Современная торпеда: что есть и что будет. Торпеды наших дней Как работает торпеда подводной лодки

Тактико-технические характеристики

Тип 53-56
Тип: самонаводящаяся или телеуправляемая корабельная / лодочная торпеда.
Размеры: диаметр 533 мм (21 дюйм); длина 7,7 м (25 футов 1/4 дюйма).
Общая масса: 2000 кг (4409 фунтов); масса боевой части 400 кг (882 фунта).
Дополнительные данные: дальность / скорость хода 8000 м (8750 ярдов) при 50 уз. и 13 000 м (14 215) при 40 уз.

Тип 65-73
Тип: самонаводящаяся лодочная противокорабельная торпеда
Размеры: диаметр 650 мм (26,6 дюйма); длина 11 м (36 футов 1 дюйм).
Общая масса: более 4000 кг (8818 фунтов); боевая часть с ядерным зарядом.
Дополнительные данные: дальность / скорость хода 50 км (31 миля) при 50 уз.


Советские торпеды, как и западные, можно разделить на две категории - тяжелые и легкие, в зависимости от предназначения. Во-первых, известны два калибра - стандартный 533 мм (21 дюйм) и более поздний - 650 мм (25,6 дюйма). Полагают, что торпедное оружие калибра 533 мм развивалось на основе немецких конструктивных решений периода Второй мировой войны и включало прямоидущие и маневрирующие торпеды с парогазовой или электрической энергосиловой установкой, предназначенные для поражения надводных целей, а также торпеды с акустическим пассивным самонаведением в противолодочном и противокорабельном вариантах. Удивительно, но большая часть современных больших надводных боевых кораблей была оснащена многотрубными торпедными аппаратами для противолодочных торпед с акустическим наведением.

Также была разработана специальная 533-мм торпеда с 15-килотонным ядерным зарядом, не имевшая системы наведения на конечном участке траектории, состоявшая на вооружении многих подводных лодок и предназначенная для поражения важных надводных целей, таких, как авианосцы и супертанкеры. На борту подводных лодок поздних поколений также находились огромные 9,14-метровые (30-футовые) противокорабельные торпеды типа 65 калибр 650 мм. Полагают, что их наведение осуществлялось по кильватерному следу цели, была предусмотрена возможность выбора скорости 50 или 30 уз, а дальность хода составляла соответственно 50 и 100 км (31 или 62 мили). С такой дальностью хода торпеды типа 65 дополняли возможности внезапного применения противокорабельных крылатых ракет, стоявших на вооружении ракетных подводных лодок типа «Чарли» и впервые позволили советским АПЛ осуществлять стрельбу торпедами из районов вне зоны действия противолодочного охранения конвоя.


Противолодочные силы, включая авиацию, надводные корабли и подводные лодки, долгие годы использовали легкую электрическую торпеду калибра 400 мм (15,75 дюйма) с меньшей дальностью хода. Она позднее была дополнена, а затем и вытеснена применявшейся противолодочными самолетами и вертолетами торпедой большего калибра 450 мм (17,7 дюйма), которая, как полагали, имела больший заряд, увеличенную дальность хода и усовершенствованный блок наведения, что в совокупности делало ее более смертоносным средством поражения.
Оба применявшихся с воздушных носителей типа торпед оснащались парашютами для уменьшения скорости вхождения в воду. Согласно ряду сообщений, также была разработана короткая 400-мм торпеда для кормовых торпедных аппаратов первого поколения атомных подводных лодок типов «Хотел», «Эхо» и «Новембер». На последующих поколениях атомных подводных лодок, видимо, ряд стандартных торпедных аппаратов калибра 533 мм был оснащен внутренними втулками для их применения.

Типичным взрывным механизмом, применявшимся на советских торпедах, был магнитный дистанционный взрыватель, обеспечивавший детонацию заряда под корпусом цели с тем, чтобы разрушить киль, дополненный вторым контактным взрывателем, приводившимся в действие при прямом попадании.

Небезынтересная статья Максима Климова "Об облике современных торпед подводных лодок" была опубликована в журнале "Арсенал Отечества" № 1 (15) за 2015 год. С разрешения автора и редакции журнала ее текст предлагается читателям блога.

Китайская 533-мм торпеда Yu-6 (211ТТ1 разработки российского ЦНИИ «Гидроприбор»), оснащенная российской шланговой лодочной катушкой телеуправления (с) Максим Климов

Реальные ТТХ зарубежных торпед (преднамеренно занижаемых некоторыми отечественными «специалистами») и их «комплексная характеристика»

Массо-габаритные и транспортные характеристики современных зарубежных торпед калибра 53 см в сравнении с нашими экспортными торпедами УГСТ и ТЭ2:


При сравнении отечественных и зарубежных торпед очевидно, что если для УГСТ имеется некоторое отставание от западных образцов по ТТХ, то для это ТЭ2 отставание по ТТХ очень велико.

Учитывая закрытость информации по современных системам самонаведения (ССН), управления (СУ) и телеуправления (СТУ) целесообразно для их оценки и сравнения обозначить основные поколения развития послевоенного торпедного оружия:

1 — прямоидущие торпеды.

2 — торпеды с пассивными ССН (50-е годы).

3 — внедрение активных высокочастотных ССН (60-е годы).

4 — низкочастотные активно-пассивные ССН с допплеровской фильтрацией.

5 — внедрение вторичной цифровой обработки (классификаторов) с массовым переходом (тяжелых торпед) на шланговое телеуправление.

6 — цифровые ССН с увеличенным частотным диапазоном.

7 — сверхширокополосные ССН с оптоволоконным шланговым телеуправлением.

Торпеды, стоящие на вооружении ВМС стран Латинской Америки

В связи с закрытостью ТТХ новых западных торпед представляет интерес их оценка.

Торпеда Mk48

Известны транспортные характеристики первой модификации Mk48 — mod.1 (см. табл. 1).

Начиная с модификации mod.4, была увеличена длина топливного резервуара (430 кг топлива ОТТО II вместо 312), что уже дает увеличение дальности хода на скорости 55 уз свыше 25 км.

Кроме того, первая конструкция водомета была разработана американскими специалистами еще в конце 60х годов (Mk48 mod.1), КПД водомета разрабатывавшейся чуть позднее нашей торпеды УМГТ-1 составлял 0,68. В конце 80х годов после длительной отработки водомета новой торпеды «Физик-1» его КПД был увеличен до 0,8. Очевидно, что американские специалисты проводили аналогичные работы, с повышением КПД водомета торпеды Mk48.

С учетом этого фактора и увеличения длины топливного резервуара, заявления разработчиков о достижении дальности 35 км на скорости 55 уз для модификаций торпеды с mod.4 представляются обоснованными (и многократно подтвержденными по линии экспортных поставок).

Заявления некоторых наших специалистов о «соответствии» транспортных характеристик новейших модификаций Mk48 ранним (mod.1) направлены на маскировку отставания по транспортным характеристикам торпеды УГСТ (что обусловлено нашими жесткими и необоснованными требованиями по безопасности, заставивших ввести камортный топливный резервуар ограниченного объема).

Отдельный вопрос — максимальная скорость последних модификаций Mk48.

Логично предположить увеличение достигнутой с начала 70-х годов скорости 55 уз до «не менее 60», хотя бы за счет увеличения КПД водомета новых модификаций торпеды.

При анализе транспортных характеристик электрических торпед необходимо согласиться с выводом известного специалиста ЦНИИ «Гидроприбор» А.С. Котова «электрические торпеды превзошли по транспортным характеристикам тепловые» (для электрических с батареями AlAgO и тепловых на топливе ОТТО II). Выполненная им расчётная провека данных по торпеде DM2A4 с AlAgO батареей (50 км на 50 уз) оказалась близкой к заявленной разработчиком (52 уз на 48 км).

Отдельный вопрос — тип используемых в DM2A4 батарей. «Официально» в DM2A4 установлены батареи AgZn, в связи с чем некоторые наши специалисты принимают расчетные характеристики этих батарей как аналогов отечественных. Однако представителями фирмы-разработчика заявлялось, что производство батарей для торпеды DM2A4 в Германии невозможно по экологическим соображениям (завод в Греции), что явно говорит о существенно иной конструкции (и характеристиках) батарей DM2A4 в сравнении с отечественными батареями AgZn (не имеющими особых производственных ограничений по экологии).

Несмотря на то что батареи AlAgO имеют рекордные показатели по энергетике, сегодня в зарубежном торпедизме появилась устойчивая тенденция применения значительно менее энергоемких, но обеспечивающих возможность массовых торпедных стрельб универсальных литий-полимерных батарей (торпеды Black Shark (калибра 53 см) и Black Arrow (32 см) фирмы WASS), — даже ценой существенного снижения ТТХ (снижение дальности на максимальной скорости примерно вдвое от DM2A4 для Black Shark).

Массовые торпедные стрельбы — это аксиома современного западного торпедизма.

Причина этого требования — сложные и изменчивые условия среды, в которой применяются торпеды. «Унитарный прорыв» ВМС США, — принятие на вооружение в конце 60-х — начале 70-х годов торпед Mk46 и Mk48 с резко улучшенными ТТХ, был связан именно с необходимостью много стрелять для отработки и освоения новых сложных систем самонаведения, управления и телеуправления. По своим характеристикам унитарное топливо ОТТО-2 было откровенно средним и уступало по энергетике уже успешно освоенной в ВМС США паре перекись-керосин бо- лее чем на 30%. Но это топливо позволило значительно упростить устройство торпед, а главное — резко, более чем на порядок снизить стоимость выстрела.

Это обеспечило массовость стрельб, успешную доводку и освоение в ВМС США новых торпед с высокими ТТХ.

Приняв на вооружение в 2006-м торпеду Mk48 mod.7 (примерно в одно время с государственными испытаниями «Физик-1»), ВМС США за 2011-2012 годы успели произвести более 300 выстрелов торпедами Mk48 mod.7 Spiral 4 (4-я модификация программного обеспечения 7-й модели торпеды). Это не считая многих сотен выстрелов (за это же время) предшествующих «модов» Mk48 из модификаций последней мо- дели (mod.7 Spiral 1-3).

ВМС Великобритании в период испытаний торпеды StingRay mod.1 (серия с 2005 г.) провели 3 серии стрельб:

Первая — май 2002 г. на полигоне AUTEC (Багамские острова) 10 торпед по ПЛА типа «Трафальгар» (с уклонением и применением СГПД), было получено 8 наведений.

Вторая — сентябрь 2002 г. по ПЛ на средних и малых глубинах и лежащей на грунте (последнее — неудачно).

Третья — ноябрь 2003 г., после доработки программного обеспечения на полигоне BUTEC (Шетландские о-ва) по ПЛА типа «Свифтшур», получено 5 из 6 наведений.

Всего за период испытаний было проведено 150 стрельб торпедой StingRay mod.1.

Однако здесь необходимо учитывать то, что при разработке предшествовавшей торпеды StingRay (mod.0) было проведено около 500 испытаний. Уменьшить это количество стрельб для mod.1 позволила система сбора и регистрации данных всех стрельб, и реализации на ее базе «сухого полигона» для предварительной отработки новых решений ССН на базе этой статистики.

Отдельный и очень важный вопрос — испытания торпедного оружия в Арктике.

ВМС США и Великобритании проводят их на регулярной основе в ходе периодических учений ICEX с выполнением массовых стрельб торпедами.

Например, в ходе ICEX-2003, ПЛА Коннектикут» в течение 2-х недель выпустила, а персонал станции ICEX-2003 извлек из-подо льда 18 торпед АДСАР.

В ряде испытаний ПЛА «Коннектикут» атаковала торпедами имитатор цели, предоставленный Центром подводной войны ВМС США (NUWC), но в большинстве случаев, ПЛА, пользуясь способностью дистанционного управления оружием, (телеуправлением) использовал себя в качестве цели для собственных торпед.



Страница учебника «Торпедиста 2 класса ВМС США» с описанием оборудования и технологии переприготовления торпеды Mk 48

В ВМС США огромный (в сравнении с нами) объем торпедных стрельб обеспечивается не за счет финансовых затрат (как заявляется некоторыми «специалистами»), а именно благодаря малой стоимости выстрела.

Из-за высокой стоимости эксплуатации торпеда Mk50 из боекомплекта ВМС США была выведена. Цифры стоимости выстрела торпедой Mk48 в открытых зарубежных СМИ отсутствуют, но очевидно что они гораздо ближе к $12 тыс. — Mk46, чем к $53 тыс. — Mk50, по данным 1995 г.

