Термопара. Устройство, принцип работы, измерения термопар

Термоэлектрические преобразователи. Принцип действия, применяемые материалы.

Тепловым называется преобразователь, принцип действия которого основан на тепловых процессах и естественной входной величиной которого является температура. К таким преобразователям относятся термопары и терморезисторы, металлические и полупроводниковые. Основным уравнением теплового преобразования является уравнение теплового баланса, физический смысл которого заключается в том, что все тепло, поступающее к преобразователю, идет на повышение его теплосодержания QТС и, следовательно, если теплосодержание преобразователя остается неизменным (не меняется температура и агрегатное состояние), то количество поступающего в единицу времени тепла равно количеству отдаваемого тепла. Тепло, поступающее к преобразователю, является суммой количества тепла Qэл, создаваемого в результате выделения в нем электрической мощности, и количества тепла Qто, поступающего в преобразователь или отдаваемого им в результате теплообмена с окружающей средой.

Явление термоэлектричества было открыто в 1823 г. Зеебеком и заключается в следующем. Если составить цепь из двух различных проводников (или полупроводников) А и В, соединив их между собой концами (рис. 1.), причем температуру 1 одного места соединения сделать отличной от температуры о другого, то в цепи появится э.д.с., называемая термоэлектродвижущей силой (термо-э.д.с.) и представляющая собой разность функций температур, мест соединения проводников.

Подобная цепь называется термоэлектрическим преобразователем или иначе термопарой ; проводники, составляющие термопару, - термоэлектродами, а места их соединения - спаями.

Рис.1.

При небольшом перепаде температур между спаями термо-э.д.с. можно считать пропорциональной разности температур.

Опыт показывает, что у любой пары однородных проводников подчиняющихся закону Ома, величина термо-э.д.с. зависит только от природы проводников и от температуры спаев и не зависит от распределения температур между спаями.

Действие термопары основано на эффекте Зеебека. Эффект Зеебека основывается на следующих явлениях. Если вдоль проводника существует градиент температур, электроны на горячем конце добывают высшие энергии и скорости, чем на холодном. В итоге возникает поток электронов от горячего конца к холодному, и на холодном конце накапливается негативный заряд, а на горячем остается некомпенсированный позитивный заряд. Поскольку средняя энергия электронов зависит от природы проводника и по-разному растет с температурой, при той же разнице температур термо-ЭДС на концах разных проводников будут отличаться:

E1 = k1(T1 - T2); e2 = k2(T1 - T2)

Где Т1 и Т2 - температуры горячего и холодного концов соответственно; k1 и k2 –коэффициенты, что зависят от физических свойств соответственно 1-го и 2-го проводников. Результирующая разница потенциалов называется объемной термо-ЕРС:

Eоб = e1 - e2 = (k1 - k2)(T1 - T2).

В местах спайки разнородных проводников появляется контактная разница потенциалов, которая зависит от площади и материалов прилегающих поверхностей и пропорциональная их температуре:

Ek1 = kповT1; ek2 = kповT2

Где kпов - коэффициент поверхностей касательных металлов. В итоге появляется вторая составляющая исходного напряжения - контактная термо-ЕРС:

Ek = ek1 - ek2 = kпов(T1 - T2)

Напряжение на выходе термопары определяется как сумма объемной и контактной термо-ЭДС:

Uвих = eоб + ek = (k1 - k2 + kпов)(T1 - T2) = к(T1 - T2)

Где к - коэффициент передачи.

Недостатки термопары:

Малая чувствительность (порядку 0,1 мВ/°К);
- высокое исходное сопротивление;
- необходимость поддержки постоянной температуры одного из концов.

Явление термоэлектричества принадлежит к числу обратимых явлений, обратный эффект был открыт в 1834 г. Жаном Пельтье и назван его именем.
Если через цепь, состоящую из двух различных проводников или полупроводников, пропустить электрический ток, то тепло выделяется в одном спае и поглощается в другом. Теплота Пельтье связана с силой тока линейной зависимостью в отличие от теплоты Джоуля, и в зависимости от направления тока происходит нагревание или охлаждение спая.
Поглощаемая или выделяемая тепловая мощность пропорциональна силе тока, зависит от природы материалов, образующих спай, характеризуется коэффициентом Пельтье.

К.п.д. термоэлектрического генератора зависит от разности температур и свойств материалов и для существующих материалов очень мал (при = 300° не превышает = 13%, а при = 100° значение = 5%), поэтому термоэлектрические генераторы используются как генераторы энергии лишь в специальных условиях. К.п.д. термоэлектрического подогревателя и холодильника также очень малы, и для охлаждения к.п.д. при температурном перепаде 5° составляет 9%, а при перепаде 40° - только 0,6%; однако, несмотря на столь низкие к.п.д., термоэлементы используются в холодильных устройствах. В измерительной технике термопары получили широкое распространение для измерения температур; кроме того, полупроводниковые термоэлементы используются как обратные тепловые преобразователи, преобразующие электрический ток в тепловой поток и температуру.

Термопара с подключенным к ней милливольтметром, применяемая для измерения температуры.
Если один спай термопары, называемый рабочим, поместить в среду с температурой 1, подлежащей измерению, а температуру 2, других, нерабочих, спаев поддерживать постоянной, то f(0) = const и EAB(1) = f(1) – C= f1(1). независимо от того, каким образом произведено соединение термоэлектродов (спайкой, сваркой и т. д.). Таким образом, естественной входной величиной термопары является температура ее рабочего спая, а выходной величиной - термо-э. д. с., которую термопара развивает при строго постоянной температуре 2 нерабочего спая.

Материалы, применяемые для термопар. В табл. 1 приведены термо-э.д.с., которые развиваются различными термоэлектродами в паре с платиной при температуре рабочего спая 1 = 100°С и температуре нерабочих спаев 2 = 0° С. Зависимость термо-э.д.с. от температуры в широком диапазоне температур обычно нелинейна, поэтому данные таблицы нельзя распространить на более высокие температуры.

