция непрерывна на всей области определения при a = 1; b = -3 .

Основные свойства непрерывных функций

К понятию непрерывной функции математика пришла, изучая в первую очередь различные законы движения. Пространство и время бесконечны, и зависимость, например, пути s от времени t , выраженная законом s = f (t ) , даёт пример непрерывной функции f (t ) . Непрерывно изменяется и температура нагреваемой воды, она также является непрерывной функцией от времени: T = f (t ) .

В математическом анализе доказаны некоторые свойства, которыми обладают непрерывные функции. Приведём важнейшие из этих свойств.

1. Если непрерывная на интервале функция принимает на концах интервала значения разных знаков, то в некоторой точке этого отрезка она принимает значение, равное нулю. В более формальном изложении это свойство дано в теореме, известной как первая теорема Больцано-Коши.

2. Функция f (x ) , непрерывная на интервале [a , b ] , принимает все промежуточные значения между значениями в концевых точках, то есть, между f (a ) и f (b ) . В более формальном изложении это свойство дано в теореме, известной как вторая теорема Больцано-Коши.

Подборка онлайн калькуляторов для полного исследования функции и построение графика.

Найти Область определения функции

Вычислить Четность функции

Вычисление точек пересечения графика с осью (нули функции)

Найти экстремумы функции

Точки перегиба, интервалы выпуклости и вогнутости

Построить график функции

Данный калькулятор предназначен для нахождения точек разрыва функции онлайн.

Точки разрыва функции – это точки, в которых функция имеет разрыв, при этом функция в этих точках не является непрерывной.

Существует определенная классификация точек разрыва функции. Точки разрыва функции делятся на точки разрыва первого рода и точки разрыва второго рода.

Точки разрыва первого рода при x=a имеют место быть, если существуют левосторонний и правосторонний пределы: lim(x→a-0)⁡f(x) и lim(x→a+0)⁡f(x). Эти пределы должны быть конечны. Если хотя бы один из односторонних пределов равен нулю или бесконечности, то в таком случае функция имеет точки разрыва второго рода.

Для того чтобы найти точки разрыва функции онлайн, необходимо указать функцию и значение аргумента.

Для получения полного хода решения нажимаем в ответе Step-by-step.

Исследовать функцию, построить график

План исследования функций и построения графика .

Ответ означает следующее: even - функция четная, odd - функция нечетная, neither even nor odd - функция ни четная ни нечетная.

3. Точки пересечения графика функции с осями координат;

4. Непрерывность функции, точки разрыва;

5. Асимптоты графика функции;

6. Интервалы монотоности и критические точки;

7 . Интервалы выпуклости и точки перегиба;

8. Посторение графика на основании проведённого исследования.

Образовательные онлайн сервисы: теория и практика

Решения типовых задач - Математический анализ

Исследовать функцию на непрерывность, определить характер разрыва.

Пример 1 .

Функция не определена в точках, уже нарушено первое условие непрерывности, следовательно, в этих точках функция испытывает разрыв.

Для выяснения характера разрыва нужно вычислить односторонние пределы в точках.

Так как левый предел в точке равен бесконечности, то в ней разрыв II рода.

Так как правый предел в точке равен бесконечности, то в ней разрыв II рода.

Пример 2 Функция определена на всей числовой прямой, но при этом она не является непрерывной, так как, т.е. правый и левый пределы в нуле не равны между собой и не равны значению функции в нуле, нарушены 2 и 3 условия непрерывности. Так как правый и левый пределы в нуле существуют и конечны, то это разрыв I рода.

Пример 3 Функция неопределена в нуле, следовательно, – точка разрыва.

Так как и, то это устранимый разрыв, функцию можно в нуле доопределить “по непрерывности”, положив равной единице.

Пример 4

Функция является элементарной, поэтому она непрерывна в области её определения. В область определения не входят точки, следовательно, они являются точками разрыва данной функции.

Определим тип точек разрыва.

Так как, то точка является точкой

разрыва второго рода функции.

Односторонние пределы функции в точке равны, но функция при не определена, следовательно, является устранимой точкой разрыва первого рода.

