Газовые турбины устройство и принцип работы. Газовые турбины — надёжные силовые агрегаты современных электростанций

Паровая турбина. Попытки сконструировать паровую турбину, способную конкурировать с паровой машиной, до середины XIX в. были безуспешными, так как в механическую энергию вращения турбины удавалось преобразовать лишь незначительную долю кинетической энергии струи пара. Дело в том, что изобретатели

не учитывали зависимость КПД турбины от соотношения скорости пара и линейной скорости лопаток турбины.

Выясним, при каком соотношении скорости струи газа и линейной скорости лопатки турбины произойдет наиболее полная передача кинетической энергии струи газа лопатке турбины (рис. 36). При полной передаче кинетической энергии пара лопатке турбины скорость струи относительно Земли должна быть равна нулю, т.е.

В системе отсчета, движущейся со скоростью скорость струи равна: .

Так как в этой системе отсчета лопатка в момент взаимодействия со струей неподвижна, то скорость струи после упругого отражения остается неизменной по модулю, но меняет направление на противоположное:

Переходя вновь в систему отсчета, связанную с Землей, получим скорость струи после отражения:

Так как то

Мы получили, что полная передача кинетической энергии струи турбине будет происходить при условии, когда линейная скорость движения лопаток турбины вдвое меньше скорости струи Первая паровая турбина, нашедшая практическое применение, была изготовлена шведским инженером Густавом Лавалем в 1889 г. Ее мощность была меньше при частоте вращения об/мин.

Рис. 36. Передача кинетической энергии струи пара лопатке турбины

Большая скорость истечения газа даже при средних перепадах давлений, составляющая примерно 1200 м/с, требует для эффективной работы турбины придания ее лопаткам линейной скорости около 600 м/с. Следовательно, для достижения высоких значений КПД турбина должна быть быстроходной. Нетрудно подсчитать силу инерции, действующую на лопатку турбины массой 1 кг, расположенную на ободе ротора радиусом 1 м, при скорости лопатки 600 м/с:

Возникает принципиальное противоречие: для экономичной работы турбины требуются сверхзвуковые скорости вращения ротора, но при таких скоростях турбина разрушится силами инерции. Для разрешения этого противоречия приходится конструировать турбины, вращающиеся со скоростью, меньшей оптимальной, но для полного использования кинетической энергии струи пара делать их многоступенчатыми, насаживая на общий вал несколько роторов возрастающего диаметра. Из-за недостаточно большой скорости вращения турбины пар отдает только часть своей кинетической энергии ротору меньшего диаметра. Затем отработавший в первой ступени пар направляется на второй ротор большего диаметра, отдавая его лопаткам часть оставшейся кинетической энергии и т. д. Отработавший пар конденсируется в охладителе-конденсаторе, а теплая вода направляется в котел.

Цикл паротурбинной установки в координатах показан на рисунке 37. В котле рабочее тело получает количество тепла нагревается и расширяется при постоянном давлении (изобара АВ). В турбине пар адиабатически расширяется (адиабата ВС), совершая работу по вращению ротора. В конденсаторе-охладителе, омываемом, например, речной водой, пар отдает воде количество тепла и конденсируется при постоянном давлении. Этому процессу соответствует изобара . Теплая вода из конденсатора насосом подается в котел. Этому процессу соответствует изохора Как видно, цикл паротурбинной установки замкнутый. Работа пара за один цикл численно равна площади фигуры ABCD.

Современные паровые турбины обладают высоким КПД преобразования кинетической

Рис. 37. Диаграмма рабочего цикла паротурбинной установки

энергии струи пара в механическую энергию, несколько превышающим 90%. Поэтому электрические генераторы практически всех тепловых и атомных электростанций мира, дающие более 80% всей вырабатываемой электроэнергии, приводятся в действие паровыми турбинами.