Таблица 1.

Материал

Термо-эдс, мВ

Материал

Термо-эдс, мВ

Алюминий

Молибден

Палладий

Вольфрам

Манганин

Константан

Молибден

При пользовании данными таблицы следует иметь в виду, что развиваемые термоэлектродами термо-э.д.с. в значительной степени зависят от малейших примесей, механической обработки (наклеп) и термической обработки (закалка, отжиг).

При конструировании термопар, естественно, стремятся сочетать термо-электроды, один из которых развивает с платиной положительную, а другой - отрицательную термо-э.д.с. При этом необходимо учитывать также пригодность того или иного термоэлектрода для применения в заданных условиях измерения (влияние на термоэлектрод среды, температуры и т. д.).
Для повышения выходной э.д.с. используется несколько термопар, образующих термобатарею. Рабочие спаи термопар расположены на черненом лепестке, поглощающем излучение, холодные концы - на массивном медном кольце, служащем теплоотводом и прикрытым экраном. Благодаря массивности и хорошей теплоотдаче кольца температуру свободных концов можно считать постоянной и равной комнатной.

Погрешности и поправки измерений термопарой.

Измерительный прибор или электронную измерительную систему подключают либо к концам термоэлектродов (рис. 2,а), либо в разрыв одного из них (рис. 2,б).

Рис.2 Подключение измерительного прибора к термопаре

Погрешность, обусловленная изменением температуры нерабочих спаев термопары. Градуировка термопар осуществляется при температуре нерабочих спаев, равной нулю. Если при практическом использовании термоэлектрического пирометра температура нерабочих спаев будет отличаться от 0° С на величину 0, то необходимо ввести соответствующую поправку в показания термометра.

Однако следует иметь в виду, что из-за нелинейной зависимости между э.д.с. термопары и температурой рабочего спая величина поправки к показаниям указателя, градуированного непосредственно в градусах, не будет равна разности температур 0 свободных концов.
Величина поправки связана с разностью температур свободных концов через коэффициент k называемый поправочным коэффициентом на температуру нерабочих концов. Величина k различна для каждого участка кривой, поэтому градировочную кривую разделяют на участки по 100° С и для каждого участка определяют значение k.

Недостатком подобных устройств является необходимость в источнике тока для питания моста и появление дополнительной погрешности, обусловленной изменением напряжения этого источника.

Погрешность, обусловленная изменением температуры линии, термопары и указателя. В термоэлектрических термометрах для измерения термо-э.д.с. применяют как обычные милливольтметры, так и низкоомные компенсаторы с ручным или автоматическим уравновешиванием на предел измерения до 100 мВ.

В тех случаях, когда термо-э.д.с. измеряется компенсатором, сопротивление цепи термо-э.д.с., как известно, роли не играет. В тех же случаях, когда термо-э.д.с. измеряется милливольтметром, может возникнуть погрешность, обусловленная изменением сопротивлений всех элементов, составляющих цепь термо-э.д.с.; поэтому необходимо стремиться к постоянному значению сопротивления проводов и самой термопары

Промышленные термопары

Основные параметры термопар промышленного типа:

Таблица 2

Обозначение термопары

Обозначение термоэлектродов

Материалы

Пределы измерения при длительном применении

Верхний предел измерений при кратковременном применении

Платинородий (10% родия) платина

От -20 до 1300

Платинородий (30% родия)

Хромель-алюмель

Хромель-копель

Для измерения температур ниже - 50° С могут найти применение специальные термопары, например медь - константан (до ~- 270° С), медь - копель (до - 200° С) и т. д. Для измерения температур выше 1300-1800° С изготавливаются термопары на основе тугоплавких металлов: иридий-ренийиридий (до 2100° С), вольфрам-рений (до 2500° С), на основе карбидов переходных металлов - титана, циркония, ниобия, талия, гафния
(теоретически до 3000-3500° С), на основе углеродистых и графитовых волокон.
Градуировочные характеристики термопар основных типов приведены в табл. 3. В этой таблице указана температура рабочего спая в градусах
Цельсия и приведены величины термо-э.д.с. соответствующих термопар в милливольтах при температуре свободных концов 0° С.

Таблица 3

Обозначение градуировки

Температура рабочего спая

12.2, 16.40, 20.65, 24.91, 33.32, 41.26, 48.87

2.31, 3.249, 4.128, 5.220, 7.325, 9.564, 11.92, 14.33, 16.71

4.913, 6.902, 9.109, 11.47, 13.92

Допускаются отклонения реальных термо-э.д.с. от значений, приведенных в табл. 3, на величины, указанные в табл. 4.

Таблица 4

Конструкция термопары промышленного типа . Это термопара с термоэлектродами из неблагородных металлов, расположенными в составной защитной трубе с подвижным фланцем для ее крепления. Рабочий спай термопары изолирован наконечником. Термоэлектроды изолированы брусами. Защитная труба состоит из рабочего и нерабочего участков. Передвижной фланец крепится к трубе винтом. Головка термопары имеет литой корпус с крышкой, закрепленной винтами; В головке укреплены фарфоровые колодки (винтами) плавающими (незакрепленными) зажимами, которые позволяют термоэлектродам удлиняться под воздействием температуры без возникновения механических напряжений, ведущих к быстрому разрушению термоэлектродов. Термоэлектроды крепятся к этим зажимам винтами, а соединительные провода - винтами. Эти провода проходят через штуцер с асбестовым уплотнением.

Для термопар из благородных металлов часто применяют неметаллические трубы (кварцевые, фарфоровые и т. д.), однако такие трубы механически непрочны и дороги. Фарфоровые трубы надлежащего состава можно использовать при температурах до 1300- 1400°С.
В качестве изоляции термоэлектродов друг от друга применяют асбест до 300° С, кварцевые трубки или бусы до 1000° С, фарфоровые трубы 1300 С. Для лабораторных термопар, используемых при измерении низких температур, применяют также теплостойкую резину до 150° С, шелк до 100-120°С, эмаль до 150-200 °С.

