Самые твердые металлы находятся. Самый прочный металл в мире

Самый твердый металл - хром, титан.

Хром — элемент побочной подгруппы шестой группы четвёртого периода периодической системы химических элементов Менделеева Д.И., с атомным номером 24. Обозначается символом Cr (латин. Chromium). Простое вещество хром (CAS-номер: 7440-47-3) — твёрдый металл голубовато-белого цвета.

Хром в природе встречается в основном в виде хромистого железняка Fe(CrO2)2 (хромит железа). Из него получают феррохром восстановлением в электропечах коксом (углеродом):
FeO · Cr2O3 + 4C → Fe + 2Cr + 4CO

Хром относится к достаточно распространенным элементам, содержание его в земной коре составляет примерно 0,02% (22-е место).

Феррохром применяют для производства легированных сталей.

Чтобы получить чистый хром, реакцию ведут следующим образом:

1) сплавляют хромит железа с карбонатом натрия (кальцинированная сода) на воздухе:
4Fe(CrO2)2 + 8Na2CO3 + 7O2 → 8Na2CrO4 + 2Fe2O3 + 8CO2

2) растворяют хромат натрия и отделяют его от оксида железа;

3) переводят хромат в дихромат, подкисляя раствор и выкристаллизовывая дихромат;

4) получают чистый оксид хрома восстановлением дихромата углём:
Na2Cr2O7 + 2C → Cr2O3 + Na2CO3 + CO

5) с помощью алюминотермии получают металлический хром:
Cr2O3+ 2Al → Al2O3 + 2Cr + 130 ккал

6) с помощью электролиза получают электролитический хром из раствора хромового ангидрида в воде, содержащего добавку серной кислоты. При этом на катодах совершаются в основном 3 процесса:
восстановление шестивалентного хрома до трехвалентного с переходом его в раствор;
разряд ионов водорода с выделением газообразного водорода;
разряд ионов, содержащих шестивалентный хром, с осаждением металлического хрома;
Cr2O72− + 14Н+ + 12е− = 2Cr + 7H2O

Получение хрома

Сырьем для промышленного получения хрома служит хромистый железняк. Его химическая переработка приводит к Cr2O3. Восстановление Cr2O3 с помощью алюминия или кремния дает металлический хром невысокой степени чистоты:
Cr2O3+Аl=Аl2O3+2Cr
2Cr2O3+3Si=3SiO2+4Cr
Более чистый металл получают электролизом концентрированных растворов соединений хрома.

Тита́н - (лат. Titanium; обозначается символом Ti) — элемент побочной подгруппы четвёртой группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 22. Простое вещество титан (CAS-номер: 7440-32-6) — лёгкий металл серебристо-белого цвета. Существует в двух кристаллических модификациях: α-Ti с гексагональной плотноупакованной решёткой, β-Ti с кубической объёмно-центрированной упаковкой, температура перехода α↔β 883 °C

Самые мягкие металлы — калий, рубидий, цезий .

Калий — элемент главной подгруппы первой группы, четвёртого периода периодической системы химических элементов Менделеева Д.И., с атомным номером 19. Обозначается символом K (латин. Kalium). Простое вещество калий (CAS-номер: 7440-09-7) — мягкий щелочной металл серебристо-белого цвета.
В природе калий встречается только в соединениях с другими элементами, например, в морской воде, а также во многих минералах. Он очень быстро окисляется на воздухе и очень легко вступает в химические реакции, особенно с водой, образуя щёлочь. Во многих отношениях химические свойства калия очень близки к натрию, но с точки зрения биологической функции и использования их клетками живых организмов они все же отличаются.

Рубидий — элемент главной подгруппы первой группы, пятого периода периодической системы химических элементов Менделеева Д.И., с атомным номером 37. Обозначается символом Rb (лат. Rubidium). Простое вещество рубидий (CAS-номер: 7440-17-7) — мягкий щелочной металл серебристо-белого цвета.