Принципиальным вопросом для нас сегодня являются сроки разработки торпедного оружия. Как показывает анализ западных данных, он не может быть менее 6 лет (реально — больше):

Великобритания:

. модернизация торпеды Sting Ray (mod.1), 2005 г. разработка и испытания заняли 7 лет;

. модернизация торпеды Spearfish (mod.1) осуществляется с 2010 г. на вооружение планируется в 2017 г.

Сроки и этапы разработки торпед в ВМС США приведены на схеме.


Таким образом, заявления некоторых наших специалистов о «возможности разработки» новой торпеды за «3 года» не имеют под собой никаких серьезных оснований и являются сознательным обманом командования ВМФ и ВС РФ и руководства страны.

Исключительно важным в западном торпедостроении является вопрос малошумности торпед и выстрела.

Сравнение внешних шумов (со стороны кормы) торпеды Мк48 mod.1 (1971 г.) с уровнем шума атомных подводных лодок (вероятно типов «Пермит», «Стерджен» конца 60х годов) на частоте 1,7 кГц:

При этом необходимо учитывать, что шумность новых модификаций торпеды Mk48 на малошумном режиме движения должна быть значительно меньше NT-37C и быть гораздо ближе к DM2A3.

Главным же выводом из этого является возможность выполнения скрытных торпедных атак современными зарубежными торпедами с больших дальностей (свыше 20-30 км).

Стрельба на большие дальности невозможна без эффективного телеуправления (ТУ).

В зарубежном торпедостроении задача создания эффективного и надежного телеуправления была решена в конце 60-х годов с созданием шланговой лодочной катушки ТУ, обеспечившей высокую надежность, значительное снижение ограничений по маневрированию ПЛ с ТУ, многоторпедные залпы с ТУ.


Шланговая катушка телеуправления германской 533-мм торпеды DM2A1 (1971 г.)

Современные западные шланговые системы телеуправления имеют высокую надежность и практически не налагают ограничений на маневрирование ПЛ. Для исключения попадания провода телеуправления в винты на многих зарубежных ДЭПЛ на кормовых рулях натянуты защитные троса. С высокой вероятность можно предположить возможность телеуправления вплоть до полных ходов ДЭПЛ.


Защитные троса на кормовых рулях итальянской неатомной подводной лодки Salvatore Todaro германского проекта 212А

Шланговая катушка телеуправления не только не является «секретом» для нас, но в начале 2000-х ЦНИИ «Гидпроприбор» разработал и сдал ВМС Китая для изделия 211ТТ1 шланговую ЛКТУ.

Еще полвека назад на западе было осознанно что оптимизация параметров составных частей торпедного комплекса должны осуществляться не по отдельности (составных частей), а с учетом обеспечения максимальной эффективности именно как комплекса.

Для этого на западе (в отличие от ВМФ СССР):

. начались работы по резкому снижению шумности торпед (в т.ч. на низких частотах — рабочих для ГАС ПЛ);

. применены высокоточные приборы управления, обеспечившие резкое повышение точности движения торпед;

. требования к ТТХ ГАК ПЛ были уточнены с для эффективного применения телеуправляемых торпед на большие дистанции;

. автоматизированная система боевого управления (АСБУ) была глубоко интегрирована с ГАК или стала его частью (для обеспечения обработки не только «геометрической» информации стрельбовых задач, но и помехо-сигнальной)

Не смотря на то что все это внедрялось в ВМС зарубежных стран с начала 70-х годов прошлого века, нами это не осознано до сих пор!

Если на западе торпеда — это высокоточный комплекс для скрытного поражения целей с большой дистанции, то у нас до сих пор «торпеды — оружие ближнего боя».

Эффективные дистанции стрельбы западными торпедами составляют примерно 2/3 длины провода телеуправления. С учетом 50-60 км на торпедных катушках, обычных для современных западных торпед, эффективные дистанции получаются до 30-40 км.

При этом эффективность отечественных торпед даже с телеуправлением на дистанциях более 10 км резко снижается из-за низких ТТХ телеуправления и малой точности устаревших приборов управления.

Некоторые специалисты утверждают, что дистанции обнаружения ПЛ якобы малы и поэтому «большие эффективные дистанции не нужны». С этим нельзя согласиться. Даже при столкновении на «кинжальной дистанции», в процессе маневрирования в ходе боя весьма вероятно увеличение дистанции между ПЛ (а ПЛА ВМС США специально отрабатывали «разрыв дистанции» с уходом за эффективные залповые дистанции наших торпед).

Разница в эффективности зарубежного и отечественного подхода — «снайперская винтовка» против «пистолета», а с учетом того что дистанцию и условия боя определяем не мы — результат этого «сравнения» в бою очевиден — в большинстве случаев нас ждет расстрел (в т.ч. при наличии в боекомплекте наших ПЛ «перспективных» (но с устаревшей идеологией) торпед).

Кроме того, необходимо также развеять заблуждение некоторых специалистов о том что «торпеды не нужны против надводных целей, т.к. есть ракеты». С момента выхода из воды первой ракеты (ПКР) ПЛ не просто теряет скрытность, а становится объектом атаки авиационных противолодочных средств противника. С учетом их высокой эффективности, залп ПКР ставит ПЛ на грань уничтожения. В этих условиях возможность выполнения скрытной торпедной атаки надводных кораблей с больших дистанций становится одним из требований к современным и перспективным ПЛ.

Очевидно, что необходимы серьезные работы по устранению имеющихся проблем отечественных торпед, в первую очередь НИР по тематике:

. современных помехоустойчивых сверхширокополосных ССН (при этом крайне важна совместная отработка ССН и новых средств противодействия);

. высокоточных приборов управления;

. новых батарей торпед — как мощных одноразовых, так и многоразовых литий-полимерных (для обеспечения большой статистики стрельб);

. оптоволоконного высокоскоростного телеуправления, обеспечивающего многоторпедные залпы на дистанции в несколько десятков км;

. скрытности торпед;

. интеграции «борта» торпед и ГАК ПЛ для комплексной обработки помехо-сигнальной информации;

. разработки и проверки стрельбами новых способов применения телеуправляемых торпед;

. проведение испытаний торпед в условиях Арктики.

Все это безусловно требует большой статистки стрельбы (сотни и тысячи выстрелов), и на фоне нашей традиционной «экономии» это кажется на первый взгляд нереальным.

Однако требование наличия в составе ВМФ РФ подводных сил означает и требование современного и эффективного их торпедного оружия, а значит всю эту большую работу необходимо делать.

Необходимо устранение имеющегося отставания от развитых стран в торпедном оружии, с переходом на общепринятую в мире идеологию торпедного оружия ПЛ как высокоточного комплекса, обеспечивающего поражение скрытное целей с больших дистанций.

Максим Климов

АРСЕНАЛ ОТЕЧЕСТВА | №1 (15) / 2015

Министерство образования РФ

ТОРПЕДНОЕ ОРУЖИЕ

Методические указания

для самостоятельной работы

по дисциплине

«БОЕВЫЕ СРЕДСТВА ФЛОТА И ИХ БОЕВОЕ ПРИМЕНЕНИЕ»

Торпедное оружие: методические указания для самостоятельной работы по дисциплине «Боевые средства флота и их боевое применение» / Сост.: , ; СПб.: Изд-во СПбГЭТУ “ЛЭТИ”, 20с.

Предназначены для студентов всех профилей подготовки.

Утверждено

редакционно-издательским советом университета

в качестве методических указаний

Из истории развития и боевого применения

торпедного оружия

Появление в начале XIX в. бронированных кораблей с тепловыми двигателями обострило необходимость создания оружия, поражающего наиболее уязвимую подводную часть корабля. Таким оружием стала появившаяся в 40-х годах морская мина. Однако она обладала существенным недостатком: была позиционной (пассивной).

Первая в мире самодвижущаяся мина была создана в 1865 г. русским изобретателем.

В 1866 г. проект самодвижущегося подводного снаряда разработал работавший в Австрии англичанин Р. Уайтхед. Он же и предложил назвать снаряд по имени морского ската – «торпедо». Не сумев наладить собственное производство, российское Морское ведомство в 70-х годах закупило партию торпед Уайтхеда. Они проходили дистанцию 800 м со скоростью 17 узлов и несли заряд пироксилина массой 36 кг.

Первая в мире успешная торпедная атака была произведена командиром русского военного парохода лейтенантом (впоследствии – вице-адмиралом) 26 января 1878 г. Ночью, при сильном снегопаде на Батумском рейде, два спущенных с парохода катера подошли на 50 м к турецкому кораблю и одновременно выпустили по торпеде. Корабль быстро затонул почти со всей командой.

Принципиально новое торпедное оружие изменило взгляды на характер вооружённой борьбы на море – от генеральных сражений флоты переходили к ведению систематических боевых действий.

Торпеды 70-80-х годов XIX в. имели существенный недостаток: не имея приборов управления в горизонтальной плоскости, они сильно отклонялись от заданного курса и стрельба на дистанции более 600 м была малоэффективной. В 1896 г. лейтенант австрийского флота Л. Обри предложил первый образец гироскопического прибора курса с пружинным подзаводом, который удерживал торпеду на курсе в течение 3 – 4 мин. На повестку дня стал вопрос увеличения дальности хода.

В 1899 г. лейтенант русского флота изобрёл подогревательный аппарат, в котором сжигался керосин. Сжатый воздух перед подачей его в цилиндры рабочей машины нагревался и совершал уже большую работу. Внедрение подогрева увеличило дальность хода торпед до 4000 м на скоростях до 30 узлов.

В первую мировую войну 49% от общего числа потопленных крупных кораблей пришлось на долю торпедного оружия.

В 1915 г. торпеда впервые была использована с самолёта.

Вторая мировая война ускорила испытания и принятие на вооружение торпед с неконтактными взрывателями (НВ), системами самонаведения (ССН) и электрическими энергоустановками.

В последующие годы, несмотря на оснащение флотов новейшим ракетно-ядерным оружием , торпеды не утратили своего значения. Являясь самым эффективным противолодочным средством, они состоят на вооружении всех классов надводных кораблей (НК), подводных лодок (ПЛ) и морской авиации, а также стали основным элементом современных противолодочных ракет (ПЛУР) и неотъемлемой частью многих образцов современных морских мин. Современная торпеда – это сложный единый комплекс систем движения, управления движением, самонаведения и неконтактного подрыва заряда, созданных на основе современных достижений науки и техники.

1.ОБЩИЕ СВЕДЕНИЯ О ТОРПЕДНОМ ОРУЖИИ

1.1. Назначение, состав и размещение комплексов

торпедного оружия на корабле

Торпедное оружие (ТО) предназначено:

Для поражения подводных лодок (ПЛ), надводных кораблей (НК)

Разрушения гидротехнических и портовых сооружений.

Для этих целей применяются торпеды, состоящие на вооружении надводных кораблей, подводных лодок и самолетов (вертолетов) морской авиации. Кроме того, они используются в качестве боевых частей противолодочных ракет и мин-торпед.

Торпедное оружие представляет собой комплекс, включающий в себя:

Боекомплект торпед одного или нескольких типов;

Пусковые установки торпед – торпедные аппараты(ТА);

Приборы управления торпедной стрельбой (ПУТС);

Комплекс дополняется оборудованием, предназначенным для погрузки и выгрузки торпед, а также устройствами контроля за их состоянием в период хранения на носителе.

Число торпед в боекомплекте, в зависимости от типа носителя, составляет:

На НК – от 4 до 10;

На ПЛ – от 14-16 до 22-24.

На отечественных НК весь запас торпед размещается в торпедных аппаратах, установленных побортно на больших кораблях, и в диаметральной плоскости на средних и малых кораблях. Эти ТА являются поворотными, что обеспечивает их наведение в горизонтальной плоскости. На торпедных катерах ТА устанавливаются побортно неподвижно и являются ненаводящимися (стационарными).

На атомных ПЛ торпеды хранятся в первом (торпедном) отсеке в трубах ТА (4-8), а запасные – на стеллажах.

На большинстве дизель-электрических ПЛ торпедными отсеками являются первый и концевой.

ПУТС – комплекс приборов и линий связи – размещается на главном командном пункте корабля (ГКП), командном пункте командира минно-торпедной боевой части (БЧ-3) и на торпедных аппаратах.

1.2. Классификация торпед

Торпеды могут быть классифицированы по целому ряду признаков.

1. По предназначению:

Против ПЛ – противолодочные;

НК – противокорабельные;

НК и ПЛ – универсальные.

2. По носителям:

Для ПЛ – лодочные;

НК – корабельные;

ПЛ и НК – унифицированные;

Самолетов (вертолетов) – авиационные;

Противолодочных ракет;

Мин - торпед.

3. По типу энергосиловой установки (ЭСУ):

Парогазовые (тепловые);

Электрические;

Реактивные.