Методы контактных электроизмерений средних и высоких температур с помощью термопар

Средними в термометрии считаются температуры от 500 (начало свечения) до 1600 °С (белое каление), а высокими- от 1600 до 2500°С, до которых удается распространить термоэлектрический метод с использованием высокотемпературных, жаростойких материалов.
Принцип термоэлектрического метода и основные свойства термоэлектродов были рассмотрены выше в п. 1. Основным вопросом при использовании этого метода для измерения средних и высоких температур является защита термоэлектродов от разрушающего химического и термического воздействия среды. Для этого термопары снабжаются защитной арматурой в виде чехлов, трубок или колпачков из огнеупорных материалов. Главное требование к защитной оболочке - высокая плотность строения и температурная стойкость.

При измерении температур ниже 1300 °С используются фарфоровые чехлы, при более высоких температурах - колпачки из тугоплавких материалов (такие, как корунд, окиси алюминия, бериллия или тория), заполненные инертным газом.

Зависимость срока службы термопар от пористости защитной оболочки.

При измерении температуры поверхности тел особенную трудность составляет контакт рабочего спая термопары с поверхностью нагретого тела.
Для улучшения контакта используются термопары, рабочий спай которых выполнен в виде ленты или пластины. Такая конфигурация рабочего спая при деформации позволяет воспроизводить поверхность объекта измерения.

Для измерения температур до 2000-2500 °С используются вольфрамовые или иридиевые термопары. Особенностью их применения является измерение в вакууме, в инертной или восстановительной средах, так как на воздухе они окисляются. Чувствительность вольфрамомолибденовой термопары составляет 7 мкВ/К, а вольфрамо-рениевой 13 мкВ/К.
В условиях высоких температур применяются термопары из огнеупорных материалов (пары карбид титана - графит, карбид циркония - борид циркония и дисилицид молибдена - дисилицид вольфрама). В таких термопарах внутри цилиндрического электрода (диаметр около 15 мм) имеется второй электрод-стержень, соединенный с первым электродом на одном конце трубки.

Чувствительность термопар из огнеупорных материалов достигает 70 мкВ/К, однако их применение ограничено инертными и восстановительными средами.
Для измерения температуры расплавленного металла термопарами из благородных металлов используется метод, заключающийся в погружении термопары в металл на время, безопасное для ее работоспособности. При этом термопара на короткое время (0,4-0,6 с) погружается в контролируемую среду, и измеряется скорость нарастания температуры рабочего спая. Зная зависимость между скоростью нагрева термопары (ее тепловую инерционность) и температурной среды, можно рассчитать значение измеряемой температуры. Этот метод применяется для измерения расплавленного металла (2000-2500 С) и газового потока (1800 С).

Что такое ЭДС (электродвижущая сила) в физике? Электрический ток понятен далеко не каждому. Как космическая даль, только под самым носом. Вообще, он и ученым понятен не до конца. Достаточно вспомнить Николу Тесла с его знаменитыми экспериментами, на века опередившими свое время и даже в наши дни остающимися в ореоле тайны. Сегодня мы не разгадываем больших тайн, но пытаемся разобраться в том, что такое ЭДС в физике .

Определение ЭДС в физике

ЭДС – электродвижущая сила. Обозначается буквой E или маленькой греческой буквой эпсилон.

Электродвижущая сила - скалярная физическая величина, характеризующая работу сторонних сил (сил неэлектрического происхождения ), действующих в электрических цепях переменного и постоянного тока.

ЭДС , как и напряжени е, измеряется в вольтах. Однако ЭДС и напряжение – явления разные.

Напряжение (между точками А и Б) – физическая величина, равная работе эффективного электрического поля, совершаемой при переносе единичного пробного заряда из одной точки в другую.

Объясняем суть ЭДС "на пальцах"

Чтобы разобраться в том, что есть что, можно привести пример-аналогию. Представим, что у нас есть водонапорная башня, полностью заполненная водой. Сравним эту башню с батарейкой.

Вода оказывает максимальное давление на дно башни, когда башня заполнена полностью. Соответственно, чем меньше воды в башне, тем слабее давление и напор вытекающей из крана воды. Если открыть кран, вода будет постепенно вытекать сначала под сильным напором, а потом все медленнее, пока напор не ослабнет совсем. Здесь напряжение – это то давление, которое вода оказывает на дно. За уровень нулевого напряжения примем само дно башни.

То же самое и с батарейкой. Сначала мы включаем наш источник тока (батарейку) в цепь, замыкая ее. Пусть это будут часы или фонарик. Пока уровень напряжения достаточный и батарейка не разрядилась, фонарик светит ярко, затем постепенно гаснет, пока не потухнет совсем.

Но как сделать так, чтобы напор не иссякал? Иными словами, как поддерживать в башне постоянный уровень воды, а на полюсах источника тока – постоянную разность потенциалов. По примеру башни ЭДС представляется как бы насосом, который обеспечивает приток в башню новой воды.

Природа ЭДС

Причина возникновения ЭДС в разных источниках тока разная. По природе возникновения различают следующие типы:

  • Химическая ЭДС. Возникает в батарейках и аккумуляторах вследствие химических реакций.
  • Термо ЭДС. Возникает, когда находящиеся при разных температурах контакты разнородных проводников соединены.
  • ЭДС индукции. Возникает в генераторе при помещении вращающегося проводника в магнитное поле. ЭДС будет наводиться в проводнике, когда проводник пересекает силовые линии постоянного магнитного поля или когда магнитное поле изменяется по величине.
  • Фотоэлектрическая ЭДС. Возникновению этой ЭДС способствует явление внешнего или внутреннего фотоэффекта.
  • Пьезоэлектрическая ЭДС. ЭДС возникает при растяжении или сдавливании веществ.