Цезий — элемент главной подгруппы первой группы шестого периода периодической системы химических элементов Менделеева Д.И., атомный номер 55. Обозначается символом Cs (лат. Caesium). Простое вещество цезий (CAS-номер: 7440-46-2) — мягкий щелочной металл серебристо-жёлтого цвета. Своё название цезий получил за наличие двух ярких синих линий в эмиссионном спектре (от лат. caesius — небесно-голубой).

— Для начала скажи-ка мне, Панамка, какие ты вообще знаешь металлы ?
— Железо.
— А еще?
— Еще? Нет, больше не знаю.
— Знаешь, знаешь. Ты подумай хорошенько, вспомни. Ладно, подскажу. Вот ответь, из чего сделано грузило для удочки?
— Из свинца.
— А мамино колечко из чего?
— Из золота.
— Правильно. Но и свинец и золото — металлы. Кастрюля — алюминиевая, значит, металлическая, ступка и пестик — латунные, металлические провода, если соскоблить с них пластмассовую «одежду», — медные, металлические. Много еще на свете разных металлов! И у многих из них удивительнейшие свойства. Какие? А вот ответь на мои вопросы: обязательно ли металлы тонут в воде?
— Обязательно. Даже иголка и та тонет. Я видел.
— Так вот, есть, Панамка, такие легкие металлы, которые плавают в воде, как пробка. Один из них называется литием. Он легче воды... не помню, на сколько. Бумка, наверное, знает.
— АЛЛО, ВКЛЮЧАЮСЬ.
ЛИТИЙ ВДВОЕ ЛЕГЧЕ ВОДЫ И В 15 РАЗ ЛЕГЧЕ ЖЕЛЕЗА. ЛИТИЙ ВХОДИТ В СОСТАВ БОЛЕЕ 150 МИНЕРАЛОВ ОН ЕСТЬ ПОЧТИ В КАЖДОМ КАМНЕ И ПОЭТОМУ ПОЛУЧИЛ ТАКОЕ НАЗВАНИЕ: ГРЕЧЕСКОЕ СЛОВО «ЛИТОС» ОЗНАЧАЕТ «КАМЕНЬ». ЭТОТ СЕРЕБРИСТОБЕЛЫЙ МЕТАЛЛ В ЖАРКИХ
ПЕЧАХ РАСПЛАВЛЯЮТ И СМЕШИВАЮТ С ДРУГИМИ МЕТАЛЛАМИ. ПОЛУЧАЮТСЯ СПЛАВЫ. АЛЮМИНИЙ НЕ ОЧЕНЬ ПРОЧЕН, НО, ЕСЛИ ЕГО СПЛАВИТЬ С ЛИТИЕМ, ПОЛУЧАЕТСЯ МЕТАЛЛ КУДА ПРОЧНЕЕ.
— Спасибо, Бумка. Задаю новый вопрос: металлы болеют?
— Болеют?! Вот смешно!
Значит, у водопроводного крана бывает насморк, а у перочинного ножика — коклюш?
Умора!
— Металлы еще как болеют.
Разве ржавчина, о которой мы недавно говорили, не болезнь металлов? Они от нее даже «умирают», разрушаются. Была сталь , а долго пролежала в воде — разрушилась, покрылась рыжей ржавчиной. Тронь — рассыплется в порошок. Недаром в народе говорят: ржа (тоесть ржавчина) железо ест. Вот и съела. Теперь ответь — бывает ли металл жидкий? Не когда его расплавят в жаркой печи, а всегда жидкий?
— Жидкий металл, дедушка Знай? Да это все равно что «горячий лед»!
— Значит, говоришь, не бывает? А ты разве забыл про ртуть, которая показывает температуру в градуснике? Это же самый настоящий жидкий металл ! Случайно уронишь, разобьешь градусник — ртуть растечется по полу мелкими шариками. Соберешь их — мигом сольются в один. Твердеет этот жидкий металл лишь на очень сильном морозе.
Кстати, ртуть нужна не только для градусников. Она необходима и для ламп-трубок, которые дают яркий дневной свет. Ртуть входит в состав красок, которыми покрывают днища кораблей. После этого корабли не так ржавеют даже в соленой морской воде и их днище меньше обрастает ракушками и водорослями.
Ну а под конец давай ответим на вопрос: какой металл самый прочный, какой самый мягкий?
Сперва о самом прочном. Он серебристо-белого цвета и называется титаном. Титан в 12 раз тверже алюминия, в 4 раза тверже железа и меди. Если раскалить другие металлы, они сразу потеряют прочность. Но титан ... температура 500 градусов, а он все такой же прочный, как был. Не зря ведь многие части реактивных самолетов сделаны из титана. Этот металл такой прочный, что поддается только самым могучим машинам-молотам.
Зато натрий (тоже серебристо-белый) , хоть он и металл, ничего не стоит сплющить пальцами. А магний знаменит тем, что хорошо горит. Да, да — металл, а горит! Поднес к тонкой стружке магния зажженную спичку — он и вспыхнул.