Так как температура пара, применяемого в современных паротурбинных установках, не превышает 580 С (температура нагревателя ), а температура пара на выходе из турбины обычно не ниже 30 °С (температура холодильника ), максимальное значение КПД паротурбинной установки как тепловой машины равно:

а реальные значения КПД паротурбинных конденсационных электростанций достигают лишь около 40%.

Мощность современных энергоблоков котел - турбина - генератор достигает кВт. На очереди в 10-й пятилетке сооружение энергоблоков мощностью до кВт.

Паротурбинные двигатели нашли широкое применение на водном транспорте. Однако их применению на сухопутном транспорте и тем более в авиации препятствует необходимость иметь топку и котел для полу ения пара, а также большое количество воды для использования в качестве рабочего тела.

Газовые турбины. Мысль об устранении топки и котла в тепловой машине с турбиной путем перенесения места сжигания топлива в само рабочее тело давно занимала конструкторов. Но разработка таких турбин внутреннего сгорания, в которых рабочим телом является не пар, а расширяющийся от нагревания воздух, сдерживалась отсутствием материалов, способных работать длительное время при высоких температурах и больших механических нагрузках.

Газотурбинная установка состоит из воздушного компрессора 1, камер сгорания 2 и газовой турбины 3 (рис. 38). Компрессор состоит из ротора, укрепленного на одной оси с турбиной, и неподвижного направляющего аппарата.

При работе турбины ротор компрессора вращается. Лопатки ротора имеют такую форму, что при их вращении давление перед компрессором понижается, а за ним повышается. Воздух засасывается в компрессор, и давление его за первым рядом лопаток ротора повышается. За первым рядом лопаток ротора расположен ряд лопаток неподвижного направляющего аппарата компрессора, с помощью которого изменяется направление движения воздуха и обеспечивается возможность его дальнейшего сжатия с помощью лопаток второй ступени ротора и т. д. Несколько ступеней лопаток компрессора обеспечивают позышенне давления воздуха в 5-7 раз.

Процесс сжатия протекает адиабатически, поэтому температура воздуха значительно повышается, достигая 200 °С и более.

Рис. 38. Устройство газотурбинной установки

Сжатый воздух поступает в камеру сгорания (рис. 39). Одновременно через форсунку в нее впрыскивается под большим давлением жидкое топливо - керосин, мазут.

При горении топлива воздух, служащий рабочим телом, получает некоторое количество тепла и нагревается до температуры 1500-2200 °С. Нагревание воздуха происходит при постоянном давлении, поэтому воздух расширяется и скорость его движения увеличивается.

Движущиеся с большой скоростью воздух и продукты горения направляются в турбину. Переходя от ступени к ступени, они отдают свою кинетическую энергию лопаткам турбины. Часть полученной турбиной энергии расходуется на вращение компрессора, а остальная используется, например, для вращения винта самолета или ротора электрического генератора.

Для предохранения лопаток турбины от разрушающего действия раскаленной и высокоскоростной газовой струи в камеру сгорания

Рис. 39. Камера сгорания

нагнетается с помощью компрессора значительно больше воздуха, чем необходимо для полного сжигания топлива. Воздух, входящий в камеру сгорания за зоной горения топлива (рис. 38), снижает температуру газовой струи, направляемой на лопатки турбины. Понижение температуры газа в турбине ведет к снижению КПД, поэтому ученые и конструкторы ведут поиски путей повышения верхнего предела рабочей температуры в газовой турбине. В некоторых современных авиационных газотурбинных двигателях температура газа перед турбиной достигает 1330 °С.

Отработавший воздух вместе с продуктами сгорания при давлении, близком к атмосферному, и температуре более 500 °С со скоростью более 500 м/с обычно выбрасывается в атмосферу либо для повышения КПД направляется в теплообменник, где отдает часть тепла на нагревание воздуха, поступающего в камеру сгорания.