Дорогие друзья, сегодня мы рассмотрели тему «ЭДС для чайников». Как видим, ЭДС – сила неэлектрического происхождения , которая поддерживает протекание электрического тока в цепи. Если Вы хотите узнать, как решаются задачи с ЭДС, советуем обратиться к нашим авторам – скрупулезно отобранным и проверенным специалистам, которые быстро и доходчиво разъяснят ход решения любой тематической задачи. И по традиции в конце предлагаем Вам посмотреть обучающее видео. Приятного просмотра и успехов в учебе!

Министерство образования и науки РФ

Федеральное агентство по образованию

Саратовский государственный

технический университет

Измерение электродных

потенциалов и ЭДС

Методические указания

по курсу «Теоретическая электрохимия»

для студентов специальности

направление 550800

Электронное издание локального распределения

Одобрено

редакционно-издательским

советом Саратовского

государственного

технического университета

Саратов - 2006

Все права на размножение и распространение в любой форме остаются за разработчиком.

Нелегальное копирование и использование данного продукта запрещено.

Составители:

Под редакцией

Рецензент

Научно-техническая библиотека СГТУ

Регистрационный номер 060375-Э

© Саратовский государственный

технический университет, 2006

Введение

Одним из фундаментальных понятий электрохимии являются понятия электрохимического потенциала и ЭДС электрохимической системы. Величины электродных потенциалов и ЭДС связаны с такими важными характеристиками растворов электролитов как активность (a), коэффициент активности (f), числа переноса (n+, n-). Измерив потенциал и ЭДС электрохимической системы, можно рассчитать a, f, n+, n - электролитов.

Целью методических указаний является ознакомление студентов с теоретическими представлениями о причинах возникновения скачков потенциала между электродом и раствором, с классификацией электродов, овладение теоретическими основами компенсационного метода измерения электродных потенциалов и ЭДС, применение этого метода для расчета коэффициентов активности и чисел переноса ионов в растворах электролитов.


Основные понятия

При погружении металлического электрода в раствор на границе раздела возникает двойной электрический слой и, следовательно, появляется скачок потенциала.

Возникновение скачка потенциала вызывается различными причинами. Одна из них – обмен заряженными частицами между металлом и раствором. При погружении металла в раствор электролита ионы металла, покидая кристаллическую решетку и переходя в раствор, приносят в него свои положительные заряды, в то время как поверхность металла, на которой остается избыток электронов, заряжается отрицательно.

Другой причиной возникновения потенциалов является избирательная адсорбция анионов из водного раствора соли на поверхности какого-либо инертного металла. Адсорбция приводит к появлению избыточного отрицательного заряда на поверхности металла и, далее, к появлению избыточного положительного заряда в ближайшем слое раствора.

Третья возможная причина - способность полярных незаряженных частиц ориентированно адсорбироваться вблизи границы раздела фаз. При ориентированной адсорбции один из концов диполя полярной молекулы обращен к границе раздела, а – другой, в сторону той фазы, к которой принадлежит данная молекула.

Измерить абсолютную величину скачка потенциала на границе электрод-раствор невозможно. Но можно произвести измерение ЭДС элемента, составленного из исследуемого электрода и электрода, потенциал которого условно принят за нуль. Полученная таким способом величина называется «собственным» потенциалом металла – E.

В качестве электрода, равновесный потенциал которого принят условно за нуль, служит стандартный водородный электрод.

Равновесным потенциалом называется потенциал, характеризующийся установившееся равновесие между металлом и раствором соли. Установление равновесного состояния не означает, что в электрохимической системе совсем не протекают никакие процессы. Обмен ионами между твердой и жидкой фазами продолжается, но скорости таких переходов становятся равными. Равновесие на границе металл-раствор соответствует условию

i К = i А =i О , (1)

где i К – катодный ток;

i О ток обмена.

Для измерения потенциала исследуемого электрода могут применяться и другие электроды, потенциал которых относительно водородного стандартного электрода известен, - электроды сравнения.

Основными требованиями, предъявляемые к электродам сравнения – постоянство скачка потенциала, хорошая воспроизводимость результатов. Примерами электродов сравнения являются электроды второго рода: каломельный:

Cl - / Hg 2 Cl 2 , Hg

Хлорсеребряный электрод:

Cl - / AgCl, Ag

ртутносульфатный электрод и другие. В таблице приведены потенциалы электродов сравнения (по водородной шкале).

Потенциал любого электрода – E, определяется при заданных температуре и давлении величиной стандартного потенциала и активностями веществ, участвующих в электродной реакции.


Если в электрохимической системе обратимо протекает реакция

υAA+υBB+…+.-zF→υLL+υMM

то https://pandia.ru/text/77/491/images/image003_83.gif" width="29" height="41 src=">ln а Cu2+ (5)

Электроды второго рода - это металлические электроды, покрытые малорастворимой солью этого металла и опущенные в раствор хорошо растворимой соли, имеющей общий анион с малорастворимой солью: примером может служить хлорсеребряный, каломельный электроды и др.

Потенциал электрода второго рода, например, хлорсеребряного электрода, описывается уравнением

EAg, AgCl/Cl-=E0Ag, AgCl/Cl-ln aCl - (6)

Окислительно-восстановительный электрод - это электрод, изготовленный из инертного материала и погруженный в раствор, содержащий какое-либо вещество в окисленной и восстановленной формах.

Различают простые и сложные окислительно-восстановительные электроды.

В простых окислительно-восстановительных электродах наблюдается изменение валентности заряда частицы, но химический состав остается постоянным.

Fe3++e →Fe2+

MnO-4+e→MnO42-

Если обозначить окисленные ионы через Ox, а восстановленные –через Red, то все написанное выше реакции можно выразить одним общим уравнением

Ox + e →Red

Простой редокси-электрод записывается в виде схемы Red , Ox / Pt , а его потенциал дается уравнением

E Red, Ox=E0 Red, Ox+https://pandia.ru/text/77/491/images/image005_58.gif" width="29" height="41 src=">ln (8)

Разность потенциалов двух электродов при выключенной внешней цепи называется электродвижущей силой (ЭДС) (E) электрохимической системы.