4. По способам управления:

С автономным управлением (АУ);

Самонаводящиеся (СН+АУ);

Телеуправляемые (ТУ + АУ);

С комбинированным управлением (АУ+СН+ТУ).

5. По типу взрывателя:

С контактным взрывателем (КВ);

С неконтактным взрывателем (НВ);

С комбинированным взрывателем (КВ+НВ).

6. По калибру:

400 мм; 533 мм; 650 мм.

Торпеды калибра 400 мм называют малогабаритными, 650 мм – тяжелыми. Большинство иностранных малогабаритных торпед имеют калибр 324 мм.

7. По режимам хода:

Однорежимные;

Двухрежимные.

Режимом в торпеде называют ее скорость и соответствующую этой скорости максимальную дальность хода. У двухрежимной торпеды, в зависимости от типа цели и тактической ситуации, режимы могут переключаться по ходу движения.

1.3. Основные части торпед



Любая торпеда конструктивно состоит из четырех частей (рис 1.1). Головная часть – боевое зарядное отделение (БЗО).Здесь размещаются: заряд взрывчатого вещества (ВВ), запальная принадлежность, контактный и неконтактный взрыватель. К переднему срезу БЗО крепится головка аппаратуры самонаведения.

В качестве ВВ в торпедах используются смесевые бризантные вещества с тротиловым эквивалентом 1,6-1,8. Масса ВВ, в зависимости от калибра торпеды, составляет 30-80 кг, 240-320 кг и до 600 кг соответственно.

Среднюю часть электрической торпеды называют аккумуляторным отделением, которое, в свою очередь, разделяется на батарейный и приборные отсеки. Здесь размещаются: источники энергии – батарея аккумуляторов, элементы пускорегулирующей аппаратуры, баллон с воздухом высокого давления и электродвигатель.

В парогазовой торпеде аналогичная составная часть носит название отделения энергокомпонентов и пускорегулирующей аппаратуры. В ней размещаются емкости с горючим, окислителем, пресной водой и тепловая машина – двигатель.

Третья составная часть торпеды любого типа называется кормовым отделением. Оно имеет конусообразную форму и содержит приборы управления движением, источники и преобразователи электроэнергии, а также основные элементы пневмогидравлической схемы.

К заднему срезу кормового отделения крепится четвертый составной элемент торпеды – хвостовая часть, заканчивающаяся движителями: гребными винтами или реактивным соплом.

На хвостовой части размещаются вертикальные и горизонтальные стабилизаторы, а на стабилизаторах – органы управления движением торпеды – рули.

1.4. Назначение, классификация, основы устройства

и принципы действия торпедных аппаратов

Торпедные аппараты (ТА) являются пусковыми установками и предназначены:

Для хранения торпед на носителе;

Введения в приборы управления движением торпеды установочных

данных (данных стрельбы);

Придания торпеде направления первоначального движения

(в поворотных ТА подводных кораблей);

Производства выстрела торпеды;

Торпедные аппараты ПЛ кроме этого могут быть использованы в качестве пусковых установок противолодочных ракет, а также для хранения и постановки морских мин.

ТА классифицируются по ряду признаков:

1) по месту установки:

2) по степени подвижности:

Поворотные (только на НК),

Неповоротные;

3) по количеству труб:

Однотрубные,

Многотрубные (только на НК);

4) по калибру:

Малого (400 мм, 324 мм),

Среднего (533 мм),

Крупного (650 мм);

5) по способу выстреливания

Пневматические,

Гидравлические (на современных ПЛ),

Пороховые (на малых НК).



Устройство ТА надводного корабля показано на рис 1.2. Внутри трубы ТА по всей ее длине располагаются четыре направляющие дорожки.

Внутри трубы ТА (рис. 1.3) по всей ее длине располагаются четыре направляющие дорожки.

Расстояние между противоположными дорожками соответствует калибру торпеды. В передней части трубы располагаются два обтюрирующих кольца, внутренний диаметр которых также равен калибру торпеды. Кольца препятствуют прорыву вперед рабочего тела (воздуха, воды, газа), подаваемого в заднюю часть трубы для выталкивания торпеды из ТА.

У всех ТА каждая труба имеет независимое устройство для производства выстрела. Вместе с тем, предусмотрена возможность залповой стрельбы из нескольких аппаратов с интервалом 0,5 – 1 с. Выстрел может производиться дистанционно с ГКП корабля или непосредственно с ТА, вручную.

Выстреливание торпеды производится путем подачи в кормовую часть ТА избыточного давления, обеспечивающего скорость выхода торпеды ~ 12 м/с.

ТА подводной лодки – стационарный, однотрубный. Число ТА в торпедном отсеке ПЛ – шесть или четыре. Каждый аппарат имеет прочные заднюю и переднюю крышки, заблокированные друг с дружкой. Это не дает возможности открыть заднюю крышку при открытой передней и наоборот. Подготовка аппарата к выстрелу включает заполнение его водой, выравнивание давления с забортным и открывание передней крышки.

У первых ТА ПЛ воздух, выталкивающий торпеду, выходил из трубы и всплывал на поверхность, образуя большой воздушный пузырь, демаскирующий подводную лодку. В настоящее время все ПЛ оснащаются системой беспузырной торпедной стрельбы (БТС). Принцип действия этой системы состоит в том, что после прохождения торпедой 2/3 длины ТА в его передней части автоматически открывается клапан, через который отработавший воздух выходит в трюм торпедного отсека.

На современных ПЛ для уменьшения шумности выстрела и обеспечения возможности стрельбы на больших глубинах устанавливаются гидравлические системы стрельбы. В качестве примера такая система приведена на рис. 1.4.

Последовательность операций при работе системы следующая:

Открывание автоматического забортного клапана (АЗК);

Выравнивание давления внутри ТА с забортным;

Закрывание АЗК;

Открывание передней крышки ТА;

Открывание воздушного клапана (ВК);

Движение поршней;

Перемещение воды в ТА;

Выстреливание торпеды;

Закрывание передней крышки;

Осушение ТА;

Открывание задней крышки ТА;



- загрузка стеллажной торпеды;

Закрывание задней крышки.

1.5. Понятие о приборах управления торпедной стрельбой

ПУТС предназначены для выработки данных, необходимых для прицельной стрельбы. Так как цель движется, возникает потребность решения задачи встречи торпеды с целью, т. е. нахождения той упреждённой точки, где эта встреча должна произойти.

Для решения поставленной задачи (рис. 1.5) необходимо:

1) обнаружить цель;

2) определить её местоположение относительно атакующего корабля, т. е. установить координаты цели – дистанцию Д0 и курсовой угол на цель КУ0 ;

3) определить параметры движения цели (ПДЦ) – курс Kц и скорость V ц;

4) рассчитать угол упреждения j, на который необходимо направить торпеду, т. е. рассчитать так называемый торпедный треугольник (на рис.1.5 выделен утолщёнными линиями). При этом допускается, что курс и скорость цели постоянны;

5) ввести необходимую информацию через ТА в торпеду.


обнаружения целей и определения их координат. Надводные цели обнаруживаются радиолокационными станциями (РЛС), подводные – гидроакустическими станциями (ГАС);

2) определения параметров движения цели. В их качестве используются ЭВМ или иные счетно-решающие приборы (СРП);

3) расчёта торпедного треугольника, также ЭВМ или иные СРП;

4) передачи и ввода информации в торпеды и контроля введённых в них данных. Таковыми могут быть линии синхронной связи и следящие устройства.

На рис.1.6 приведен вариант ПУТС, предусматривающий использование в качестве основного устройства обработки информации электронной системы, являющейся одной из схем общекорабельной боевой информационной управляющей системы (БИУС), и, как резервной – электромеханической. Такая схема применяется на современных под


ПГЭСУ торпед являются разновидностью тепловой машины (рис. 2.1). Источником энергии в тепловых ЭСУ является топливо, представляющее собою совокупность горючего и окислителя.

Используемые в современных торпедах виды топлива могут быть:

Многокомпонентными (горючее – окислитель – вода) (рис.2.2);

Унитарными (горючее смешано с окислителем – вода);

Твёрдые пороховые;



- твёрдые гидрореагирующие.

Тепловая энергия топлива образуется в результате химической реакции окисления или разложения веществ, входящих в его состав.

Температура сгорания топлива составляет 3000…4000°C. При этом возникает возможность размягчения материалов, из которых изготовлены отдельные узлы ЭСУ. Поэтому вместе с топливом в камеру сгорания подают воду, что снижает температуру продуктов сгорания до 600…800°C. Кроме того, впрыскивание пресной воды увеличивает объём парогазовой смеси, что существенно повышает мощность ЭСУ.

В первых торпедах использовалось топливо, включавшее в себя керосин и сжатый воздух в качестве окислителя. Такой окислитель оказался малоэффективным из-за низкого содержания кислорода. Составная часть воздуха – азот , не растворимая в воде, выбрасывалась за борт и являлась причиной демаскирующего торпеду следа. В настоящее время в качестве окислителей используют чистый сжатый кислород или маловодную перекись водорода . При этом продуктов сгорания, не растворимых в воде, почти не образуется и след практически не заметен.

Применение жидких унитарных топлив позволило упростить топливную систему ЭСУ и улучшить условия эксплуатации торпед.

Твёрдые топлива, являющиеся унитарными, могут быть мономолекулярными или смесевыми. Чаще используются последние. Они состоят из органического горючего, твёрдого окислителя и различных добавок. Количество выделяемого при этом тепла можно регулировать количеством подаваемой воды. Применение таких видов топлива исключает необходимость нести на борту торпеды запас окислителя. Это снижает массу торпеды, что значительно повышает скорость и дальность её

Двигатель парогазовой торпеды, в котором тепловая энергия преобразуется в механическую работу вращения гребных винтов, является одним из её главных агрегатов. Он определяет основные тактико-технические данные торпеды – скорость, дальность, следность, шумность.

Торпедные двигатели имеют ряд особенностей, которые отражаются на их конструкции:

Кратковременность работы;

Минимальное время выхода на режим и строгое его постоянство;

Работа в водной среде с высоким противодавлением выхлопу;

Минимальные масса и габариты при большой мощности;

Минимальный расход топлива.

Торпедные двигатели подразделяются на поршневые и турбинные. В настоящее время наибольшее распространение получили последние (рис. 2.3).

Энергокомпоненты подаются в парогазогенератор, где поджигаются зажигательным патроном. Образующаяся парогазовая смесь под дав



лением поступает на лопатки турбины, где, расширяясь, совершает работу. Вращение колеса турбины через редуктор и дифференциал передается на внутренний и внешний гребные валы, вращающиеся в противоположные стороны.

В качестве движителей большинства современных торпед используются гребные винты. Передний винт – на наружном валу с правым вращением, задний – на внутреннем – с левым. Благодаря этому уравновешиваются моменты сил, отклоняющих торпеду от заданного направления движения.

Эффективность двигателей характеризуется величиной коэффициента полезного действия с учётом влияния гидродинамических свойств корпуса торпеды. Коэффициент снижается при достижении винтами частоты вращения, при которой на лопастях начинается

кавитация 1 . Одним из путей борьбы с этим вредным явлением стало



применение насадок на винты, позволяющее получить водомётный движитель (рис. 2.4).

К числу основных недостатков ЭСУ рассмотренного типа относятся:

Высокая шумность связанная с большим числом быстро вращающихся массивных механизмов и наличием выхлопа;

Снижение мощности двигателя и, как следствие, скорости хода торпеды с ростом глубины, обусловленное увеличением противодавления выхлопным газам;

Постепенное уменьшение массы торпеды при её движении вследствие расхода энергокомпонентов;

Поиски путей, обеспечивающих исключение перечисленных недостатков, привели к созданию электрических ЭСУ.

2.1.2. Электрические ЭСУ торпед

Источниками энергии электрических ЭСУ являются химические вещества (рис. 2.5).

Химические источники тока должны отвечать ряду требований:

Допустимость высоких разрядных токов;

Работоспособность в широком интервале температур;

Минимальный саморазряд при хранении и отсутствие газовыделения;


1 Кавитация – образование в капельной жидкости полостей, заполненных газом, паром или их смесью. Кавитационные пузырьки образуются в тех местах, где давление в жидкости становится ниже некоторого критического значения.

Малые габариты и масса.

Наиболее широкое распространение в современных боевых торпедах нашли батареи одноразового действия.

Главным энергетическим показателем химического источника тока является его ёмкость – количество электричества, которое может отдать полностью заряженная батарея при разряде током определённой силы. Она зависит от материала, конструкции и величины активной массы пластин источников, разрядного тока, температуры, концентрации электро



лита и др.