Цикл работы газотурбинной установки на диаграмме представлен на рисунке 40. Процессу сжатия воздуха в компрессоре соответствует адиабата АВ, процессу нагревания и расширения в камере сгорания - изобара ВС. Адиабатический процесс расширения горячего газа в турбине представлен участком CD, процесс охлаждения и уменьшения объема рабочего тела представлен изобарой DA.

КПД газотурбинных установок достигает значений 25-30%. У газотурбинных двигателей нет громоздких паровых котлов, как у паровых машин и паровых турбин, нет поршней и механизмов, преобразующих возвратно-поступательное движение во вращательное, как у паровых машин и двигателей внутреннего сгорания. Поэтому газотурбинный двигатель занимает втрое меньше места, чем дизель той же мощности, а его удельная масса (отношение массы к мощности) в 6 - 9 раз меньше, чем у авиационного поршневого двигателя внутреннего сгорания. Компактность и быстроходность в сочетании с большой мощностью на единицу массы определили первую практически важную область применения газотурбинных двигателей - авиацию.

Самолеты с винтом, насаженным на вал газотурбинного двигателя, появились в 1944 г. Турбовинтовые двигатели имеют такие известные самолеты, как АН-24, ТУ-114, ИЛ-18, АН-22 - «Антей».

Максимальная масса «Антея» на взлете 250 т, грузоподъемность 80 т, или 720 пассажиров,

Рис. 40. Диаграмма рабочего цикла газотурбинной установки

скорость 740 км/ч, мощность каждого из четырех двигателей кВт.

Газотурбинные двигатели начинают вытеснять паротурбинные на водном транспорте, особенно на кораблях военно-морского флота. Переход от дизельных двигателей на газотурбинные позволил увеличить грузоподъемность судов на подводных крыльях в четыре раза, с 50 до 200 т.

Газотурбинные двигатели мощностью 220-440 кВт устанавливаются на большегрузных автомобилях. Проходит испытание в горнодобывающей промышленности 120-тонный БелАЗ-549В с газотурбинным двигателем.


Когда термодинамика, машиностроение и металлургия достигли достаточного уровня, Густав Лаваль (Швеция) и Чарлз Парсонс (Великобритания) независимо друг от друга создали пригодные для промышленного использования паровые турбины . Первые опыты с газовой турбиной (в качестве перспективного двигателя для торпед) осуществил также Чарлз Парсонс , однако вскоре пришёл к выводу, что имеющиеся сплавы из-за низкой жаропрочности не позволяют создать надёжный механизм, который приводился бы в движение струёй раскалённых газов либо парогазовой смесью, после чего сосредоточился на создании паровых турбин .

Принцип работы

Газ под высоким давлением поступает через сопловой аппарат турбины в область низкого давления, при этом расширяясь и ускоряясь. Далее, поток газа попадает на рабочие лопатки турбины, отдавая им часть своей кинетической энергии и сообщая лопаткам крутящий момент. Рабочие лопатки передают крутящий момент через диски турбины на вал. Газовая турбина чаще всего используется как привод генераторов.

Механически газовые турбины могут быть значительно проще, чем поршневые двигатели внутреннего сгорания . Более сложные турбины (которые используются в современных турбореактивных двигателях), могут иметь несколько валов, сотни турбинных и статорных лопаток, а также обширную систему сложных трубопроводов, камер сгорания и теплообменников.

Типы газовых турбин

Газовые турбины часто используются во многих ракетах на жидком топливе, а также для питания турбонасосов, что позволяет использовать их в легковесных резервуарах низкого давления, хранящих значительную сухую массу.

Промышленные газовые турбины для производства электричества

Отличие промышленных газовых турбин от авиационных в том, что их массогабаритные характеристики значительно выше, они имеют каркас, подшипники и лопастную систему более массивной конструкции. По размерам промышленные турбины варьируются от монтируемых на грузовики мобильных установок до огромных комплексных систем. Парогазовые турбины могут иметь высокий КПД - до 60 % - при использовании выхлопа газовой турбины в рекуперативном генераторе пара для работы паровой турбины. С целью увеличения КПД они также могут работать в когенераторных конфигурациях: выхлоп используется в системах теплоснабжения - ГВС и отопления, а также с использованием абсорбционных холодильных машинах в системах хладоснабжения. Одновременное использование выхлопа для получения тепла и холода называется режимом тригенерации .