E = E + - E - (9)

Электрохимическая система, состоящая из двух одинаковых электродов, погруженных в раствор одного и того же электролита разной концентрации, называется концентрационным элементом.

ЭДС в таком элементе возникает за счет разности концентраций растворов электролита.

Методика эксперимента

Компенсационный метод измерения ЭДС и потенциала

Приборы и принадлежности: потенциометр Р-37/1, гальванометр, батарея аккумуляторов, элементы Вестона, угольный, медный, цинковый-электроды, растворы электролитов, хлорсеребряный электрод сравнения, электролитический ключ, электрохимическая ячейка.

Собрать схему установки (рис.2)

э. я. – электрохимическая ячейка;

э. и. – исследуемый электрод;

э. с. – электрод сравнения;

э. к. – электролитический ключ.

DIV_ADBLOCK84">

концентрации ионов CrO42- и H+ постоянны и равны 0,2 г-ион/л и 3-ион/л концентрация H+ меняется и составляет: 3; 2; 1; 0,5; 0,1 г-ион/л;

концентрация ионов CrO42-, Cr3+ постоянны и равны 2 г-ион/л и 0,1 г-ион/л соответственно, концентрация ионов H+ меняется и составляет: 2; 1; 0,5; 0,1; 0,05; 0,01 г-ион/л.

Задание 4

Измерение потенциала простой окислительно-восстановительной системы Mn+7, Mn2+ графит.

концентрация иона Mn2+ постоянна и равна 0,5 г-ион/л

концентрация ионов MnO2-4 меняется и составляет 1; 0,5; 0,25; 0,1; 0,01 г-ион/л;

концентрация ионов MnO-4 постоянна и равна 1 г-ион/л

концентрация ионов Mn2+ vменяется и составляет: 0,5; 0,25; 0,1; 0,05; 0,001 г-ион/л.

Обработка экспериментальных данных

1.Все полученные экспериментальные данные необходимо перевести на водородную шкалу.

3.Построить графическую зависимость потенциала от концентрации в координатах E, lgC, сделать вывод о характере влияния концентрации потенциалопределяющих ионов на величину потенциала электрода.

4.Для концентрационных элементов (задание 2) рассчитать диффузионный скачок потенциала φα по уравнению

φα = (10)

при измерении ЭДС компенсационным методом

1. Потенциометр должен быть перед работой заземлён.

2. При работе с аккумуляторами необходимо:

Использовать для проверки напряжения на клеммах переносным вольтметром;

При сборке аккумуляторов в батарею избегать замыкания корпуса и клемм во избежание получения сильного ожога.

3. После работы все приборы выключить.

Литература

1. Антропов электрохимия:

учебник / .- 2 изд. перераб. доп.-М.: Высшая школа, 1984.-519с.

2.-Ротинян электрохимия: учебник/ ,

Л.: Химия, с.

3. Дамаский / , .- М.: Высшая школа, 1987.-296с.

зируемого раствора на единицу. При производственных измерениях водородные электроды не применяют, так как они неудобны в эксплуатации.

8.1.1. Измерительная ячейка рН-метра

В связи с тем, что электродный потенциал непосредственно измерить нельзя, в потенциометрическом методе применяют гальваническую ячейку, в которой один электрод является измерительным, а другой – электродом сравнения (или вспомогательным), потенциал которого не зависит от концентрации исследуемых ионов раствора. Измерительный электрод помещается в анализируемую

жидкую среду, на нем создается скачок потенциала ЕХ , определяемый концентрацией ионов в этой среде. Потенциал сравнительного электрода должен всегда оставаться постоянным независимо от изменения состава среды.

В качестве измерительных электродов применяются стеклянные, индикаторная часть которых изготовлена из специальных сортов стекла, обладающих водородной функцией. В качестве сравнительного или вспомогательного электрода обычно используются каломельный или хлорсеребряные электроды. Они относятся к электродам так называемого второго рода, которые состоят из металла, его труднорастворимой соли и легкорастворимой соли с тем же анионом, что и у труднорастворимой соли.

Общий вид ячейки со стеклянным измерительным электродом представлен на рис. 1, где 1 – стеклянный индикаторный электрод, 2 – каломельный сравнительный электрод.

ЭДС электродного датчика рН-метра складывается из ряда потенциалов:

E яч= Е к+ Е вн+ Е х+ Е ср+ Е д,

где Е к – разность потенциалов между контактным вспомогательным электродом и раствором, заполняющим стеклянный электрод; E вн – разность потенциалов между раствором и внутренней поверхностью измерительной мембраны; Е х – разность потенциалов между наружной поверхностью стеклянной мембраны и контролируемой средой (функцией pH); Е ср – разность потенциалов на границе ртуть (Hg ) – каломель (Hg 2 Cl 2 ); Е д – диффузионный потенциал на границе контакта двух сред – KCl и контролируемой средой. Хло-

рид калия KCl выполняет роль электролитического ключа, соединяющего анализируемый раствор с электродом.

Рис. 1. Электрическая цепь измерительной ячейки рН-метра

При этом величины Е к , Е вн , Е в постоянны и от состава анализируемой среды не зависят. Диффузионный потенциал Е д очень мал и им можно пренебречь. Таким образом, общая ЭДС определяется трльео активностью ионов водорода: Е яч =Е х + Е .

Таким образом, Е яч =f(pH) , то есть Е яч является линейной функцией pH, что и используется при электрическом измерении величины pH.

Зависимость ЭДС электродной ячейки Е яч от pH определяется электродными свойствами стекла и характеризуется коэффициентом крутизны S характеристики электродной системы S= E/ pH . Изменение температуры анализируемого раствора влияет на ЭДС электродной системы, изменяя крутизну номинальной статической характеристики (НСХ) измерительного электрода. Если выразить эту зависимость графически (рис. 2), то получится пучок пересекающихся прямых. Координаты точки пересечения прямых называются координатами изопотенциальной точки (Е Н ,рН Н ) и являются важнейшими характеристиками электродной системы, которыми руководствуются при расчете схемы температурной компенсации рН-метра. Температурная компенсация изменения ЭДС электродной системы, как правило, осуществляется автоматически (с помощью ТС, включенного в схему промышленного преобразователя рН-метра).