Впервые в электрических ЭСУ были применены свинцово-кислотные аккумуляторные батареи (АБ). Их электроды: перекись свинца («-») и чистый губчатый свинец («+»), помещались в раствор серной кислоты. Удельная ёмкость таких батарей составляла 8 Вт · ч/кг массы, что в сравнении с химическими топливами было незначительной величиной. Торпеды с такими АБ имели малые скорость и дальность хода. Кроме этого, данные АБ имели высокий уровень саморазряда, а это требовало их периодической подзарядки при хранении на носителе, что было неудобно и небезопасно.

Следующим шагом в совершенствовании химических источников тока явилось применение щелочных АБ. В этих АБ в щелочной электролит помещались железоникелевые, кадмиево-никелевые или серебряно-цинковые электроды. Такие источники имели удельную ёмкость в 5-6 раз больше, чем свинцово-кислотные, что позволило резко увеличить скорость и дальность хода торпед. Их дальнейшее развитие привело к появлению одноразовых серебряно-магниевых батарей, использующих в качестве электролита забортную морскую воду. Удельная ёмкость таких источников возросла до 80 Вт · ч /кг, что вплотную приблизило скорости и дальности электрических торпед к аналогичным параметрам парогазовых.

Сравнительная характеристика источников энергии электрических торпед приведена в табл. 2.1.

Таблица 2.1

Двигателями электрических ЭСУ являются электродвигатели (ЭД) постоянного тока последовательного возбуждения (рис. 2.6).

Большинство торпедных ЭД являются двигателями бирототивного типа, в которых якорь и магнитная система вращаются одновременно в противоположные стороны. Они имеют большую мощность и не нуждаются в дифференциале и редукторе, что значительно снижает шумность и увеличивает удельную мощность ЭСУ.

Движители электрических ЭСУ аналогичны движителям парогазовых торпед.

Достоинствами рассмотренных ЭСУ являются:

Низкая шумность;

Постоянная, не зависящая от глубины хода торпеды мощность;

Неизменность массы торпеды в течение всего времени её движения.

К недостаткам следует отнести:


Источниками энергии реактивных ЭСУ являются вещества, приведённые на рис. 2.7.

Они представляют собой топливные заряды, выполненные в виде цилиндрических шашек или стержней, состоящих из смеси комбинаций представленных веществ (горючего, окислителя и добавок). Эти смеси обладают свойствами пороха. Реактивные двигатели не имеют промежуточных элементов – механизмов и гребных винтов. Основные части такого двигателя – камера сгорания и реактивное сопло. В конце 80-х годов в некоторых торпедах начали использовать гидрореагирующие топлива – сложные по составу твёрдые вещества на основе алюминия , магния или лития. Подогретые до температуры плавления, они бурно реагируют с водой, выделяя большое количество энергии.

2.2. Системы управления движением торпед

Движущаяся торпеда совместно с окружающей её морской средой образует сложную гидродинамическую систему. Во время движения на торпеду действуют:

Сила тяжести и выталкивающая сила;

Тяга двигателя и сопротивление воды;

Внешние воздействующие факторы (волнение моря, изменение плотности воды и др.). Первые два фактора известны и могут быть учтены. Последние – имеют случайный характер. Они нарушают динамическое равновесие сил, отклоняют торпеду от расчётной траектории.

Системы управления (рис. 2.8) обеспечивают:

Устойчивость движения торпеды на траектории;

Изменение траектории движения торпеды в соответствии с заданной программой;


В качестве примера рассмотрим структуру и принцип действия сильфонно - маятникового автомата глубины, изображенного на рис. 2.9.

Основой прибора является гидростатический аппарат на базе сильфона (гофрированная труба с пружиной) в комбинации с физическим маятником. Давление воды воспринимается крышкой сильфона. Оно уравновешивается пружиной, упругость которой устанавливается перед выстрелом в зависимости от заданной глубины движения торпеды.

Действие прибора осуществляется в следующей последовательности:

Изменение глубины торпеды относительно заданной;

Сжатие (или растяжение) пружины сильфона;

Перемещение зубчатой рейки;

Вращение шестерни;

Поворот эксцентрика;

Смещение балансира;

Движение клапанов золотника;

Перемещение поршня рулевой машинки;

Перекладка горизонтальных рулей;

Возврат торпеды на установленную глубину.

В случае появления дифферента торпеды происходит отклонение маятника от вертикального положения. При этом аналогично предыдущему перемещается балансир, что приводит к перекладке тех же рулей.

Приборы управления движением торпеды по курсу (K Т )

Принцип построения и действия прибора может быть пояснён схемой, изображённой на рис. 2.10.

Основой прибора является гироскоп с тремя степенями свободы. Он представляет собой массивный диск с лунками (углублениями). Сам диск подвижно укреплён в рамках, образующих так называемый кардановый подвес.

В момент выстрела торпеды воздух высокого давления из воздушного резервуара поступает на лунки ротора гироскопа. За 0.3…0,4 с ротор набирает до 20000 оборотов в минуту. Дальнейшее увеличение числа оборотов до 40000 и поддержание их на дистанции производится путем подачи напряжения на ротор гироскопа, являющегося якорем асинхронного ЭД переменного тока частотой 500 Гц. При этом гироскоп приобретает свойство сохранять неизменным направление своей оси в пространстве. Эта ось устанавливается в положение, параллельное продольной оси торпеды. В таком случае токосъёмник диска с полукольцами находится на изолированном зазоре между полукольцами. Цепь питания реле разомкнута, контакты реле KP тоже разомкнуты. Положение клапанов золотника определяется пружиной.



При отклонении торпеды от заданного направления (курса) поворачивается диск, связанный с корпусом торпеды. Токосъёмник оказывается на полукольце. Через обмотку реле начинает протекать ток. Замыкаются контакты Kp. Электромагнит получает питание, его стержень опускается вниз. Клапаны золотника смещаются, рулевая машинка перекладывает вертикальные рули. Торпеда возвращается к установленному курсу.

Если на корабле установлен неподвижный торпедный аппарат, то при торпедной стрельбе к углу упреждения j (см. рис.1.5) должен быть алгебрарически приплюсован курсовой угол, под которым находится цель в момент залпа (q 3 ). Полученный угол (ω), называемый углом гироскопического прибора, или углом первого поворота торпеды, может быть введён в торпеду перед выстрелом путём поворота диска с полукольцами. Таким образом исключается необходимость изменения курса корабля.

Приборы управления торпедой по крену (γ)

Крен торпеды – это поворот её вокруг продольной оси. Причинами крена являются циркуляция торпеды, перегребание одного из винтов и др. Крен приводит к отклонению торпеды от заданного курса и смещениям зон реагирования системы самонаведения и неконтактного взрывателя.

Креновыравнивающий прибор представляет собой сочетание гировертикали (вертикально установленного гироскопа) с маятником, перемещающимся в перпендикулярной плоскости, продольной оси торпеды. Прибор обеспечивает перекладку органов управления γ – элеронов в разные стороны – «враздрай» и, таким образом, возвращение торпеды к значению крена, близкому к нулю.

Приборы маневрирования



Предназначены для программного маневрирования торпеды по курсу на траектории движения. Так, например, в случае промаха торпеда начинает циркуляцию или зигзаг, обеспечивая неоднократное пересечение курса цели (рис. 2.11).

Прибор связан с наружным гребным валом торпеды. По числу оборотов вала определяется пройденное расстояние. В момент достижения установленной дистанции начинается маневрирование. Дистанция и вид траектории маневрирования вводятся в торпеду перед выстрелом.

Точность стабилизации движения торпеды по курсу приборами автономного управления, имея погрешность ~1% от пройденной дистанции, обеспечивает эффективную стрельбу по целям, идущим постоянным курсом и скоростью на дистанции до 3,5…4 км. На больших дистанциях эффективность стрельбы падает. При движении цели переменными курсом и скоростью точность стрельбы становится неприемлемой даже и на меньших расстояниях.

Стремление повысить вероятность поражения надводной цели, а также обеспечить возможность поражения ПЛ в подводном положении на неизвестной глубине, привели к появлению в 40-х годах торпед с системами самонаведения.

2.2.2. Системы самонаведения

Системы самонаведения (ССН) торпед обеспечивают:

Обнаружение целей по их физическим полям;

Определение положения цели относительно продольной оси торпеды;

Выработку необходимых команд рулевым машинкам;

Наведение торпеды на цель с точностью, необходимой для срабатывания неконтактного взрывателя торпеды.

ССН значительно повышает вероятность поражения цели. Одна самонаводящаяся торпеда эффективнее залпа из нескольких торпед с автономными системами управления. Особенно важны ССН при стрельбе по ПЛ, находящимися на большой глубине.

ССН реагирует на физические поля кораблей. Наибольшей дальностью распространения в водной среде обладают акустические поля. Поэтому ССН торпед являются акустическими и подразделяются на пассивные, активные и комбинированные.

Пассивные ССН

Пассивные акустические ССН реагируют на первичное акустическое поле корабля – его шум. Работают скрытно. Однако плохо реагируют на тихоходные (из-за слабого шума) и обесшумленные корабли. В этих случаях шум самой торпеды может оказаться больше шума цели.

Возможность обнаружения цели и определения её положения относительно торпеды обеспечивается созданием гидроакустических антенн (электроакустических преобразователей – ЭАП), обладающих направленными свойствами (рис. 2.12, а).

Наиболее широкое применение получили равносигнальный и фазоамплитудный методы.


В качестве примера рассмотрим ССН, использующую фазоамплитудный метод (рис. 2.13).

Приём полезных сигналов (шума движущегося объекта) осуществляется ЭАП, состоящим из двух групп элементов, формирующих одну диаграмму направленности (рис. 2.13, а). При этом в случае отклонения цели от оси диаграммы на выходах ЭАП действуют два равных по значению, но сдвинутых по фазе j напряжения E 1 и E 2. (рис. 2.13, б).

Фазосдвигающее устройство сдвигает оба напряжения по фазе на один и тот же угол u (обычно равный p/2) и производит суммирование действующих сигналов следующим образом:

E 1+ E 2= U 1 и E 2+ E 1= U 2.

В результате этого напряжение одинаковой амплитуды, но разной фазы E 1 и E 2 преобразуются в два напряжения U 1 и U 2 одной и той же фазы, но разной амплитуды (отсюда название метода). В зависимости от положения цели относительно оси диаграммы направленности можно получить:

U 1 > U 2 – цель правее оси ЭАП;

U 1 = U 2 – цель на оси ЭАП;

U 1 < U 2 – цель левее оси ЭАП.

Напряжения U 1 и U 2 усиливаются, преобразуются детекторами в постоянные напряжения U ’1 и U ’2 соответствующей величины и подаются на анализирующе-командное устройство АКУ. В качестве последнего может быть использовано поляризованное реле с якорем, находящемся в нейтральном (среднем) положении (рис. 2.13, в).

При равенстве U ’1 и U ’2 (цель на оси ЭАП) ток в обмотке реле равен нулю. Якорь неподвижен. Продольная ось движущейся торпеды направлена на цель. В случае смещения цели в ту или иную сторону через обмотку реле начинает протекать ток соответствующего направления. Возникает магнитный поток, отклоняющий якорь реле и вызывающий перемещение золотника рулевой машинки. Последняя обеспечивает перекладку рулей, а значит и поворот торпеды до возвращения цели на продольную ось торпеды (на ось диаграммы направленности ЭАП).

Активные ССН

Активные акустические ССН реагируют на вторичное акустическое поле корабля – отражённые сигналы от корабля или от его кильватерной струи (но не на шум корабля).

В своём составе они должны иметь, помимо рассмотренных ранее узлов, передающее (генерирующее) и коммутационное (переключающее) устройства (рис.2.14). Коммутационное устройство обеспечивает переключение ЭАП с излучения на приём.


Газовые пузырьки являются отражателями звуковых волн. Длительность сигналов, отражённых от кильватерной струи, больше длительности излучаемых. Это отличие и используется как источник информации о КС.

Торпеда выстреливает со смещением точки прицеливания в сторону, противоположную направлению движения цели так, чтобы она оказалась за кормой цели и пересекла кильватерную струю. Как только это происходит, торпеда делает поворот в сторону цели и снова входит в кильватерную струю под углом порядка 300. Так продолжается до момента прохождения торпеды под целью. В случае проскакивания торпеды перед носом цели торпеда делает циркуляцию, снова обнаруживает кильватерную струю и повторно осуществляет маневрирование.

Комбинированные ССН

Комбинированные системы включают в себя как пассивную, так и активную акустические ССН, что позволяет исключить недостатки каждой в отдельности. Современные ССН обнаруживают цели на дистанциях до 1500…2000 м. Поэтому при стрельбе на большие дистанции и особенно по резко маневрирующей цели возникает необходимость корректуры курса торпеды до момента захвата цели ССН. Эту задачу выполняют системы телеуправления движением торпеды.