Так как заданная функция является четной функцией, то, очевидно, что

И является точкой разрыва второго рода функции.

Для построения эскиза графика функции исследуем поведение функции при

и. Так как функция четная, то

Построим эскиз графика функции.

Предлагаем наиболее хорошие на наш взгляд учебники для самостоятельного изучения математики и экономики

Компактные справочные материалы, формулы по различным разделам высшей математики и экономической статистики.

Некоторые задачи можно решить онлайн, введя числовые значения, с подробным решением.

Построим (исследуем) график функции y=f(x), для этого задайте функцию f(x)

Важно : a должно быть меньше b , иначе график не сможет построиться. Cледите за масштабом - если графика на рисунке нету, значит стоит поварьировать значения a и b

С применением степени

(квадрат и куб) и дроби

С применением синуса и косинуса

Гиберболические синус и косинус

Гиберболические тангенс и котангенс

Гиберболические арксинус и арккосинус

Гиберболические арктангенс и арккотангенс

Для периодических функций идет исследование графика функции только на промежутке периода

Наш калькулятор позволяет исследовать график функции. Но пока что нет возможности находить область определения функции

Что умеет находить этот калькулятор:

Правила ввода выражений и функций

Выражения могут состоять из функций (обозначения даны в алфавитном порядке):

absolute(x) Абсолютное значение x

(модуль x или |x| ) arccos(x) Функция - арккосинус от x arccosh(x) Арккосинус гиперболический от x arcsin(x) Арксинус от x arcsinh(x) Арксинус гиперболический от x arctg(x) Функция - арктангенс от x arctgh(x) Арктангенс гиперболический от x e e число, которое примерно равно 2.7 exp(x) Функция - экспонента от x (что и e ^x ) log(x) or ln(x) Натуральный логарифм от x

(Чтобы получить log7(x) , надо ввести log(x)/log(7) (или, например для log10(x) =log(x)/log(10)) pi Число - "Пи", которое примерно равно 3.14 sin(x) Функция - Синус от x cos(x) Функция - Косинус от x sinh(x) Функция - Синус гиперболический от x cosh(x) Функция - Косинус гиперболический от x sqrt(x) Функция - квадратный корень из x sqr(x) или x^2 Функция - Квадрат x tg(x) Функция - Тангенс от x tgh(x) Функция - Тангенс гиперболический от x cbrt(x) Функция - кубический корень из x floor(x) Функция - округление x в меньшую сторону (пример floor(4.5)==4.0) sign(x) Функция - Знак x erf(x) Функция ошибок (Лапласа или интеграл вероятности)

В выражениях можно применять следующие операции:

Действительные числа вводить в виде 7.5 , не 7,5 2*x - умножение 3/x - деление x^3 - возведение в степень x + 7 - сложение x - 6 - вычитание

Контрольная работа РУ - калькуляторы онлайн

Непрерывность и построение графиков кусочно-заданных функций – сложная тема. Учиться строить графики лучше непосредственно на практическом занятии. Здесь в основном показано исследование на непрерывность.

Известно, что элементарная функция (см. с. 16) непрерывна во всех точках, в которых определена. Поэтому нарушение непрерывности у элементарных функций возможно только в точках двух типов:

а) в точках, где функция «переопределяется»;

б) в точках, где функция не существует.

Соответственно только такие точки и проверяются при исследовании на непрерывность, что показано в примерах.

Для неэлементарных функций исследование сложнее. Например, функция (целая часть числа) определена на всей числовой оси, но терпит разрыв при каждом целомx . Подобные вопросы выходят за рамки пособия.

Перед изучением материала следует повторить по лекции или учебнику, какими (какого рода) бывают точки разрыва.

Исследование кусочно-заданных функций на непрерывность

Функция задана кусочно , если она на разных участках области определения задаётся разными формулами.

Основная идея при исследовании таких функций – выяснить, задана ли функция в тех точках, в которых переопределяется, и как. Затем проверяется, совпадают ли значения функции слева и справа от таких точек.

Пример 1. Покажем, что функция
непрерывна.