>> R СТ.

Рис. 2. НСХ измерительного электрода

Измерительная ячейка со стеклянным электродом может быть представлена в виде эквивалентной схемы (рис. 3). Сопротивление R яч весьма велико вследствие высокого сопротивления мембраны стеклянного электрода R ст (R яч 500 МОм), Поэтому протекание незначительных токов по внутреннему сопротивлению ячейки вызовет большую погрешность измерения:

UВХ =ЕЯЧ – IЯЧ RЯЧ ; UВХ =ЕЯЧ .

Из последнего равенства видно, что основное требование измерения U ВХ =Е ЯЧ может быть выполнено, если R ВХ >> RЯЧ , т.е.

R ВХ

Рис. 3. Эквивалентная схема измерительной ячейки

8.1.2. Промышленные преобразователи рН-метров ГСП

Комплект автоматического промышленного рН-метра состоит из датчика погружного (типа ДПг-4М) или магистрального (типа ДМ-5М), измерительного высокоомного преобразователя и вторичного прибора ГСП общепромышленного назначения. Задачей измерительного прибора, входящего в комплект рН-метра, является измерение ЭДС электродной системы, которая при неизменных температурных условиях является функцией рН.

Точное измерение ЭДС измерительной ячейки рН-метра, представляющей собой маломощный источник, связано со значительными трудностями. Во – первых, через измерительную ячейку нельзя пропускать ток, плотность которого превышает 10–7 А/см2 , так как может возникнуть явление поляризации электродов, в результате чего электроды выходят из строя. Второе существенное затруднение заключается в том, что при непосредственном измерении ЭДС ячейки рН-метра с потреблением тока, например милливольтметром, создается электрическая цепь, по которой протекает ток, определяющийся суммой внутреннего сопротивления измерительного электрода (около 500…1000 МОм) и сопротивления измерительного прибора. В этом случае необходимо соблюдать ряд условий: измерительный ток должен быть меньше тока поляризации электродов; внутреннее сопротивление прибора должно быть не менее чем в 100 раз выше сопротивления стеклянного электрода, что, однако, вступает в противоречие с требованием высокой чувствительности прибора. В связи с этим преобразователи с непосредственным измерением ЭДС практически не применяются.

Единственным методом, удовлетворяющим всем требованиям измерения ЭДС ячейки рН-метра, является компенсационный (потенциометрический), или нулевой метод измерения, основным преимуществом которого является отсутствие тока в момент отсчета показаний. Однако не следует считать, что при компенсационном методе электрод не нагружается совсем, и поэтому явление поляризации электродов исключено. Здесь протекание тока (в пределах 10-12 А) объясняется тем, что в процессе измерения всегда имеется небаланс, а в момент измерения компенсация достигается только с той точностью, с какой позволяет чувствительность нульиндикатора.

В настоящее время для измерения ЭДС электродной системы со стеклянным электродом применяют только электронные нуль - индикаторы (измерительные преобразователи) со статической компенсацией. Упрощенная блок-схема, поясняющая принцип действия такого преобразователя, приведена на рис. 4. Преобразователь представляет собой усилитель постоянного тока, охваченный глубокой отрицательной связью ОС по выходному току, чем и обеспечивается большое входное сопротивление. Усилитель построен по схеме преобразования постоянного напряжения в переменное с последующей демодуляцией.

Рис. 4. Структурная схема метода измерения ЭДС ячейки рНметра

Измеряемая ЭДС Е ИЯ сравнивается с напряжением U ВЫХ , образуемым от протекания выходного тока усилителя I ВЫХ по резистору R ОС . На вход усилителя поступает разность этих напряжений U ВХ =Е ИЯ -U ВЫХ . Если коэффициент усиления к = U ВЫХ /U ВХ , то Е ИЯ = U ВЫХ / (1+1/к). При достаточно большом значении к (к 500) Е ИЯ U ВЫХ I ВЫХ R ОС , т.е. сила выходного тока практически пропорциональна входному сигналу от измерительной ячейки рН – метра.

Применение статической компенсации позволяет во много раз уменьшить силу тока, потребляемого от измерительной ячейки в процессе измерения.

Данный принцип реализован практически во всех промышленных преобразователях рН – метров: рН-201, П201, П202, П205 (полупроводниковая элементная база) и в П215 (с использованием стандартных микросхем).

8.1.3. Описание преобразователя П – 201

Промышленные преобразователи типа П201 предназначены для измерения активности ионов водорода (величины рН) растворов и пульп в системах автоматического контроля и регулирования технологических процессов.

Преобразователи рассчитаны для работы в комплекте с любыми серийно выпускаемыми чувствительными элементами рН, как например, ДПг-4М; ДМ-5М и др.

Преобразователь имеет выходы по напряжению и току для подключения вторичных приборов с соответствующими входными

сигналами.

Основные технические характеристики:

пределы измерения

от –1 до 14 рН

предел допускаемой основной приведенной

погрешности:

а) по выходным сигналам постоянного тока и

напряжению постоянного тока

б) по показывающему прибору

сопротивление измерительного стеклянного

электрода

сопротивление вспомогательного электрода

время установления показаний

не более 10 с

выходной ток

выходное напряжение

от 0 до 10 100мВ

Преобразователь предназначен для монтажа в непосредственной близости от промышленных агрегатов. Преобразователь может состоять из показывающего узкопрофильного прибора и собственно преобразователя, устанавливаемых на одной общей панели или раздельно, или только одного преобразователя. Внешний вид прибора показан на рис. 5.

Кожух 1 выполнен из листовой стали, крышка 2 литая, из алюминиевого сплава. На лицевой стороне крышки имеются надпись с индексом прибора, колпачок 3 и резьбовая заглушка 4.