Вот вам ответ на вопрос: Какой металл самый твёрдый, какой - самый мягкий

С детских лет мы знаем, что самый прочный металл - это сталь. Все железное у нас ассоциируется ней.

Железный человек, железная леди, стальной характер. Произнося эти фразы, мы подразумеваем невероятную прочность, силу, твердость.

Продолжительное время в производстве и вооружении основным материалом была сталь. Но сталь - не металл. Если точнее, то не совсем чистый металл. Это с углеродом, в котором присутствуют и другие металлические добавки. Применяя добавки, т.е. изменяют ее свойства. После этого она подвергается обработке. Сталеварение - это целая наука.

Самый прочный металл получается при введении в сталь соответствующих лигатур. Это может быть хром, который придает и жаростойкость, никель, делающий сталь твердой и эластичной и т.д.

По некоторым позициям сталь начал вытеснять алюминий. Время шло, росли скорости. Не выдерживал и алюминий. Пришлось обратиться к титану.

Да-да, ведь титан - самый прочный металл. Для придания стали высоких прочностных характеристик в нее начали добавлять титан.

Его открыли в XVIII веке. Из-за хрупкости его применить было невозможно. Со временем, получив чистый титан, инженеры и конструкторы заинтересовались его высокой удельной прочностью, малой плотностью, стойкостью к коррозии и высоким температурам. Его физическая крепость превосходит прочность железа в несколько раз.

Инженеры стали добавлять титан в сталь. Получился самый прочный металл, который нашел применение в среде сверхвысоких температур. На то время их не выдерживал ни один другой сплав.

Если представить самолет, который летит в три раза быстрее, чем можно представить, как разогревается обшивочный металл. Листовой металл обшивки самолета в таких условиях разогревается до +3000С.

Сегодня титан применяют неограниченно во всех сферах производства. Это медицина, авиастроение, производство кораблей.

Со всей очевидностью можно сказать, что в скором будущем титану придется подвинуться.

Учеными из США, в лабораториях Техасского университета в городе Остин, открыт самого тонкого и самого прочного материала на Земле. Назвали его - графен.

Вообразите себе пластину, толщина которой равна толщине одного атома. Но такая пластина прочнее алмаза и в сто раз лучше пропускает электрический ток, чем компьютерные чипы из кремния.

Графен - материал с поражающими свойствами. Он скоро покинет лаборатории и по праву займет свое место среди самых прочных материалов Вселенной.

Даже невозможно себе представить, что нескольких граммов графена будет достаточно, чтобы покрыть поле для игры в футбол. Вот это металл. Трубы из такого материала можно будет укладывать вручную без применения подъемно-транспортных механизмов.

Графен, как и алмаз - это чистейший углерод. Его гибкость поражает. Такой материал легко сгибается, прекрасно складывается и отлично сворачивается в рулон.