2.2.3. Системы телеуправления

Системы телеуправления (ТУ) предназначены для коррекции траектории движения торпеды с корабля-носителя.

Телеуправление осуществляется по проводу (рис. 2.16, а, б).

Чтобы уменьшить натяжение провода при движении и корабля, и торпеды используют две одновременно разматывающиеся вьюшки. На подводной лодке (рис. 2.16, а) вьюшка 1 размещается в ТА и выстреливается вместе с торпедой. Она удерживается бронированным кабелем длиной порядка тридцати метров.

Принцип построения и действия системы ТУ поясняется рис. 2.17. С помощью гидроакустического комплекса и его индикатора осуществляется обнаружение цели. Полученные данные о координатах этой цели поступают в счетно-решающий комплекс. Сюда же подаются сведения о параметрах движения своего корабля и установленной скорости торпеды. Счетно-решающий комплекс вырабатывает курс торпеды КТ и h T –глубину ее движения. Эти данные вводятся в торпеду, и производится выстрел.



С помощью датчика команд осуществляется преобразование текущих параметров КТ и h T в серию импульсных электрических кодированных сигналов управления. Эти сигналы по проводу передаются на торпеду. Система управления торпеды декодирует принятые сигналы и преобразует их в напряжения, являющиеся управляющими для работы соответствующих каналов управления.

В случае необходимости, наблюдая на индикаторе гидроакустического комплекса носителя за положением торпеды и цели, оператор, используя пульт управления, может корректировать траекторию движения торпеды, направляя ее на цель.

Как уже было отмечено, на больших дистанциях (более 20 км) ошибки телеуправления (из-за ошибок гидроакустического комплекса) могут составлять сотни метров. Поэтому систему ТУ совмещают с системой самонаведения. Последняя включается по команде оператора на расстоянии 2…3 км от цели.

Рассмотренная система ТУ является односторонней. Если с торпеды на корабль поступают сведения о состоянии бортовых приборов торпеды, траектории ее движения, характере маневрирования цели, то такая система ТУ будет двухсторонней. Новые возможности в реализации двухсторонних систем ТУ торпедой открывает применение волоконно - оптических линий связи.

2.3. Запальная принадлежность и взрыватели торпед

2.3.1. Запальная принадлежность

Запальной принадлежностью (ЗП) боевого заряда торпеды называют совокупность первичного и вторичного детонаторов.

Состав ЗП обеспечивает ступенчатую детонацию ВВ БЗО, что повышает безопасность обращения с окончательно приготовленной торпедой, с одной стороны, и гарантирует надежную и полную детонацию всего заряда – с другой.

Первичный детонатор (рис. 2.18), состоящий из капсюля воспламенителя и капсюля детонатора, снаряжается высокочувствительными (инициирующими) ВВ – гремучей ртутью или азидом свинца, которые взрываются от накола или нагрева. В целях безопасности первичный детонатор содержит небольшое количество ВВ, недостаточное для взрыва основного заряда.



Вторичный детонатор – запальный стакан – содержит менее чувствительное бризантное ВВ – тетрил, флегматизированный гексоген в количестве 600…800 г. Этого количества уже достаточно для детонации всего основного заряда БЗО.

Таким образом, взрыв осуществляется по цепочке: взрыватель – капсюль-воспламенитель – капсюль-детонатор – запальный стакан – заряд БЗО.

2.3.2. Контактные взрыватели торпед

Контактный взрыватель (КВ) торпеды предназначен для накола капсюля воспламенителя первичного детонатора и вызова тем самым взрыва основного заряда БЗО в момент контакта торпеды с бортом цели.

Наибольшее распространение получили контактные взрыватели ударного (инерционного) действия. При ударе торпеды в борт цели инерционное тело (маятник) отклоняется от вертикального положения и освобождает боёк, который под действием боевой пружины движется вниз и накалывает капсюль – воспламенитель.

При окончательном приготовлении торпеды к выстрелу контактный взрыватель соединяется с запальной принадлежностью и устанавливается в верхнюю часть БЗО.

Во избежание взрыва снаряжённой торпеды от случайного сотрясения или удара о воду инерционная часть взрывателя имеет предохранительное устройство, стопорящее боёк. Стопор связан с вертушкой, начинающей вращение с началом движения торпеды в воде. По прохождении торпедой дистанции около 200 м червяк вертушки расстопоривает боёк и взрыватель приходит в боевое положение.

Стремление воздействовать на самую уязвимую часть корабля – его днище и обеспечить при этом неконтактный подрыв заряда БЗО, производящий больший разрушительный эффект, привело к созданию в 40-х годах неконтактного взрывателя.

2.3.3. Неконтактные взрыватели торпед

Неконтактный взрыватель (НВ) замыкает цепь запала на подрыв заряда БЗО в момент прохождения торпеды вблизи цели под воздействием на взрыватель того или иного физического поля цели. При этом глубина хода противокорабельной торпеды устанавливается на несколько метров больше величины предполагаемой осадки корабля – цели.

Наиболее широкое применение получили акустические и электромагнитные неконтактные взрыватели.



Устройство и действие акустического НВ поясняет рис. 2.19.

Импульсный генератор (рис. 2.19, а) вырабатывает кратковременные импульсы электрических колебаний ультразвуковой частоты, следующие через малые промежутки времени. Через коммутатор они поступают на электроакустические преобразователи (ЭАП), преобразующие электрические колебания в ультразвуковые акустические, распространяющиеся в воде в пределах зоны, показанной на рисунке.

При прохождении торпеды вблизи цели (рис. 2.19, б) от последней будут получены отражённые акустические сигналы, которые воспринимаются и преобразуются ЭАП в электрические. После усиления они анализируются в исполнительном устройстве и запоминаются. Получив несколько аналогичных отражённых сигналов подряд, исполнительное устройство подключает источник питания к запальной принадлежности – происходит взрыв торпеды.



Устройство и действие электромагнитного НВ поясняется рис. 2.20.

Кормовая (излучающая) катушка создаёт переменное магнитное поле. Оно воспринимается двумя носовыми (приёмными) катушками, включёнными встречно, в результате чего их разностная ЭДС равна
нулю.

При прохождении торпеды вблизи цели, имеющей своё электромагнитное поле, происходит искажение поля торпеды. ЭДС в приёмных катушках станут разными и появится разностная ЭДС. Усиленное напряжение поступает на исполнительное устройство, подающее питание на запальное устройство торпеды.

На современных торпедах используются комбинированные взрыватели, являющиеся сочетанием контактного с одним из типов неконтактного взрывателя.

2.4. Взаимодействие приборов и систем торпед

при их движении на траектории

2.4.1. Назначение, основные тактико-технические параметры

парогазовых торпед и взаимодействие приборов

и систем при их движении

Парогазовые торпеды предназначены для уничтожения надводных кораблей, транспортов и, реже, ПЛ противника.

Основные тактико-технические параметры парогазовых торпед, получивших наиболее широкое распространение, приведены в табл.2.2.

Таблица 2.2

Наименование торпеды

Скорость,

Дальность

двигателя

носитель

торпеды, кг

Масса ВВ, кг

Носитель

поражения

Отечественные

70 или 44

Турбина

Турбина

Турбина

Нет сведений

Зарубежные

Турбина

Поршневой

Открывание запирающего воздушного клапана (см. рис. 2.3) перед выстрелом торпеды;

Выстрел торпеды, сопровождаемый её движением в ТА;

Откидывание курка торпеды (см. рис. 2.3) курковым зацепом в трубе

торпедного аппарата;

Открывание машинного крана;

Подача сжатого воздуха непосредственно на прибор курса и креновыравнивающий прибор для раскручивания роторов гироскопов, а также на воздушный редуктор;

Воздух пониженного давления с редуктора поступает на рулевые машинки, обеспечивающие перекладку рулей и элеронов, и на вытеснение воды и окислителя из резервуаров;

Поступление воды на вытеснение горючего из резервуара;

Подача горючего, окислителя и воды на парогазовый генератор;

Поджигание топлива зажигательным патроном;

Образование парогазовой смеси и подача её на лопатки турбины;

Вращение турбины, а значит, и винтовой торпеды;

Попадание торпеды в воду и начало её движения в ней;

Действие автомата глубины (см. рис. 2.10), прибора курса (см. рис. 2.11), креновыравнивающего прибора и движение торпеды в воде по установленной траектории;

Встречные потоки воды вращают вертушку, которая при проходе торпедой 180…250 м приводит ударный взрыватель в боевое положение. Этим исключается подрыв торпеды на корабле и вблизи его от случайных толчков и ударов;

Через 30…40 с после выстрела торпеды включаются НВ и ССН;

ССН начинает поиск КС, излучая импульсы акустических колебаний;

Обнаружив КС (получив отражённые импульсы) и пройдя его, торпеда поворачивает в сторону цели (сторона поворота введена перед выстрелом);

ССН обеспечивает маневрирование торпеды (см. рис. 2.14);

При прохождении торпеды вблизи цели или при ударе о неё срабатывают соответствующие взрыватели;

Взрыв торпеды.

2.4.2. Назначение, основные тактико-технические параметры электрических торпед и взаимодействие приборов

и систем при их движении

Электрические торпеды предназначены для уничтожения подводных лодок противника.

Основные тактико-технические параметры электрических торпед, получивших наиболее широкое распространение. Приведены в табл. 2.3.

Таблица 2.3

Наименование торпеды

Скорость,

Дальность

двигателя

носитель

торпеды, кг

Масса ВВ, кг

Носитель

поражения

Отечественные

Зарубежные

сведений

сведений


* СЦАБ - серебряно-цинковая аккумуляторная батарея.

Взаимодействие узлов торпеды осуществляется следующим образом:

Открывание запирающего клапана баллона ВВД торпеды;

Замыкание «+» электрической цепи – перед выстрелом;

Выстрел торпеды, сопровождаемый её движением в ТА (см. рис. 2.5);

Замыкание пускового контактора;

Подача воздуха высокого давления на прибор курса и креновыравнивающий прибор;

Подача редуцированного воздуха в резиновую оболочку для вытеснения из неё электролита в химическую батарею (возможный вариант);

Вращение электродвигателя, а значит и винтов торпеды;

Движение торпеды в воде;

Действие автомата глубины (рис. 2.10), прибора курса (рис. 2.11), креновыравнивающего прибора на установленной траектории движения торпеды;

Через 30…40 с после выстрела торпеды включаются НВ и активный канал ССН;

Поиск цели активным каналом ССН;

Получение отражённых сигналов и наведение на цель;

Периодическое включение пассивного канала для пеленгования шумов цели;

Получение надёжного контакта с целью пассивным каналом, отключение активного канала;

Наведение торпеды на цель пассивным каналом;

В случае потери контакта с целью ССН даёт команду на выполнение вторичного поиска и наведения;

При прохождении торпеды вблизи цели срабатывает НВ;

Взрыв торпеды.

2.4.3. Перспективы развития торпедного оружия

Необходимость совершенствования торпедного оружия вызывается постоянным улучшением тактических параметров кораблей. Так, например, глубина погружения атомных ПЛ достигла 900 м, а их скорость движения 40 узлов.

Можно выделить несколько путей, по которым должно осуществляться совершенствование торпедного оружия (рис. 2.21).

Улучшение тактических параметров торпед


Чтобы торпеда настигла цель, она должна иметь скорость, как минимум, в 1,5 раз больше, чем атакуемый объект (75…80 узлов), дальность хода – более 50 км, глубину погружения не менее 1000 м.

Очевидно, что перечисленные тактические параметры определяются техническими параметрами торпед. Следовательно, в данном случае должны рассматриваться технические решения.

Увеличение скорости торпеды может быть осуществлено за счёт:

Применения более эффективных химических источников питания двигателей электрических торпед (магний-хлор-серебряных, серебряно-алюминиевых, использующих в качестве электролита морскую воду).

Создания парогазовых ЭСУ замкнутого цикла для противолодочных торпед;

Уменьшения лобового сопротивления воды (полировка поверхности корпуса торпеды, сокращение числа ее выступающих частей, подбор соотношения длины к диаметру торпеды), поскольку V Т прямо пропорциональна сопротивлению воды.

Внедрения ракетных и гидрореактивных ЭСУ.

Увеличение дальности хода торпеды ДТ достигается теми же путями, что и увеличение её скорости V Т, ибо ДТ= V Т t, где t – время движения торпеды, определяемое количеством энергокомпонентов ЭСУ.

Увеличение глубины хода торпеды (или глубины выстрела) требует усиления корпуса торпеды. Для этого должны применяться более прочные материалы, например алюминиевые или титановые сплавы.