Рис. 5. Внешний вид преобразователя П201

Внутри кожуха устанавливается каркас, служащий основанием для установки всех блоков и элементов прибора. На переднюю панель преобразователя, расположенную под крышкой, выведены оси переменных резисторов, предназначенных для изменения пределов измерения преобразователей. Колодка с зажимами для внешних электрических соединений расположена в закрытом отсеке, доступ к ней предусмотрен со стороны задней стенки корпуса. Провода вводятся в отсек через четыре сальника в нижней стенке прибора (рис. 6).

Рис. 6. Схема внешних электрических соединений преобразователя П-201: ТРМ – измеритель-регулятор универсальный; ТКР – блок резисторов температурной компенсации

8.1.4. Поверка и градуировка автоматического рН-метра

Текущая поверка автоматического рН-метра заключается в сравнении его показаний с показаниями контрольного прибора. При значительном расхождении показания поверяемого прибора корректируются с помощью компенсатора или путем изменения градуировки преобразователя с помощью ручек настройки. Кроме

того, необходимо периодически проводить более детальную проверку датчика и преобразователя.

Проверка датчика включает в себя следующие операции:

1) тщательный наружный осмотр, в особенности тех его частей, которые соприкасаются с измеряемой средой;

2) проверка электрических цепей, в особенности сопротивления изоляции цепей стеклянного и сравнительного электродов от-

носительно корпуса, которое должно быть не менее 1012 Ом и 2108 Ом соответственно;

3) проверка характеристики электродной системы по буферным растворам с известной величиной рН с помощью контрольного лабораторного рН-метра.

Поверка преобразователя включает в себя:

1) определение основной погрешности измерений преобразователя и корректировку его градуировки;

2) определение дополнительных погрешностей измерений преобразователя от изменения сопротивления стеклянного электрода R СТ , изменения сопротивления сравнительного электрода RСР

и изменение потенциала контролируемого раствора Е Х .

Для градуировки шкалы рН-метров необходимо иметь имитатор электродной системы И-01 или И-02.

Имитатор электродной системы позволяет проверять работоспособность датчика рН – метров; влияние изменения сопротивления электродов и напряжения между раствором и корпусом агрегата на показания прибора; помехозащищенность рН-метров.

С помощью имитатора можно воспроизвести следующие параметры электродной системы:

а) напряжение, эквивалентное ЭДС электродной системы, в пределах от 0 до 1000 мВ;

б) сопротивление, эквивалентное сопротивлению стеклянного электрода: 0; 500 и 1000 МОм;

в) сопротивление, эквивалентное сопротивлению вспомогательного электрода: 10 и 20 кОм;

г) напряжение, эквивалентное ЭДС “земля – раствор”: 0 и

Имитатор является электрическим эквивалентом электродной системы (рис. 7) и конструктивно оформлен в виде переносного устройства, размещенного в стальном корпусе со съемной крышкой.

E З Rв

Рис. 7. Эквивалентная схема имитатора электродной системы: R И – сопротивление измерительного стеклянного электрода; R В – сопротивление вспомогательного электрода; E – суммарная ЭДС электродной системы: E З – ЭДС “земля - раствор”.

На лицевой панели имитатора имеются клеммы для подключения его к поверяемому рН-метру с помощью кабеля, который имеется в комплекте. Там же размещены ручки установки требуемой величины выходного напряжения, сопротивления электродов, потенциала контролируемого раствора и т.д.

8.2. ОБОРУДОВАНИЕ И ПРИБОРЫ

1. Промышленный преобразователь П-201.

2. Имитатор электродной системы И-02.

3. Измеритель-регулятор универсальный многоканальный ТРМ 138.

8.3. ПОСЛЕДОВАТЕЛЬНОСТЬ ВЫПОЛНЕНИЯ РАБОТЫ

1. Собрать установку для поверки преобразователя П-201 с помощью имитатора И-02 в соответствии со схемой рис. 8, соединив выход имитатора со входом “Изм” и “Всп” преобразователя посредством коаксиального кабеля.

2. Подготовить к работе имитатор. Для этого нажать на переключателях имитатора: “R И ” – кнопку 500; “EЗР ”,”RВ ” – кнопки

“00” для EЗР и ”010” для RВ ; “ПИТАНИЕ” – кнопка “EВНУТР ” и “Вкл”.

3. Подать напряжение питания на стенд.

Рис. 8. Схема поверки: 1 – имитатор электродной системы И-02; 2 – электродная система; 3 – высокоомный преобразователь П-201; 4 – измеритель-регулятор многоканальный ТРМ 138

4. Стрелками ^ v на ТРМ 138 выбрать канал № 5, по которому осуществляется отсчет ЭДС.

5. Произвести поверку преобразователя.

Для этого:

5.1. Набрать на кнопках переключателя “E, mV” имитатора значение ЭДС, соответствующее величине рН оцифрованной отметки шкалы. Переключатель “EX , mV” устанавливается в положении “+” или “-“ в зависимости от знака ЭДС в градуировочной таблице.

5.2. Произвести отсчет показаний по имитатору И-02. Определить основную погрешность измерений при RВ =10

кОм; EЗ =0. Основная погрешность проверяется на всех оцифрованных отметках шкалы при прямом и обратном ходе и рассчитывается по формуле = [(E –E 0 )/(E K –E Н )]100%, где E 0 – табличное (действительное значение ЭДС электродной системы, соответствующее данной оцифрованной отметке шкалы, мВ; E – фактическое значение ЭДС, мВ; Е К , Е Н – значения ЭДС, соответствующие конечной и начальной отметкам шкалы.

6. Результаты поверки представить в отчете.

Приборы для измерений температуры жидких металлов и ЭДС датчиков активности кислорода iM Sensor Lab предназначены для измерений термо-ЭДС, поступающих от первичных преобразователей термоэлектрических, измеряющих температуру жидких металлов (чугуна, стали, меди и других) и ЭДС, генерируемой датчиками активности кислорода.