К нему уже начали присматриваться производители сенсорных экранов, солнечных батарей, сотовых телефонов, и, наконец, суперскоростных компьютерных чипов.

Многие из нас даже не представляют какой метал самый твердый.
Сталь, хоть и прочный, но не чистый металл, ее получают путем сплава железа с углеродом и некоторыми другими металлами-добавками. И при необходимости сталь подвергают обработке, чтобы изменить ее свойства.

Титан – самый твёрдый и прочный металл в мире.

Механическая прочность титана в два раза выше прочности железа
К примеру, самолет на высоте в 20 километров развивает скорость в три раза выше, чем скорость звука. И температура его корпуса при этом около 300 градусов по Цельсию.
Нагрузки такие выдерживает только титановый сплав.

* Одними из самых твердых металлов, так же, являются осмий и иридий.

* Еще один из твердых из чистейших металлов на планете – хром.

Немного о титане:
Титан открыли немецкий и английский химики Грегор и Клапрот независимо друг от друга с разницей в шесть лет. Произошло это в конце 18-го века. Вещество тут же заняло место в периодической системе Менделеева. Спустя три десятилетия был получен первый образец металлического титана. И довольно долго металл не использовали из-за его хрупкости. Ровно до 1925 года – именно тогда, после ряда опытов, иодидным методом был получен чистый титан. Открытие стало настоящим прорывом.

Титан оказался технологичным, на него тут же обратили внимание конструкторы и инженеры. И сейчас металл из руды получают, в основном, магниетермический способом, который предложили в 1940 году.

Если затрагивать физические свойства титана, то можно отметить его высокую удельную прочность, прочности при высоких температурах, маленькую плотность и коррозийную стойкость. Механическая прочность титана в два раза выше прочности железа и в шесть – алюминия. При высоких температурах, где легкие сплавы уже не работают (на основе магния и алюминия), на помощь приходят титановые сплавы. К примеру, самолет на высоте в 20 километров развивает скорость в три раза выше, чем скорость звука. И температура его корпуса при этом около 300 градусов по Цельсию. Нагрузки такие выдерживает только титановый сплав. По распространенности в природе металл занимает десятое место. Титан добывают в ЮАР, России, Китае, Украине, Японии и Индии. И это далеко не полный перечень стран.

Первым металлом, который человечество стало использовать для хозяйственных целей, была медь: легкая в обработке, она встречается в природе довольно часто, поэтому неудивительно, что именно она послужила материалом для первых металлических ножей и топоров. Немного позже люди обнаружили, что, добавляя в медь олово, можно получить значительно более прочный сплав – бронзу. А когда освоили железо, то оказалось, что оно в чистом виде ненамного прочнее меди, а вот в соединении с углеродом приобретает куда лучшие прочностные качества. Средневековые алхимики, помимо поисков философского камня, экспериментировали и со сплавами, стараясь определить, какой самый твердый металл в мире, но все опыты подтверждали: сплавы прочнее чистого металла, каким бы он ни был. А как же обстоит дело сегодня?

Самые твердые

Все наиболее прочные «чистокровные» металлы были открыты человеком довольно поздно. Причина проста: они встречаются куда реже, чем привычные для нас железо или медь. Существует несколько методов определения твердости материалов: по Моосу, по Виккерсу, по Бринеллю и по Роквеллу, данные которых немного разнятся. По шкале Мооса, например, железо имеет значение лишь 4, а наибольшая твердость у алмаза – 10. А десятка металлов, чья твердость от 5 единиц и выше, выглядит так:

  • иридий – 5;
  • рутений – 5;
  • тантал – 5;
  • технеций – 5;
  • хром – 5;
  • бериллий – 5,5;
  • осмий – 5,5;
  • рений – 5,5;
  • вольфрам – 6;
  • уран – 6.