Газовые турбины простого цикла могут выпускаться как для большой, так и для малой мощности. Одно из их преимуществ - способность входить в рабочий режим в течение нескольких минут, что позволяет использовать их как мощность во время пиковых нагрузок. Поскольку они менее эффективны, чем электростанции комбинированного цикла, они обычно используются как пиковые электростанции и работают от нескольких часов в день до нескольких десятков часов в год, в зависимости, от потребности в электроэнергии и генерирующей ёмкости. В областях с недостаточной базовой нагрузкой и на электростанциях, где электрическая мощность выдается в зависимости от нагрузки, газотурбинная установка может регулярно работать в течение большей части суток.

Микротурбины

Отчасти успех микротурбин обусловлен развитием электроники, делающей возможной работу оборудования без вмешательства человека. Микротурбины применяются в самых сложных проектах автономного электроснабжения.

Преимущества и недостатки газотурбинных двигателей

Преимущества газотурбинных двигателей

  • Очень высокое отношение мощности к весу, по сравнению с поршневым двигателем.
  • Возможность получения большего количества пара при работе (в отличие от поршневого двигателя)
  • В сочетании с паровым котлом и паровой турбиной более высокий КПД по сравнению с поршневым двигателем. Отсюда - использование их в электростанциях.
  • Перемещение только в одном направлении, с намного меньшей вибрацией, в отличие от поршневого двигателя.
  • Меньшее количество движущихся частей, чем у поршневого двигателя.
  • Существенно меньше выбросов вредных веществ по сравнению с поршневыми двигателями
  • Низкая стоимость и потребление смазочного масла.
  • Низкие требования к качеству топлива. ГТД потребляют любое горючее, которое можно распылить: газ, нефтепродукты , органические вещества и пылеобразный уголь .
  • Высокая маневренность и диапазон регулирования.

Недостатки газотурбинных двигателей

  • Стоимость намного выше, чем у аналогичных по размерам поршневых двигателей, поскольку материалы применяемые в турбине должны иметь высокую жаростойкость и жаропрочность, а также высокую удельную прочность. Машинные операции также более сложные;
  • При любом режиме работы имеют меньший КПД, чем поршневые двигатели. (КПД на номинальной нагрузке до 39%, при этом официальные данные по поршневым двигателям - 41-42%). Требуют дополнительной паровой турбины для повышения КПД.
  • Низкий механический и электрический КПД (потребление газа более чем в 1.5 раза больше на 1 кВтЧ электроэнергии по сравнению с поршневым двигателем)
  • Резкое снижение КПД на малых нагрузках (в отличие от поршневого двигателя)
  • Необходимость использования газа высокого давления, что обуславливает необходимость применения дожимных компрессоров с дополнительным расходом энергии и падением общей эффективности системы.
  • Высокие эксплуатационные нагрузки. Следствием которых является использование дорогих жаропрочных сплавов.
  • Более медленный пуск, чем у поршневых двигателей внутреннего сгорания.
  • Существенное влияние пусков-остановок на ресурс.

Эти недостатки объясняют, почему дорожные транспортные средства, которые меньше, дешевле и требуют менее регулярного обслуживания, чем танки, вертолеты и крупные катера, не используют газотурбинные двигатели, несмотря на неоспоримые преимущества в размере.

Напишите отзыв о статье "Газовая турбина"

Примечания

Литература

  • Дейч М. Е. Техническая газодинамика. - М.: Энергия, 1974.
  • Дейч М. Е. Газодинамика решёток турбомашин. - М.: Энергоатомиздат, 1996.

См. также

Ссылки

  • Газовая турбина // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров . - 3-е изд. - М . : Советская энциклопедия, 1969-1978.