Функция
элементарна и потому непрерывна в тех точках, в которых определена. Но, очевидно, она определена во всех точках. Следовательно, во всех точках она и непрерывна, в том числе при
, как требует условие.

То же справедливо для функции
, и при
она непрерывна.

В таких случаях непрерывность может нарушаться только там, где функция переопределяется. В нашем примере это точка
. Проверим её, для чего найдём пределы слева и справа:

Пределы слева и справа совпадают. Остаётся узнать:

а) определена ли функция в самой точке
;

б) если да, то совпадает ли
со значениями пределов слева и справа.

По условию, если
, то
. Поэтому
.

Видим, что (все равны числу 2). Это означает, что в точке
функция непрерывна . Итак, функция непрерывна на всей оси, включая точку
.

Замечания к решению

а) При вычислениях не играло роли, подставляем мы в конкретную формулу число
или
. Обычно это важно, когда получается деление на бесконечно малую величину, поскольку влияет на знак бесконечности. Здесь же
и
отвечают только завыбор функции;

б) как правило, обозначения
и
равноправны, то же касается обозначений
и
(и справедливо для любой точки, а не только для
). Дальше для краткости применяются обозначения вида
;

в) когда пределы слева и справа равны, для проверки на непрерывность фактически остаётся посмотреть, будет ли одно из неравенств нестрогим . В примере таковым оказалось 2-е неравенство.

Пример 2. Исследуем на непрерывность функцию
.

По тем же причинам, что в примере 1, непрерывность может нарушаться только в точке
. Проверим:

Пределы слева и справа равны, но в самой точке
функция не определена (неравенства строгие). Это означает, что
– точкаустранимого разрыва .

«Устранимый разрыв» означает, что достаточно или сделать любое из неравенств нестрогим, или придумать для отдельной точки
функцию, значение которой при
равно –5, или просто указать, что
, чтобы вся функция
стала непрерывной.

Ответ: точка
– точка устранимого разрыва.

Замечание 1. В литературе устранимый разрыв обычно считается частным случаем разрыва 1-го рода, однако студентами чаще понимается как отдельный тип разрыва. Во избежание разночтений будем придерживаться 1-й точки зрения, а «неустранимый» разрыв 1-го рода оговаривать особо.

Пример 3. Проверим, непрерывна ли функция

В точке

Пределы слева и справа различны:
. Независимо от того, определена ли функция при
(да) и если да, то чему равна (равна 2), точка
точка неустранимого разрыва 1-го рода .

В точке
происходитконечный скачок (от 1 к 2).

Ответ: точка

Замечание 2. Вместо
и
обычно пишут
и
соответственно.

Возможен вопрос: чем отличаются функции

и
,

а также их графики? Правильный ответ:

а) 2-я функция не определена в точке
;

б) на графике 1-й функции точка
«закрашена», на графике 2-й – нет («выколотая точка»).

Точка
, где обрывается график
, не закрашена на обоих графиках.

Сложнее исследовать функции, по-разному определённые на трёх участках.

Пример 4. Непрерывна ли функция
?

Так же, как в примерах 1 – 3, каждая из функций
,
инепрерывна на всей числовой оси, в том числе – на участке, на котором задана. Разрыв возможен только в точке
или (и) в точке
, где функция переопределяется.

Задача распадается на 2 подзадачи: исследовать на непрерывность функции

и
,

причём точка
не представляет интереса для функции
, а точка
– для функции
.

1-й шаг. Проверяем точку
и функцию
(индекс не пишем):

Пределы совпадают. По условию,
(если пределы слева и справа равны, то фактически функция непрерывна, когда одно и из неравенств нестрогое). Итак, в точке
функция непрерывна.

2-й шаг. Проверяем точку
и функцию
:

Поскольку
, точка
– точка разрыва 1-го рода, и значение
(и то, есть ли оно вообще) уже не играет роли.

Ответ: функция непрерывна во всех точках, кроме точки
, где имеет место неустранимый разрыв 1-го рода – скачок от 6 к 4.

Пример 5. Найти точки разрыва функции
.

Действуем по той же схеме, что в примере 4.