Большинство из этой «великолепной десятки» встречаются в природе чрезвычайно редко (например, годовая добыча рутения в мире составляет около 18 тонн, а рения – около 40 тонн) или обладают радиоактивностью, затрудняющей их применение в быту. И все они имеют весьма значительную стоимость, за исключением, пожалуй, хрома. Именно высокая твердость и относительно низкая цена на этот металл сделали его популярным при изготовлении прочных сплавов.

Использование самых твердых металлов

Вследствие того, что большинство самых твердых металлов встречаются в природе очень редко, их прочностные качества остаются невостребованными или востребованными крайне ограниченно, например, для покрытия узлов и частей механизмов, подвергающихся наибольшей нагрузке. А вот применять при изготовлении инструментальной стали или брони добавки из рения или рутения, согласитесь, глупо. Этих металлов просто не хватит на все. Поэтому хром и оказался очень востребованным. Он является важнейшей легирующей добавкой, улучшающей как прочность, так и коррозионную стойкость сплавов.

Некоторые из твердых металлов в очень небольших количествах используются в медицине, при создании космической техники, в качестве катализаторов и в некоторых других областях. В этих случаях востребованной оказалась не их твердость, а другие сопутствующие качества. Вольфрам, например, как самый тугоплавкий металл на планете (температура плавления +3422 по Цельсию), нашел применение при создании нитей накаливания осветительных приборов. В небольших количествах он добавляется в сплавы, которые должны выдерживать действие высокой температуры длительное время – например, в металлургической промышленности.

Уран

Уран, как и вольфрам, – самый твердый металл на Земле, но уран значительно больше распространен на нашей планете, поэтому нашел куда более широкое применение. И его радиоактивность не стала этому помехой. Самое известное применение урана – в качестве «топлива» в атомных электростанциях. Кроме того, он используется в геологии для определения возраста горных пород и в химической промышленности.

Прочностные свойства и высокий удельный вес урана (он в 19 раз тяжелее воды) пригодились при создании бронебойных боеприпасов. В этом случае в ход идет не чистый металл, а его обедненная разновидность, почти полностью состоящая из слаборадиоактивного изотопа уран-238. Тяжелые сердечники из такого металла отлично пробивают даже хорошо бронированные цели. Насколько остаточные явления применения подобных боеприпасов вредят окружающей среде и человеку, достоверно пока не известно, поскольку статистического материала по данному вопросу накоплено слишком мало.

В мире есть много одинаковых по показателям твёрдости металлов, но не все они широко используются в промышленности. Причин тому может быть несколько: редкость и потому дороговизна или же радиоактивность, которая препятствует использованию в человеческих нуждах. Среди самых твёрдых металлов можно выделить 6 лидеров, покоривших мир своими особенностями.

Твёрдость металлов принято измерять по шкале Мооса. В основе метода измерения твёрдости – оценка устойчивости к царапинам другими металлами. Таким образом, было определено, что наивысшей твёрдостью обладают уран и вольфрам. Однако есть металлы, которые больше используются в разных сферах жизни, хоть их твердость и не наивысшая по шкале Мооса. Поэтому, раскрывая тему о самых твёрдых металлах, неправильно будет не упомянуть об известном титане, хроме, осмии и иридии.

На вопрос, какой самый твёрдый металл, любой человек, изучающий химию и физику в школе, ответит: «Титан». Конечно, существуют сплавы и даже самородки в чистом виде, которые превосходят его по прочности. Но среди используемых в быту и производстве титану нет равных.

Чистый титан впервые был получен в 1925 году и тогда же был объявлен самым твёрдым металлом на Земле. Его сразу стали активно использовать в абсолютно разных сферах производства – от деталей ракет и воздушного транспорта до зубных имплантатов. Заслугой такой популярности металла стали несколько его главных свойств: высокая механическая прочность, стойкость к коррозиям и высоким температурам и низкая плотность. По шкале твёрдости металлов Мооса титан обладает степенью 4.5, что не является самым высоким показателем. Однако его популярность и задействованность в различных отраслях делает его первым по твёрдости среди часто используемых.