Повышение вероятности встречи торпеды с целью

Применением в системах управления волоконно-оптических про

водов. Это позволяет обеспечить двухстороннюю связь с торпе-

дой, а значит, увеличить объем информации о местоположении

цели, повысить помехоустойчивость канала связи с торпедой,

уменьшить диаметр провода;

Созданием и применением в ССН электроакустических преобра-

зователей, выполненных в виде антенных решеток, что позволит

улучшить процесс обнаружения и пеленгования торпедой цели;

Применением на борту торпеды высокоинтегральной электронной

вы числительной техники, обеспечивающей более эффективную

работу ССН;

Увеличением радиуса реагирования ССН повышением ее чувст-

вительности;

Снижением влияния средств противодействия путем использо -

вания в торпеде устройств, осуществляющих спектральный

анализ принимаемых сигналов, их классификацию и выявление

ложных целей;

Разработкой ССН на базе инфракрасной техники, не подвержен-

ной воздействию помех;

Снижением уровня собственных шумов торпеды путем совершен-

ствования двигателей (создание бесколлекторных электродвига-

телей переменного тока), механизмов передачи вращения и

винтов торпед.

Повышение вероятности поражения цели

Решение этой проблемы может быть достигнуто:

Подрывом торпеды вблизи наиболее уязвимой части (например,

под килем) цели, что обеспечивается совместной работой

ССН и ЭВМ;

Подрывом торпеды на таком расстоянии от цели, при котором на

блюдается максимальное воздействие ударной волны и расши

рение газового пузыря, возникающего при взрыве;

Созданием боевой части кумулятивного (направленного действия);

Расширением диапазона мощностей ядерной боевой части, что

связано как с объектом поражения, так и с собственным безопас -

ным радиусом. Так, заряд мощностью 0,01 кт должен применяться

на дистанции не менее 350 м, 0,1 кт – не менее 1100 м.

Повышение надежности торпед

Опыт эксплуатации и применения торпедного оружия показывает, что после длительного хранения некоторая часть торпед не способна выполнять возложенные на них функции. Это свидетельствует о необходимости повышения надежности торпед, что достигается:

Повышением уровня интеграции электронной аппаратуры торпе -

ды. Это обеспечивает повышение надежности электронных уст-

ройств в 5 – 6 раз, уменьшает занимаемые объемы, снижает

стоимость аппаратуры;

Созданием торпед модульной конструкции, что позволяет при мо-

дернизации заменять менее надежные узлы на более надежные;

Совершенствованием технологии изготовления приборов, узлов и

систем торпед.

Таблица 2.4

Наименование торпеды

Скорость,

Дальность

двигателя

Энергоноситель

торпеды, кг

Масса ВВ, кг

Носитель

поражения

Отечественные

Комбинированная ССН

Комбинированная ССН,

ССН по КС

Поршневой

Унитарный

Комбинированная ССН,

ССН по КС

Нет сведений

Зарубежные

«Барракуда»

Турбина

Окончание табл. 2.4

Некоторые из рассмотренных путей уже нашли свое отражение в ряде торпед, представленных в табл. 2.4.

3. ТАКТИЧЕСКИЕ СВОЙСТВА И ОСНОВЫ БОЕВОГО ПРИМЕНЕНИЯ ТОРПЕДНОГО ОРУЖИЯ

3.1. Тактические свойства торпедного оружия

Тактические свойства любого оружия – это совокупность качеств, характеризующих боевые возможности оружия.

Основными тактическими свойствами торпедного оружия являются:

1. Дальность хода торпеды.

2. Скорость ее хода.

3. Глубина хода или глубина выстрела торпеды.

4. Способность наносить повреждения наиболее уязвимой (подводной) части корабля. Опыт боевого применения показывает, что для уничтожения большого противолодочного корабля требуется 1 – 2 торпеды, крейсера – 3 – 4, авианосца – 5 – 7, подводной лодки – 1 – 2 торпеды.

5. Скрытность действия, что объясняется малой шумностью, бесследностью, большой глубиной хода.

6. Высокая эффективность, обеспечиваемая применением систем телеуправления, что значительно повышает вероятность поражения целей.

7. Возможность уничтожения целей, идущих с любой скоростью, а подводных лодок, идущих и на любой глубине.

8. Высокая готовность к боевому применению.

Однако наряду с положительными свойствами имеются и отрицательные:

1. Относительно большое время воздействия на противника. Так, например, даже при скорости 50 узлов торпеде требуется примерно 15 мин, чтобы достичь цель, находящуюся на расстоянии 23 км. За этот промежуток времени цель имеет возможность осуществить маневрирование, применить средства противодействия (боевые и технические), чтобы уклониться от торпеды.

2. Трудность уничтожения цели на малых и больших дистанциях. На малых – из-за возможности поражения стреляющего корабля, на больших – из-за ограниченности дальности хода торпед.

3.2. Организация и виды подготовки торпедного оружия

к стрельбе

Организация и виды подготовки торпедного оружия к стрельбе определяются «Правилами минной службы» (ПМС).

Подготовка к стрельбе подразделяется:

На предварительную;

Окончательную.

Предварительная подготовка начинается по сигналу: «Корабль к бою и походу приготовить». Заканчивается обязательным выполнением всех регламентированных действий.

Окончательная подготовка начинается с момента обнаружения цели и получения целеуказания. Заканчивается в момент занятия кораблём позиции залпа.

Основные действия, производимые при подготовке к стрельбе, приведены в таблице.

В зависимости от условий стрельбы окончательная подготовка может быть:

Сокращённой;

При малой окончательной подготовке для наведения торпеды учитываются только пеленг на цель и дистанция. Угол упреждения j не рассчитывается (j =0).

При сокращённой окончательной подготовке учитываются пеленг на цель, дистанция и сторона движения цели. При этом угол упреждения j устанавливается равным некоторой постоянной величине (j=const).

При полной окончательной подготовке учитываются координаты и параметры движения цели (КПДЦ). В этом случае определяется текущее значение угла упреждения (jТЕК).

3.3. Способы стрельбы торпедами и их краткая характеристика

Существует ряд способов стрельбы торпедами. Эти способы определяются теми техническими средствами, которыми оснащены торпеды.

При автономной системе управления стрельба возможна:

1. В настоящее место цели (НМЦ), когда угол упреждения j=0 (рис. 3.1, а).

2. В область вероятного местоположения цели (ОВМЦ), когда угол упреждения j=const (рис. 3.1, б).

3. В упреждённое место цели (УМЦ), когда j=jТЕК (рис. 3.1, в).



Во всех представленных случаях траектория движения торпеды является прямолинейной. Наибольшая вероятность встречи торпеды с целью достигается в третьем случае, однако этот способ стрельбы требует максимального времени на подготовку.

При телеуправлении, когда управление движения торпеды корректируется командами с корабля, траектория будет криволинейной. При этом возможно движение:

1) по траектории, обеспечивающей нахождение торпеды на линии торпеда – цель;

2) в упреждённую точку с корректировкой угла упреждения по

мере приближения торпеды к цели.


При самонаведении используется сочетание автономной системы управления с ССН или телеуправления с ССН. Следовательно, до начала реагирования ССН торпеда движется так же, как рассмотрено выше, а затем, используя:


Траекторию догонного типа, когда продолжение оси тор педы всё

время совпадает с направлением на цель (рис. 3.2, а).

Недостатком этого способа является то, что торпеда часть своего

пути проходит в кильватерной струе, что ухудшает условия рабо

ты ССН (кроме ССН по кильватерному следу).

2. Так называемую траекторию коллизионного типа (рис. 3.2, б), когда продольная ось торпеды всё время образует с направлением на цель постоянный угол b. Этот угол для конкретной ССН постоянен или может оптимизироваться бортовой ЭВМ торпеды.

Список литературы

Теоретические основы торпедного оружия/ , . М.: Воениздат, 1969.

Лобашинский. /ДОСААФ. М., 1986.

Забнев оружие. М.: Воениздат, 1984.

Сычёв оружие /ДОСААФ. М., 1984.

Скоростная торпеда 53-65: история создания // Морской сборник 1998, №5. с. 48-52.

Из истории развития и боевого применения торпедного оружия

1. Общие сведения о торпедном оружии …………………………………… 4

2. Устройство торпед …………………………………………………………… 13

3. Тактические свойства и основы боевого применения

Торпеда (от лат. torpedo narke - электрический скат , сокращённо лат. torpedo ) - самодвижущееся устройство, содержащее взрывчатый заряд и служащее для уничтожения надводных и подводных целей. Появление торпедного оружия в XIX веке коренным образом изменила тактику ведения боевых действий на море и послужило толчком для разработки новых типов кораблей , несущих торпеды в качестве главного вооружения .

Торпеды различных типов. Военный музей на батарее Безымянной, Владивосток.

История создания

Иллюстрация из книги Джованни де ла Фонтана

Как и множество других изобретений, изобретение торпеды имеет сразу несколько отправных точек. Впервые идея использовать специальные снаряды для уничтожения вражеских кораблей описана в книге итальянского инженера Джованни де ла Фонтана (итал. Giovanni de la Fontana ) Bellicorum instrumentorum liber, cum figuris et fictitys litoris conscriptus (рус. «Иллюстрированная и зашифрованная книга инструментов войны» или иначе «Книга о военных принадлежностях» ). В книге приведены изображения различных устройств военного назначения, передвигающихся по земле, воде и воздуху и приводимых в движение за счет реактивной энергии пороховых газов.

Следующим событием, предопределившем появление торпеды, стало доказательство Дэвидом Бушнеллом (англ. David Bushnell ) возможности горения пороха под водой. Позже Бушнелл попытался создать первую морскую мину, оснащенную изобретенным им же часовым взрывным механизмом, но попытка ее боевого применения (как и изобретенной Бушнеллом подводной лодки "Черепаха") оказалась безуспешной.
Очередной шаг по пути к созданию торпед был сделан Робертом Фултоном(англ. Robert Fulton ), создателем одного из первых пароходов. В 1797 году он предложил англичанам использовать дрейфующие мины, оснащенные часовым взрывным механизмом и впервые использовал слово торпе́до для описания устройства, которое должно было взрываться под днищем и таким образом уничтожать вражеские корабли. Это слово было использовано из за способности электрических скатов(лат. torpedo narke ) оставаться незамеченными, а затем стремительным броском парализовать свою жертву.

Шестовая мина

Изобретение Фултона не являлось торпедой в современной понимании этого слова, а являлось заградительной миной . Такие мины широко использовались российским флотом во время Крымской войны на Азовском, Черном и Балтийском морях. Но такие мины были оборонительным оружием. Появившиеся чуть позже шестовые мины стали оружием наступательным. Шестовая мина представляла из себя взрывчатку, закрепленную на конце длинного шеста, и скрытно доставлявшаяся с помощью лодки к вражескому кораблю.

Новым этапом стало появление буксируемых мин. Такие мины существовали как в оборонительном, так и в наступательном вариантах. Оборонительная мина Гарвея (англ. Harvey ) буксировалась с помощью длинного троса на расстоянии примерно 100-150 метров от корабля вне кильватерной струи и имела дистанционный взрыватель, который приводился в действие при попытке противника протаранить защищаемый корабль. Наступательный вариант, мина-крылатка Макарова также буксировалась на тросе, но при приближении вражеского корабля буксир шел курсом прямо на противника, в последний момент резко уходил в сторону и отпускал трос, мина же продолжала двигаться по инерции и взрывалась при столкновении с кораблем противника.

Последним шагом на пути к изобретению самодвижущейся торпеды стали наброски неизвестного австро-венгерского офицера, на которых был изображен некий снаряд, буксируемый с берега и начиненный зарядом пироксилина. Наброски попали к капитану Джованни Бьяджо Луппису (рус. Giovanni Biagio Luppis ), который загорелся идеей создать самодвижущийся аналог мины для береговой обороны (англ. coastsaver ), управляемой с берега с помощью тросов. Луппис построил макет такой мины, приводимой в движение пружиной от часового механизма, но наладить управление этим снарядом ему не удалось. В отчаянии Луппис обратился за помощью к англичанину Роберту Уайтхеду (англ. Robert Whitehead ), инженеру судостроительной компании Stabilimeno Technico Fiumano в Фиуме (в настоящее время Риека, Хорватия).

Торпеда Уайтхеда


Уайтхеду удалось решить две проблемы, стоявшие на пути его предшественников. Первая проблема заключалась в простом и надежном двигателе, который сделал бы торпеду автономной. Уайтхед решил установить на свое изобретение пневматический двигатель, работающий на сжатом воздухе и приводящий во вращение винт, установленный в кормовой части. Второй проблемой была заметность торпеды, движущейся по воде. Уайтхед решил сделать торпеду таким образом, чтобы она двигалась на небольшой глубине, но на протяжении длительного времени ему не удавалось добиться стабильности глубины погружения. Торпеды либо всплывали, либо уходили на большую глубину, либо вообще двигались волнами. Решить эту проблему Уайтхеду удалось с помощью простого и эффективного механизма - гидростатического маятника, который управлял рулями глубины. реагируя на дифферент торпеды, механизм отклонял рули глубины в нужную сторону, но при этом не позволял торпеде совершать волнообразные движения. Точность выдерживания глубины была вполне достаточной и составляла ±0,6 м.