1-й шаг. Проверяем точку
:

а)
, поскольку слева от
функция постоянна и равна 0;

б) (
– чётная функция).

Пределы совпадают, но при
функция по условию не определена, и получается, что
– точка устранимого разрыва.

2-й шаг. Проверяем точку
:

а)
;

б)
– значение функции не зависит от переменной.

Пределы различны: , точка
– точка неустранимого разрыва 1-го рода.

Ответ:
– точка устранимого разрыва,
– точка неустранимого разрыва 1-го рода, в остальных точках функция непрерывна.

Пример 6. Непрерывна ли функция
?

Функция
определена при
, поэтому условие
превращается в условие
.

С другой стороны, функция
определена при
, т.е. при
. Значит, условие
превращается в условие
.

Получается, что должно выполняться условие
, и область определения всей функции – отрезок
.

Сами по себе функции
и
элементарны и потому непрерывны во всех точках, в которых определены – в частности, и при
.

Остаётся проверить, что происходит в точке
:

а)
;

Поскольку
, смотрим, определена ли функция в точке
. Да, 1-е неравенство – нестрогое относительно
, и этого достаточно.

Ответ: функция определена на отрезке
и непрерывна на нём.

Более сложные случаи, когда одна из составляющих функций неэлементарна или не определена в какой-либо точке своего отрезка, выходят за рамки пособия.

НФ1. Постройте графики функций. Обратите внимание, определена ли функция в той точке, в которой переопределяется, и если да – каково значение функции (слово «если » в определении функции для краткости пропущено):

1) а)
б)
в)
г)

2) а)
б)
в)
г)

3) а)
б)
в)
г)

4) а)
б)
в)
г)

Пример 7. Пусть
. Тогда на участке
строим горизонтальную прямую
, а на участке
строим горизонтальную прямую
. При этом точка с координатами
«выколота», а точка
«закрашена». В точке
получается разрыв 1-го рода («скачок»), и
.

НФ2. Исследуйтена непрерывность функции, по-разному определённые на 3-х интервалах. Постройте графики:

1) а)
б)
в)

г)
д)
е)

2) а)
б)
в)

г)
д)
е)

3) а)
б)
в)

г)
д)
е)

Пример 8. Пусть
. На участке
строим прямую
, для чего находим
и
. Соединяем точки
и
отрезком. Сами точки не включаем, поскольку при
и
функция по условию не определена.

На участке
и
обводим осьOX (на ней
), однако точки
и
«выколоты». В точке
получаем устранимый разрыв, а в точке
– разрыв 1-го рода («скачок»).

НФ3. Постройте графики функций и убедитесь в их непрерывности:

1) а)
б)
в)

г)
д)
е)

2) а)
б)
в)

г)
д)
е)

НФ4. Убедитесь в непрерывности функций и постройте их графики:

1) а)
б)
в)

2 а)
б)
в)

3) а)
б)
в)

НФ5. Постройте графики функций. Обратите внимание на непрерывность:

1) а)
б)
в)

г)
д)
е)

2) а)
б)
в)

г)
д)
е)

3) а)
б)
в)

г)
д)
е)

4) а)
б)
в)

г)
д)
е)

5) а)
б)
в)

г)
д)
е)

НФ6. Постройте графики разрывных функций. Обратите внимание на значение функции в той точке, где функция переопределяется (и существует ли оно):

1) а)
б)
в)

г)
д)
е)

2) а)
б)
в)

г)
д)
е)

3) а)
б)
в)

г)
д)
е)

4) а)
б)
в)

г)
д)
е)

5) а)
б)
в)

г)
д)
е)

НФ7. То же задание, что и в НФ6:

1) а)
б)
в)

г)
д)
е)

2) а)
б)
в)

г)
д)
е)

3) а)
б)
в)

г)
д)
е)

4) а)
б)
в)

г)
д)
е)