Титан самый твёрдый среди часто используемых в производстве металлов

Детальнее про применение титана в промышленности. Данный метал имеет широкий спектр использования:

  • Авиационная промышленность – детали планерной части самолётов, газовые турбины, обшивки, силовые элементы, детали шасси, заклёпки и т.д;
  • Космическая техника – обшивки, детали;
  • Кораблестроение – обшивка судов, детали насосов и трубопроводов, навигационные приборы, турбинные двигатели, паровые котлы;
  • Машиностроение – конденсаторы турбин, трубы, износостойкие элементы;
  • Нефтегазовая промышленность – трубы для бурения, насосы, сосуды высокого давления;
  • Автостроение – в механизмах клапанов и выхлопных систем, передаточных валов, болтов, пружин;
  • Строительство – наружная и внутренняя обшивка зданий, кровельные материалы, лёгкие крепежные приспособления и даже памятники;
  • Медицина – хирургические инструменты, протезы, имплантаты, корпусы для кардиологических приборов;
  • Спорт – спортивный инвентарь, туристические принадлежности, детали для велосипедов.
  • Товары народного потребления – ювелирные украшения, декоративные изделия, садовой инвентарь, наручные часы, кухонная утварь, корпуса электроники и даже колокола, а также добавляют в состав красок, белил, пластика и бумаги.

Можно увидеть, что титан востребован в абсолютно разных сферах промышленности за счет его физико-химических свойств. Пусть он и не самый твёрдый металл в мире по шкале Мооса, изделия из него куда прочнее и легче стали, меньше изнашиваются и более стойкие к раздражителям.


Титан считается самым твердым среди активно потребляемых металлов

Самым твёрдым в своем натуральном виде считается металл голубовато-белого цвета – хром. Он был открыт еще в конце 18 века и с тех пор широко используется в производстве. По шкале Мооса твёрдость хрома составляет 5. И не зря – им можно резать стекло, а при соединении с железом он способен резать даже металл. Также хром активно применяется в металлургии – его добавляют в сталь, чтобы улучшить ее физические свойства. Спектр использования хрома весьма разнообразен. Из него изготавливают стволы огнестрельного оружия, медицинское и химическое технологическое оборудование, бытовые принадлежности – кухонная утварь, металлические части мебели и даже корпусы подводных лодок.


Наивысшая твёрдость в чистом виде - хром

Хром используют в различных сферах, например, для производства нержавеющей стали, или для покрытия поверхностей – хромирования (техника, автомобили, детали, посуда). Часто этот метал используют при изготовлении стволов огнестрельного оружия. Также нередко этот металл можно встретить при производстве красителей и пигментов. Удивительным может показаться еще одна сфера его использования – это производство диетических добавок, а в создании технологического оборудования для химических и медицинских лабораторий без хрома никак нельзя обойтись.

Осмий и иридий – представители металлов платиновой группы, имеют почти одинаковую плотность. В своем чистом виде в природе встречаются невероятно редко, а чаще всего – в сплаве друг с другом. Иридий по природе своей обладает высокой твердостью, из-за чего плохо поддается металлообработке, как механической, так и химической.


Осмий и иридий обладают наивысшей плотностью

Активно применять иридий в промышленности стали сравнительно недавно. Раньше его использовали с осторожностью, поскольку его физико-химические характеристики были изучены не до конца. Теперь иридий используют даже в изготовлении ювелирных изделий (в качестве инкрустаций или в сплаве с платиной), хирургических инструментов и деталей для сердечных стимуляторов. В медицине металл просто незаменим: его биопрепараты могут помочь побороть онкологию, а облучение его радиоактивным изотопом может остановить процесс роста раковых клеток.

Две трети добываемого в мире иридия уходит в химическую промышленность, а остальное распределяется между другими отраслями производства – напыления в металлургической индустрии, товарах народного использования (элементы перьевых ручек, ювелирные изделия), медицине при производстве электродов, элементов кардиостимуляторов и хирургических инструментов, а также для улучшения физико-химических и механических свойств металлов.