Торпеды по странам

Устройство торпед

Торпеда состоит из корпуса обтекаемой формы, в носовой части которого находится боевая часть с взрывателем и зарядом взрывчатого вещества. Для приведения в движение самоходных торпед на них устанавливаются двигатели различных типов: на сжатом воздухе, электрические, реактивные, механические. Для работы двигателя на борту торпеды размещается запас топлива: баллоны со сжатым воздухом, аккумуляторы , баки с топливом. Торпеды, оборудованные устройством автоматического или дистанционного наведения оснащаются приборами управления, сервоприводами и рулевыми механизмами.

Классификация

Типы торпед Кригсмарине

Классификация торпед проводится по нескольким признакам:

  • по назначению: противокорабельные; противолодочные; универсальные, используемые против подводных лодок и надводных кораблей.
  • по типу носителя: корабельные ; лодочные ; авиационные ; универсальные; специальные (боевые части противолодочных ракет и самодвижущихся мин).
  • по типу заряда: учебные, без взрывчатого вещества; с зарядом обычного взрывчатого вещества; с ядерным боеприпасом;
  • по типу взрывателя: контактные; неконтактные; дистанционные; комбинированные.
  • по калибру: малого калибра, до 400 мм; среднего калибра, от 400 до 533 мм включительно; большого калибра, свыше 533 мм.
  • по типу движителя: винтовые ; реактивные; с внешним движителем.
  • по типу двигателя: газовые; парогазовые; электрические; реактивные.
  • по типу управления: неуправляемые; автономно управляемые прямоидущие; автономно управляемые маневрирующие; с дистанционным управлением; с ручным непосредственным управлением; с комбинированным управлением.
  • по типу самонаведения: с активным самонаведением; с пассивным самонаведением; с комбинированным самонаведением.
  • по принципу самонаведения: с магнитным наведением; с электромагнитным наведением; с акустическим наведением; с тепловым наведением; с гидродинамическим наведением; с гидрооптическим наведением; комбинированные.

Устройства пуска

Торпедные двигатели

Газовые и парогазовые торпеды

Двигатель Brotherhood

Первые массовые самоходные торпеды Роберта Уайтхеда использовали поршневой двигатель, работавший на сжатом воздухе. Сжатый до 25 атмосфер воздух из баллона через редуктор, понижающий давление, поступал в простейший поршневой двигатель, который, в свою очередь, приводил во вращение гребной винт торпеды. Двигатель Уайтхеда при 100 об/мин обеспечивал скорость торпеды 6,5 узла при дальности 180 м. Для увеличения скорости и дальности хода требовалось увеличивать давление и объема сжатого воздуха соответственно.

C развитием технологии и ростом давления возникла проблема обмерзания клапанов, регуляторов и двигателя торпед. При расширении газов происходит резкое понижение температуры, которое тем сильнее, чем выше разница давлений. Избежать обмерзания удалось в торпедных двигателях с сухим обогревом, которые появились в 1904 году. В трехцилиндровых двигателях Brotherhood, которыми оснащались первые торпеды Уайтхеда с подогревом, для снижения давления воздуха использовался керосин или спирт. Жидкое топливо впрыскивалось в воздух, поступавший из баллона и поджигалось. За счет сгорания топлива давление повышалось, а температура снижалась. Помимо двигателей с сжиганием топлива, позже появились двигатели, в которых в воздух впрыскивалась вода, благодаря чему менялись физические свойства газовоздушной смеси.

Противолодочная торпеда MU90 с водометным двигателем

Дальнейшее совершенствование было связано с появлением паровоздушных торпед (торпед с влажным обогревом), у которых вода впрыскивалась в камеры сгорания топлива. Благодаря этому можно было обеспечить сжигание большего количества топлива, а также использовать пар, образующийся при испарении воды для подачи в двигатель и увеличения энергетического потенциала торпеды. Такая система охлаждения впервые была использована на торпедах British Royal Gun в 1908 году.

Количество топлива, которое может быть сожжено, ограничено количеством кислорода, которого в воздухе содержится около 21%. Для увеличения количества сжигаемого топлива были разработаны торпеды, у которых вместо воздуха в баллоны закачивался кислород. В Японии в годы Второй мировой войны стояла на вооружении кислородная торпеда 61 см Type 93 , самая мощная, дальнобойная и скоростная торпеда своего времени. Недостатком кислородным торпед была их взрывоопасность. В Германии в годы Второй мировой войны велись эксперименты с созданием бесследных торпед типа G7ut на перекиси водорода и оснащенные двигателем Вальтера. Дальнейшим развитием применения двигателя Вальтера стало создание реактивных и водометных торпед.

Электрические торпеды

Электрическая торпеда МГТ-1

Газовые и парогазовые торпеды имеют ряд недостатков: они оставляют демаскирующий след и имеют сложности с длительным хранением в заряженном состоянии. Этих недостатков лишены торпеды с электроприводом. Впервые электродвигателем оснастил торпеду своей конструкции Джон Эрикссон в 1973 году. Питание электродвигателя осуществлялось по кабелю от внешнего источника тока. Аналогичные конструкции имели торпеды Симса-Эдисона и Нордфельда , причем у последней по проводам также осуществлялось управление рулями торпеды. Первой успешной автономной электрической торпедой, у которой электропитание на двигатель подавалось с бортовых аккумуляторных батарей, стала немецкая G7e , широко распространенная в годы Второй Мировой войны. Но эта торпеда имела и ряд недостатков. Ее свинцово-кислотный аккумулятор был чувствителен к ударам, требовал регулярного обслуживания и подзарядки, а так же подогрева перед использованием. Аналогичную конструкцию имела американская торпеда Mark 18 . Экспериментальная G7ep, ставшая дальнейшим развитием G7e, была лишена этих недостатков так как в ней аккумуляторы были заменены на гальванические элементы. В современных электрических торпедах используются высоконадежные не обслуживаемые литий-ионные или серебряные аккумуляторные батареи.

Торпеды с механическим двигателем

Торпеда Бреннана

Механический двигатель впервые был использован в торпеде Бреннана . Торпеда имела два троса, намотанные на барабаны внутри корпуса торпеды. Береговые паровые лебедки тянули троса, которые крутили барабаны и приводили во вращение гребные винты торпеды. Оператор на берегу контролировал относительные скорости лебедок, благодаря чему мог изменять направление и скорость движения торпеды. Такие системы были использованы для береговой обороны в Великобритании в период с 1887 по 1903 годы.
В США в конце XIX века на вооружении состояла торпеда Хауэлла , которая приводилась в движение за счет энергии раскручиваемого перед пуском маховика. Хауэлл также впервые использовал гироскопический эффект для управления курсом движения торпеды.

Торпеды с реактивным двигателем

Носовая часть торпеды М-5 комплекса Шквал

Попытки использовать реактивный двигатель в торпедах предпринимались еще во второй половине XIX века. После окончания Второй мировой войны был предпринят ряд попыток создания ракето-торпед, которые являлись комбинацией ракеты и торпеды. После запуска в воздух ракето-торпеда использует реактивный двигатель, выводящий головную часть - торпеду к цели, после падения в воду включается обычный торпедный двигатель и дальнейшее движение осуществляется уже в режиме обычной торпеды. Такое устройство имели ракето-торпеды воздушного базирования Fairchild AUM-N-2 Petrel и корабельные противолодочные RUR-5 ASROC , Grebe и RUM-139 VLA. В них использовались стандартные торпеды, совмещенные с ракетным носителем. В комплексе RUR-4 Weapon Alpha использовалась глубинная бомба, оснащенная ракетным ускорителем. В СССР на вооружении стояли авиационные ракето-торпеды РАТ-52 . В 1977 в СССР был принят на вооружение комплекс Шквал , оснащенный торпедой М-5. Эта торпеда имеет реактивный двигатель, работающий на гидрореагирующем твёрдом топливе. В 2005 году о создании аналогичной суперкавитирущей торпеды сообщила немецкая компания Diehl BGT Defence, а в США ведутся разработки торпеды HSUW. Особенностью реактивных торпед является их скорость, которая превышает 200 узлов и достигается благодаря движению торпеды в суперкавитирующей полости пузырьков газа, благодаря чему снижается сопротивление воды.

Кроме реактивных двигателей, в настоящее время используются также нестандартные торпедные двигатели от газовых турбин до двигателей на однокомпонентном топливе, например, на гексафториде серы, распыляемого над блоком твердого лития.

Приборы маневрирования и управления

Маятниковый гидростат
1. Ось маятника.
2. Руль глубины.
3. Маятник.
4. Диск гидростата.

Уже при первых экспериментах с торпедами стало ясно, что во время движения торпеда постоянно отклоняется от изначально заданного курса и глубины хода. Некоторые образцы торпед получили систему дистанционного управления, которая позволяла вручную задавать глубину хода и курс движения. Роберт Уайтхед на торпеды собственной конструкции установил специальный прибор - гидростат . Он состоял из цилиндра с подвижным диском и пружиной и размещался в торпеде так, что диск воспринимал давление воды. При изменении глубины хода торпеды диск перемещался вертикально и с помощью тяг и вакуумно-воздушного сервопривода управлял рулями глубины. Гидростат имеет значительное запаздывание срабатывания по времени, поэтому при его использовании торпеда постоянно меняла глубину хода. Для стабилизации работы гидростата Уайтхед использовал маятник, который был соединен с вертикальными рулями таким образом, чтобы ускорить работу гидростата.
Пока торпеды имели ограниченную дальность хода, мер по выдерживанию курса не требовалось. С увеличением дальности торпеды стали значительно отклоняться от курса, что потребовало использовать специальные меры и управлять вертикальными рулями. Наиболее эффективным прибором стал прибор Обри, который представлял из себя гироскоп, который при наклоне любой из его осей стремится занять первоначальное положение. С помощью тяг возвратное усилие гироскопа передавалось на вертикальные рули, благодаря чему торпеда выдерживала первоначально заданный курс с достаточно высокой точностью. Гироскоп раскручивался в момент выстрела с помощью пружины или пневматической турбины. При установке гироскопа на угол, не совпадающий с осью пуска, можно было добиться движения торпеды под углом к направлению выстрела.

Торпеды, оборудованные гидростатическим механизмом и гироскопом, в годы Второй мировой войны стали оборудоваться механизмом циркуляции . После пуска такая торпеда могла двигаться по любой заранее запрограммированной траектории. В Германии такие системы наведения получили название FaT (Flachenabsuchender Torpedo, горизонтально маневрирующая торпеда) и LuT - (Lagenuabhangiger Torpedo, торпеда с автономным управлением). Системы маневрирования позволяли задавать сложные траектории движения, благодаря чему повышалась безопасность стреляющего корабля и повышалась эффективность стрельбы. Циркулирующие торпеды были наиболее эффективны при атаке конвоев и внутренних акваторий портов, то есть при высоком скоплении кораблей противника.

Наведение и управление торпедами при стрельбе

Прибор управления торпедной стрельбой

Торпеды могут иметь различные варианты наведения и управления. Наибольшее распространение сначала имели неуправляемые торпеды, которые, подобно артиллерийскому снаряду, после пуска не оборудовались устройствами изменения курса. Существовали также торпеды, управляемые дистанционно по проводам и человекоуправляемые торпеды, управлявшиеся пилотом. Позже появились торпеды с системами самонаведения, которые самостоятельно наводились на цель используя различные физические поля: электромагнитное, акустическое, оптическое, а так же по кильватерному следу . Существуют также торпеды с дистанционным управлением по радиоканалу и использующие комбинацию различных типов наведения.

Торпедный треугольник

Торпеды Бреннана и некоторые другие типы ранних торпед имели дистанционное управление, в то время как наиболее распространенные торпеды Уайтхеда и их дальнейшие модификации требовали лишь первоначального наведения. При этом было необходимо учесть целый ряд параметров, влияющих на шансы поражения цели. С ростом дальности хода торпед решение задачи их наведения становилась все более сложной. Для наведения использовались специальные таблицы и приборы, с помощью которых рассчитывалось упреждение пуска в зависимости от взаимных курсов стреляющего корабля и цели, их скоростей, дистанции до цели, погодных условиий и других параметров.