Описание

Принцип действия

Подаваемые на «измерительный» вход прибора для измерений температуры жидких металлов и ЭДС датчиков активности кислорода iM2 Sensor Lab сигналы термо-ЭДС от первичного преобразователя термоэлектрического (термопары) и ЭДС от датчиков активности кислорода (мВ) преобразуются в цифровую форму и по соответствующей программе пересчитываются в значения температуры и активности кислорода. Эти сигналы воспринимаются тактами частотой до 250 c-1. Прибор имеет 4 входа: Ch0 и Ch2 - для измерений сигналов от термопар, и Ch1, Ch3 - для измерений сигналов ЭДС от датчиков активности кислорода.

В процессе измерений температуры, производится анализ изменения поступающего входного сигнала с целью определения его выхода на стабильные показания (характеризуется параметрами так называемой "температурной площадки", определяемой длиной (временем) и высотой (изменением температуры). Если за время, заданное длиной площадки, фактическое изменение температуры не превышает её заданной высоты (т.е. допускаемого изменения температуры), то площадка считается выделенной. Далее прибор для измерений температуры жидких металлов и ЭДС датчиков активности кислорода iM Sensor Lab усредняет тактовые значения температуры, измеренные на длине выделенной площадки, и выводит среднее значение как результат измерений на экран.

Аналогичным образом выделяются площадки, соответствующие выходу ЭДС на стабильные показания, размеры которых также задаются длиной (временем) и высотой (допускаемым изменением величины ЭДС).

Помимо измерений температуры ванны, прибор позволяет определять температуру ликвидус жидкой стали, которая может быть пересчитана по эмпирическому уравнению в содержание углерода. По результатам измерений ЭДС, генерируемой датчиками активности кислорода, расчётным путём определяется активность кислорода в жидкой стали, чугуне и меди, содержание углерода в стали, содержание серы и кремния в чугуне, активность FeO (FeO+MnO) в жидких металлургических шлаках и некоторые другие параметры, связанные с термическим состоянием и химическим составом жидких металлов. Прибор также имеет возможность определять уровень ванны (положение границы шлак металл) путём анализа скорости изменений температуры при погружении термопары в ванну и определения толщины слоя шлака специальными зондами.

Приборы для измерений температуры жидких металлов и ЭДС датчиков активности кислорода iM2 Sensor Lab имеют две модификации, которые отличаются наличием или отсутствием сенсорного ЖK экрана (рисунок 1). При отсутствии экрана, управление прибором производится с внешнего компьютера или с промышленного планшета. В этом случае поставляется специальное программное обеспечения для осуществления связи между ними.

Сенсорный экран находится на передней панели корпуса прибора и на нём в цифровой и графической формах отображаются ход измерений, его результаты и другая информация, касающаяся измерений. На экран также выводится меню в виде текстовых закладок, с помощью которого производится управление прибором, его диагностика и просмотр данных о выполнен-

Лист № 2 Всего листов 4

ных ранее измерениях. В модификации «без экрана» вся вышеперечисленная информация отображается на экране компьютера или промышленного планшета.

Электронные платы прибора для измерений температуры жидких металлов и ЭДС датчиков активности кислорода iM2 Sensor Lab устанавливаются в пылезащищённом стальном корпусе, выполненному по стандарту 19” для установки на монтажной стойке или крепления в щите.

Сигналы с первичных преобразователей могут передаваться на прибор двумя способами - по кабелю и по радио. В последнем случае прибор соединяется с принимающем блоком (Reciver Box) по последовательному интерфейсу, а на рукоятке погружных жезлов устанавливается передающее устройство (QUBE), которое преобразует сигналы, поступающие с датчиков, в радиосигналы, передающиеся на принимающий блок. Последний принимает их и передаёт в прибор для обработки.

Пломбирование прибора не предусмотрено.

Программное обеспечение

Инсталляция программного обеспечения (ПО) осуществляется на предприятии изготовителе. Доступ к метрологически значимой части ПО невозможен.

Конструкция СИ исключает возможность несанкционированного влияния на ПО средства измерений и измерительную информацию.

Уровень защиты встроенного ПО от непреднамеренных и преднамеренных изменений

Высокий по Р 50.2.077-2014.

Технические характеристики

Метрологические и технические характеристики приборов для измерений температуры жидких металлов и ЭДС датчиков активности кислорода iM2 Sensor Lab приведены в таблице 1. Таблица 1

* - без учета погрешности первичного преобразователя, удлиняющего кабеля и датчика ЭДС.

Знак утверждения типа

Знак утверждения типа наносится типографским способом на титульный лист эксплуатационной документации типографским способом и на лицевую панель прибора методом офсетной печати.

Комплектность

Комплектность средства измерения приведена в таблице 2. Таблица 2

Поверка

осуществляется по МП РТ 2173-2014 «Приборы для измерений температуры жидких металлов и ЭДС датчиков активности кислорода iM2 Sensor Lab. Методика поверки», утверждённой ГЦИ СИ ФБУ «Ростест-Москва» 26.10.2014г.

Основные средства поверки приведены в таблице 3. Таблица 3

Сведения о методах измерений

Сведения о методах измерений содержатся в руководстве по эксплуатации.

Нормативные и технические документы, устанавливающие требования к приборам для измерений температуры жидких металлов и ЭДС датчиков активности кислорода iM2 Sensor Lab

1 Техническая документация изготовителя Heraeus Electro-Nite GmbH & Co. KG.

2 ГОСТ Р 52931-2008 «Приборы контроля и регулирования технологических процессов. Общие технические условия».

3 ГОСТ Р 8.585-2001 «ГСП. Термопары. Номинальные статические характеристики преобразования».

4 ГОСТ 8.558-2009 «ГСП. Государственная поверочная схема для средств измерений температуры».

при выполнении работ по оценке соответствия продукции и иных объектов обязательным требованиям в соответствии с законодательством Российской Федерации о техническом регулировании.