Твёрдость иридия по шкале Мосса – 5

Осмий – серебристо-белый металл с голубоватым отливом. Он был открыт позже иридия на год, а сейчас его нередко находят в железных метеоритах. Помимо высокой твёрдости, осмий отличается своей дороговизной – 1 грамм чистого металла оценивается в 10 тысяч долларов. Еще одной его особенностью считается его вес – 1 литр расплавленного осмия равен 10 литрам воды. Правда, ученые еще не нашли применения этому свойству.

Из-за редкости и высокой стоимости осмий задействуется только там, где никакой другой металл не может быть использован. Широкого применения ему так и не нашли, да и нет смысла в поисках, пока поставки металла не станут регулярными. Сейчас осмий используется для изготовления инструментов, требующих высокой точности. Изделия из него почти не изнашиваются и обладают значительной прочностью.


Показатель твёрдости осмия достигает 5.5

Один из наиболее знаменитых элементов, который является одним из самых твёрдых металлов в мире, – уран. Это металл светло-серого цвета, обладающий слабой радиоактивностью. Уран считается одним из самых тяжелых металлов – его удельный вес в 19 раз превышает вес воды. Он также обладает относительной пластичностью, ковкостью и гибкостью, парамагнитными свойствами. По шкале Мосса твёрдость металла составляет 6, что считается очень высоким показателем.

Раньше уран почти не использовался, а встречался только как рудный отход при добыче других металлов – радия и ванадия. На сегодняшний день уран добывается в месторождениях, основными источниками являются Скалистые горы США, Республика Конго, Канада и Южно-Африканский Союз.

Несмотря на радиоактивность, уран активно потребляется человечеством. Наиболее востребован в атомной энергетике – его используют как топливо для ядерных реакторов. Также уран применяется в химической промышленности и в геологии – для определения возраста горных пород.

Не пропустила невероятные показатели удельного веса и военная инженерия. Уран регулярно используется для создания сердечников бронебойных снарядов, которые, за счет высокой прочности, отлично справляются с поставленной задачей.


Уран является самым твёрдым металлом, но он радиоактивный

Увенчивает наш список самых твёрдых металлов на Земле блестящий серебристо-серый вольфрам. По шкале Мооса твердость вольфрама равна 6, как и у урана, но, в отличие от последнего, он не является радиоактивным. Природная твёрдость, однако, не лишает его гибкости, потому вольфрам идеально подходит для ковки разных металлических изделий, а его устойчивость к высоким температурам позволяет применять его в осветительных приборах и электронике. Потребление вольфрама не достигает больших оборотов, и главной тому причиной является его ограниченное количество в месторождениях.

Благодаря высоким показателям плотности вольфрам широко используется в оружестроении для производства тяжеловесов и артиллерийских снарядов. Вообще вольфрам активно используется в военной инженерии – пули, противовесы, баллистические ракеты. Следующим по популярности использования этого метала является авиация. Из него изготавливают двигатели, детали электровакуумных приборов. В строительстве используют режущие инструменты из вольфрама. Также он является незаменимым элементом при производстве лаков и светоустойчивых красок, огнестойких и водонепроницаемых тканей.


Вольфрам считается наиболее тугоплавким и прочным

Изучив свойства и сферы потребления каждого металла, сложно однозначно сказать, какой же самый твердый металл в мире, если брать во внимание не только показатели шкалы Мооса. Каждый из представителей имеет ряд преимуществ. Например, титан, не обладающий сверхвысокой твердостью, прочно занял первое место среди самых используемых металлов. А вот уран, твердость которого достигает наивысшей отметки среди металлов, не так популярен из-за слабой радиоактивности. А вольфрам, который не излучает радиации и имеет наивысшую прочность и очень хорошие показатели податливости, не может быть активно использован из-за ограниченных ресурсов.