Простейшие, но достаточно точные расчеты координат и параметров движения цели (КПДЦ), выполнялись вручную путем вычисления тригонометрических функций. Упростить расчет можно при использовании навигационного планшета или с помощью директора торпедной стрельбы .
В общем случае решение торпедного треугольника сводится к вычислению угла угла α по известным параметрам скорости цели V Ц , скорости торпеды V Т и курса цели Θ . Фактически за счет влияния различных параметров расчет производился, исходя их большего числа данных.

Панель управления Torpedo Data Computer

К началу Второй мировой войны появились автоматические электромеханические калькуляторы, позволяющие произвести расчет пуска торпед. На флоте США использовали Torpedo Data Computer (TDC) . Это был сложный механический прибор, в который перед пуском торпеды вводились данные о корабле-носителе торпеды (курс и скорость), о параметрах торпеде (тип, глубина, скорость) и данные о цели (курс, скорость, дистанция). По введенным данным TDC производил не только расчет торпедного треугольника, но и в автоматическом режиме производил сопровождение цели. Полученные данные передавались в торпедный отсек, где с помощью механического толкателя устанавливался угол гироскопа. TDC позволял вводить данные во все торпедные аппараты, учитывая их взаимное положение, в том числе для веерного пуска. Так как данные о носителе вводились автоматически с гирокомпаса и питометра , во время атаки подводная лодка могла вести активное маневрирование без необходимости повторных расчетов.

Устройства самонаведения

Значительно упрощают расчеты при стрельбе и повышают эффективность использования торпед использование систем дистанционного управления и самонаведения.
Впервые дистанционное механическое управление было применено на торпедах Бреннана, также управление по проводам использовалось на самых различных типах торпед. Радиоуправление впервые были использовано на торпеде Хаммонда в годы Первой Мировой войны .
Среди систем самонаведения наибольшее распространение сначала получили торпеды с акустическим пассивным самонаведением. Первыми поступили на вооружение в марте 1943 года торпеды G7e/T4 Falke, но массовой стала следующая модификация, G7es Т-5 Zaunkönig . В торпеде был использован метод пассивного наведения, при котором прибор самонаведения сначала анализирует характеристики шума, сравнивая их с характерными образцами, а затем формирует сигналы управления механизмом курсовых рулей, сравнивая уровни сигналов, поступающих на левый и правый акустический приемник. В США в 1941 была разработана торпеда Mark 24 FIDO , но из за отсутствия системы анализа шумов она применялась только для сброса с самолетов, так как могла навестись на стреляющий корабль. Торпеда после сброса начинала движение, описывая циркуляцию до момента приема акустических шумов, после чего происходило наведение на цель.
Активные акустические системы наведения содержат гидролокатор , с помощью которого производится наведение на цель по отраженному от нее акустическому сигналу.
Менее распространены системы, осуществляющие наведение по изменению магнитного поля, создаваемое кораблем.
После окончания Второй Мировой войны торпеды стали оборудоваться устройствами, производящими наведение по кильватерному следу, оставляемого целью.

Боевая часть

Pi 1 (Pi G7H) - взрыватель немецких торпед G7a и G7е

Первые торпеды снабжались боевой частью с зарядом пироксилина и ударным взрывателем. При ударе носовой части торпеды об борт цели, иглы ударника разбивают капсюли-воспламенители, которые, в свою очередь, вызывают подрыв взрывчатого вещества.

Срабатывание ударного взрывателя было возможно только при перпендикулярном попадании торпеды в цель. Если соударение происходило по касательной, ударник не срабатывал и торпеда уходила в сторону. Улучшить характеристики ударного взрывателя пытались с помощью специальных усов, расположенных в носовой части торпеды. Чтобы повысить вероятность подрыва, на торпеды стали устанавливать инерционные взрыватели. Инерционный взрыватель срабатывал от маятника, который при резком изменении скорости или курса торпеды освобождал боек, который, в свою очередь, под действием боевой пружины пробивал капсюли, воспламеняющие заряд взрывчатого вещества.

Головной отсек торпеды УГСТ с антенной системы самонаведения и датчиками неконтактных взрывателей

Позже, для повышения безопасности, взрыватели стали оборудовать предохранительной вертушкой, которая раскручивалась после набора торпедой заданной скорости и разблокировала ударник. Таким образом повышалась безопасность стреляющего корабля.

Кроме механических взрывателей, торпеды оборудовались электрическими взрывателями, подрыв которых происходил за счет разряда конденсатора. Конденсатор зарядался от генератора, ротор которого был связан с вертушкой. Благодаря такой конструкции предохранитель случайного подрыва и взрыватель конструктивно объединялись, что повышало их надежность.
Использование контактных взрывателей не позволяло реализовать весь боевой потенциал торпед. Применение толстой подводной брони и противоторпедных булей позволяло не только снизить урон при взрыве торпеды, но и в некоторых случаях избежать повреждений. Значительно повысить эффективность торпед можно было, обеспечив их подрыв не у борта, а под дном корабля. Это стало возможно с появлением неконтактных взрывателей. Такие взрыватели срабатывают под воздействием изменения магнитного, акустического, гидродинамического или оптического полей.
Неконтактные взрыватели бывают активного и пассивного типов. В первом случае взрыватель содержит излучатель, формирующий вокруг торпеды физическое поле, состояние которого контролируется приемником. В случае изменения параметров поля приемник инициирует подрыв взрывчатого вещества торпеды. Пассивные приборы наведения не содержат излучателей, а отслеживают изменения естественных полей, например магнитного поля Земли.

Средства противодействия

Броненосец Евстафий с противоторпедными сетями.

Появление торпед вызвало необходимость разработки и применения средств противодействия торпедным атакам. Так как первые торпеды имели невысокую скорость, с ними можно было бороться, обстреливая торпеды из стрелкового оружия и пушек малого калибра.

Проектируемые корабли стали оборудоваться специальными системами пассивной защиты. С внешней стороны бортов устанавливались противоторпедные були, которые представляли собой частично заполненные водой узконаправленных спонсоны . При попадании торпеды энергия взрыва поглощалась водой и отражалась от борта, снижая повреждения. После Первой Мировой войны также использовался противоторпедный пояс, который состоял из нескольких легкобронированных отсеков, расположенных напротив ватерлинии . Этот пояс поглощал взрыв торпеды и сводил к минимуму внутренние повреждения корабля. Разновидностью противоторпедного пояса являлась конструктивная подводная защита системы Пульезе, использованная на линкоре Giulio Cesare .

Реактивный комплекс противоторпедной защиты кораблей "Удав-1" (РКПТЗ-1)

Достаточно эффективными для борьбы с торпедами являлись противоторпедные сети, вывешенные с бортов корабля. Торпеда, попадая в сети, взрывалась на безопасном удалении от корабля либо теряла ход. Сети использовались так же для защиты корабельных стоянок, каналов и портовых акваторий.

Для борьбы с торпедами, использующими различные типы самонаведения, корабли и подводные лодки оборудуются имитаторами и источниками помех, усложняющими работу различных систем управления. Кроме того, принимаются различные меры, снижающие физические поля корабля.
Современные корабли оборудуются активными системами противоторпедной защиты. К таким системам относится, например, реактивный комплекс противоторпедной защиты кораблей "Удав-1" (РКПТЗ-1), в котором используются три вида боеприпасов (снаряд-отводитель, снаряд заградитель, глубинный снаряд), десятиствольная автоматизированная пусковая установка со следящими приводами наведения, приборов управления стрельбой, устройств заряжания и подачи. (англ.)

Видео


Торпеда Whitehead 1876 года


Торпеда Howell 1898 года

В настоящее время отмечается серьезный рост отставания России в проектировании и разработке торпедного вооружения. Долгое время ситуацию хоть, как-то сглаживало наличие в России принятых на вооружении в 1977 году ракето-торпед «Шквал», с 2005 года подобное вооружение появилось и в Германии. Имеется информация, что немецкие ракето-торпеды «Барракуда» способны развивать большую, чем «Шквал» скорость, но пока российские торпеды подобного типа распространены более широко. В целом же отставание обычных российских торпед от зарубежных аналогов достигает 20-30 лет.

Основным производителем торпед в России является ОАО «Концерн «Морское подводное – Гидроприбор». Данное предприятие в ходе проведения международного военно-морского салона в 2009 году («МВМС-2009») представило на суд публике свои разработки, в частности 533 мм. универсальную телеуправляемую электрическую торпеду ТЭ-2. Данная торпеда предназначена для поражения современных кораблей подводных лодок противника в любом районе Мирового океана.

Торпеда обладает следующими характеристиками: длина с катушкой (без катушки) телеуправления – 8300 (7900) мм, общая масса – 2450 кг., масса боевого заряда – 250 кг. Торпеда способна развивать скорость от 32 до 45 узлов на дальности в 15 и 25 км., соответственно и обладает сроком службы в 10 лет.

Торпеда оснащается акустической системой самонаведения (активная по надводной цели и активно-пассивная по подводной) и неконтактными электромагнитными взрывателями, а также достаточно мощным электродвигателем, обладающим устройством понижения уровня шума.

Торпеда может быть установлена на подводные лодки и корабли различных типов и по желанию заказчика выполнена в трех различных вариантах. Первый ТЭ-2-01 предполагает механический, а второй ТЭ-2-02 электрический ввод данных по обнаруженной цели. Третий вариант торпеды ТЭ-2 имеют меньшие массогабаритные показатели при длине в 6,5 метра и предназначен для использования на подводных лодках натовского образца, к примеру, на немецких подлодках проекта 209.

Торпеда ТЭ-2-02 специально разрабатывалась для вооружения атомных многоцелевых подводных лодок 971 проекта класса «Барс», которые несут ракетно-торпедное вооружение. Есть информация, что подобная АПЛ по контракту была закуплена военно-морским флотом Индии.

Самое печальное в том, что подобная торпеда уже сейчас не отвечает ряду требований предъявляемых к подобному оружию, а также уступает по своим техническим характеристикам иностранным аналогам. Все современные торпеды западного производства и даже новое торпедное оружие китайского производства имеет шланговое телеуправление. На отечественных же торпедах применяется буксируемая катушка – рудимент почти 50-летней давности. Что фактически ставит наши подводные лодки под расстрел противника с гораздо большими эффективными дистанциями по стрельбе. Не одна из представленных на выставке МВМС-2009 отечественных торпед не имела шланговой катушки телеуправления, у всех буксируемые. В свою очередь все современные торпеды оснащаются оптико-волоконной системой наведения, которая размещается на борту подводной лодки, а не на торпеде, что сводит к минимуму помехи от ложных целей.

К примеру, современная американская дистанционно-управляемая торпеда большой дальности Mk-48 разработанная для поражения скоростных подводных и надводных целей способна развивать скорость до 55 и 40 узлов на дистанциях в 38 и 50 километров соответственно (оцените при этом возможности отечественной торпеды ТЭ-2 45 и 32 узла на дальностях 15 и 25 км ). Американская торпеда оборудована системой многократной атаки, которая срабатывает при потере торпедой цели. Торпеда способна самостоятельно обнаружить, осуществить захват и атаковать цель. Электронная начинка торпеды настроена таким образом, что позволяет поражать подводные лодки противника в районе командного поста, расположенного за торпедным отсеком.


Ракето-торпеда "Шквал"


Единственным положительным моментом на данный момент можно считать переход в российском флоте от тепловых к электрическим торпедам и вооружениям на ракетном топливе, которые на порядок устойчивее к всевозможным катаклизмам. Напомним, что АПЛ «Курск» со 118 членами команды на борту, которая погибла в акватории Баренцева моря в августе 2000 года, затонула в результате взрыва тепловой торпеды. Сейчас торпеды того класса, каким был вооружен подводный ракетоносец «Курск» уже сняты с производства и не эксплуатируются.

Наиболее вероятным развитием торпедного оружия в ближайшие годы станет совершенствование так называемых кавитирующих торпед (они же ракето-торпеды). Отличительной их особенностью служит носовой диск диаметром около 10 см., который создает перед торпедой воздушный пузырь, который способствует уменьшению сопротивления воды и позволяет добиваться приемлемой точности, при высокой скорости движения. Примером таких торпед служит отечественная ракета-торпеда «Шквал» диаметра 533 мм., которая способна развивать скорость до 360 км/ч, масса боевой части 210 кг., торпеда не имеет системы самонаведения.

Распространению такого вида торпед препятствует не в последнюю очередь то, что на высоких скоростях их движения трудно расшифровывать гидроакустические сигналы для управления ракето-торпедой. Подобные торпеды вместо винта используют в качестве движителя реактивный двигатель, что в свою очередь затрудняет управление ими, некоторые типы таких торпед способны двигаться только по прямой. Есть сведения, что в настоящее время ведутся работы по созданию новой модели «Шквала», которая получит систему самонаведения и увеличенный вес боевой части.