Определение. Пусть на некотором промежутке определена функция f(x) и x 0 – точка этого промежутка. Если , то f(x) называется непрерывной в точке x 0 .
Из определения следует, что о непрерывности можно говорить лишь по отношению к тем точкам, в которых f(x) определена (при определении предела функции такого условия не ставилось). Для непрерывных функций , то есть операции f и lim перестановочны. Соответственно двум определениям предела функции в точке можно дать два определения непрерывности – «на языке последовательностей» и «на языке неравенств» (на языке ε-δ). Предлагается это сделать самостоятельно.
Для практического использования иногда более удобно определение непрерывности на языке приращений.
Величина Δx=x-x 0 называется приращением аргумента, а Δy=f(x)-f(x 0) – приращением функции при переходе из точки x 0 в точку x.
Определение. Пусть f(x) определена в точке x 0 . Функция f(x) называется непрерывной в точке x 0 , если бесконечно малому приращению аргумента в этой точке соответствует бесконечно малое приращение функции, то есть Δy→0 при Δx→0.

Пример 1. Доказать, что функция y=sinx непрерывна при любом значении x.
Решение. Пусть x 0 – произвольная точка. Придавая ей приращение Δx, получим точку x=x 0 +Δx. Тогда . Получаем .
Определение. Функция y=f(x) называется непрерывной в точке x 0 справа (слева), если
.
Функция, непрерывная во внутренней точке, будет одновременно непрерывной справа и слева. Справедливо и обратное утверждение: если функция непрерывна в точке слева и справа, то она будет непрерывной в этой точке. Однако функция может быть непрерывной только с одной стороны. Например, для , , f(1)=1, следовательно, эта функция непрерывна только слева (график этой функции см. выше в пункте 5.7.2).
Определение. Функция называется непрерывной на некотором промежутке, если она непрерывна в каждой точке этого промежутка.
В частности, если промежутком является отрезок , то на его концах подразумевается односторонняя непрерывность.

Свойства непрерывных функций

1. Все элементарные функции непрерывны в своей области определения.
2. Если f(x) и φ(x), заданные на некотором промежутке, непрерывны в точке x 0 этого промежутка, то в этой точке будут также непрерывны функции .
3. Если y=f(x) непрерывна в точке x 0 из X, а z=φ(y) непрерывна в соответствующей точке y 0 =f(x 0) из Y, то и сложная функция z=φ(f(x)) будет непрерывной в точке x 0 .

Разрывы функции и их классификация

Признаком непрерывности функции f(x) в точке x 0 служит равенство , которое подразумевает наличие трех условий:
1) f(x) определена в точке x 0 ;
2) ;
3) .
Если хотя бы одно из этих требований нарушено, то x 0 называют точкой разрыва функции. Другими словами, точкой разрыва называется точка, в которой эта функция не является непрерывной. Из определения точек разрыва следует, что точками разрыва функции являются:
а) точки, принадлежащие области определения функции, в которых f(x) теряет свойство непрерывности,
б) точки, не принадлежащие области определения f(x), которые являются смежными точками двух промежутков области определения функции.
Например, для функции точка x=0 есть точка разрыва, так как функция в этой точке не определена, а функция имеет разрыв в точке x=1, являющейся смежной для двух промежутков (-∞,1) и (1,∞) области определения f(x) и не существует.

Для точек разрыва принята следующая классификация.
1) Если в точке x 0 имеются конечные и , но f(x 0 +0)≠f(x 0 -0), то x 0 называется точкой разрыва первого рода , при этом называют скачком функции .

Пример 2. Рассмотрим функцию
Разрыв функции возможен только в точке x=2 (в остальных точках она непрерывна как всякий многочлен).
Найдем , . Так как односторонние пределы конечны, но не равны друг другу, то в точке x=2 функция имеет разрыв первого рода. Заметим, что , следовательно функция в этой точке непрерывна справа (рис. 2).
2) Точками разрыва второго рода называются точки, в которых хотя бы один из односторонних пределов равен ∞ или не существует.

Пример 3. Функция y=2 1/ x непрерывна для всех значений x, кроме x=0. Найдем односторонние пределы: , , следовательно x=0 – точка разрыва второго рода (рис. 3).
3) Точка x=x 0 называется точкой устранимого разрыва , если f(x 0 +0)=f(x 0 -0)≠f(x 0).
Разрыв «устраним» в том смысле, что достаточно изменить (доопределить или переопределить) значение функции в этой точке, положив , и функция станет непрерывной в точке x 0 .
Пример 4. Известно, что , причем этот предел не зависит от способа стремления x к нулю. Но функция в точке x=0 не определена. Если доопределим функцию, положив f(0)=1, то она окажется непрерывной в этой точке (в остальных точках она непрерывна как частное непрерывных функций sinx и x).
Пример 5. Исследовать на непрерывность функцию .
Решение. Функции y=x 3 и y=2x определены и непрерывны всюду, в том числе и в указанных промежутках. Исследуем точку стыка промежутков x=0:
, , . Получаем, что , откуда следует, что в точке x=0 функция непрерывна.
Определение. Функция, непрерывная на промежутке за исключением конечного числа точек разрыва первого рода или устранимого разрыва, называется кусочно-непрерывной на этом промежутке.

Примеры разрывных функций

Пример 1. Функция определена и непрерывна на (-∞,+∞) за исключением точки x=2. Определим тип разрыва. Поскольку и , то в точке x=2 разрыв второго рода (рис. 6).
Пример 2. Функция определена и непрерывна при всех x, кроме x=0, где знаменатель равен нулю. Найдем односторонние пределы в точке x=0:
Односторонние пределы конечны и различны, следовательно, x=0 – точка разрыва первого рода (рис. 7).
Пример 3. Установить, в каких точках и какого рода разрывы имеет функция
Эта функция определена на [-2,2]. Так как x 2 и 1/x непрерывны соответственно в промежутках [-2,0] и , то разрыв может быть только на стыке промежутков, то есть в точке x=0. Поскольку , то x=0 является точкой разрыва второго рода.

Пример 4. Можно ли устранить разрывы функций:
а) в точке x=2;
б) в точке x=2;
в) в точке x=1?
Решение. О примере а) сразу можно сказать, что разрыв f(x) в точке x=2 устранить невозможно, так как в этой точке бесконечные односторонние пределы (см. пример 1).
б) Функция g(x) хотя имеет конечные односторонние пределы в точке x=2

(,),


но они не совпадают, поэтому разрыв также устранить нельзя.
в) Функция φ(x) в точке разрыва x=1 имеет равные односторонние конечные пределы: . Следовательно, разрыв может быть устранен переопределением функции в точке x=1, если положить f(1)=1 вместо f(1)=2.

Пример 5. Показать, что функция Дирихле


разрывна в каждой точке числовой оси.
Решение. Пусть x 0 – любая точка из (-∞,+∞). В любой ее окрестности найдутся как рациональные, так и иррациональные точки. Значит, в любой окрестности x 0 функция будет иметь значения, равные 0 и 1. В таком случае не может существовать предела функции в точке x 0 ни слева, ни справа, значит функция Дирихле в каждой точке числовой оси имеет разрывы второго рода.

Пример 6. Найти точки разрыва функции


и определить их тип.
Решение. Точками, подозрительными на разрыв, являются точки x 1 =2, x 2 =5, x 3 =3.
В точке x 1 =2 f(x) имеет разрыв второго рода, так как
.
Точка x 2 =5 является точкой непрерывности, так как значение функции в этой точке и в ее окрестности определяется второй строкой, а не первой: .
Исследуем точку x 3 =3: , , откуда следует, что x=3 – точка разрыва первого рода.

Для самостоятельного решения.
Исследовать функции на непрерывность и определить тип точек разрыва:
1) ; Ответ: x=-1 – точка устранимого разрыва;
2) ; Ответ: Разрыв второго рода в точке x=8;
3) ; Ответ: Разрыв первого рода при x=1;
4)
Ответ: В точке x 1 =-5 устранимый разрыв, в x 2 =1 – разрыв второго рода и в точке x 3 =0 - разрыв первого рода.
5) Как следует выбрать число A, чтобы функция

была бы непрерывной в точке x=0?
Ответ: A=2.
6) Можно ли подобрать число A так, чтобы функция

была бы непрерывной в точке x=2?
Ответ: нет.