Отрывок, характеризующий Газовая турбина

О войне княжна Марья думала так, как думают о войне женщины. Она боялась за брата, который был там, ужасалась, не понимая ее, перед людской жестокостью, заставлявшей их убивать друг друга; но не понимала значения этой войны, казавшейся ей такою же, как и все прежние войны. Она не понимала значения этой войны, несмотря на то, что Десаль, ее постоянный собеседник, страстно интересовавшийся ходом войны, старался ей растолковать свои соображения, и несмотря на то, что приходившие к ней божьи люди все по своему с ужасом говорили о народных слухах про нашествие антихриста, и несмотря на то, что Жюли, теперь княгиня Друбецкая, опять вступившая с ней в переписку, писала ей из Москвы патриотические письма.
«Я вам пишу по русски, мой добрый друг, – писала Жюли, – потому что я имею ненависть ко всем французам, равно и к языку их, который я не могу слышать говорить… Мы в Москве все восторжены через энтузиазм к нашему обожаемому императору.
Бедный муж мой переносит труды и голод в жидовских корчмах; но новости, которые я имею, еще более воодушевляют меня.
Вы слышали, верно, о героическом подвиге Раевского, обнявшего двух сыновей и сказавшего: «Погибну с ними, но не поколеблемся!И действительно, хотя неприятель был вдвое сильнее нас, мы не колебнулись. Мы проводим время, как можем; но на войне, как на войне. Княжна Алина и Sophie сидят со мною целые дни, и мы, несчастные вдовы живых мужей, за корпией делаем прекрасные разговоры; только вас, мой друг, недостает… и т. д.
Преимущественно не понимала княжна Марья всего значения этой войны потому, что старый князь никогда не говорил про нее, не признавал ее и смеялся за обедом над Десалем, говорившим об этой войне. Тон князя был так спокоен и уверен, что княжна Марья, не рассуждая, верила ему.
Весь июль месяц старый князь был чрезвычайно деятелен и даже оживлен. Он заложил еще новый сад и новый корпус, строение для дворовых. Одно, что беспокоило княжну Марью, было то, что он мало спал и, изменив свою привычку спать в кабинете, каждый день менял место своих ночлегов. То он приказывал разбить свою походную кровать в галерее, то он оставался на диване или в вольтеровском кресле в гостиной и дремал не раздеваясь, между тем как не m lle Bourienne, a мальчик Петруша читал ему; то он ночевал в столовой.
Первого августа было получено второе письмо от кня зя Андрея. В первом письме, полученном вскоре после его отъезда, князь Андрей просил с покорностью прощения у своего отца за то, что он позволил себе сказать ему, и просил его возвратить ему свою милость. На это письмо старый князь отвечал ласковым письмом и после этого письма отдалил от себя француженку. Второе письмо князя Андрея, писанное из под Витебска, после того как французы заняли его, состояло из краткого описания всей кампании с планом, нарисованным в письме, и из соображений о дальнейшем ходе кампании. В письме этом князь Андрей представлял отцу неудобства его положения вблизи от театра войны, на самой линии движения войск, и советовал ехать в Москву.
За обедом в этот день на слова Десаля, говорившего о том, что, как слышно, французы уже вступили в Витебск, старый князь вспомнил о письме князя Андрея.
– Получил от князя Андрея нынче, – сказал он княжне Марье, – не читала?
– Нет, mon pere, [батюшка] – испуганно отвечала княжна. Она не могла читать письма, про получение которого она даже и не слышала.
– Он пишет про войну про эту, – сказал князь с той сделавшейся ему привычной, презрительной улыбкой, с которой он говорил всегда про настоящую войну.
– Должно быть, очень интересно, – сказал Десаль. – Князь в состоянии знать…
– Ах, очень интересно! – сказала m llе Bourienne.
– Подите принесите мне, – обратился старый князь к m llе Bourienne. – Вы знаете, на маленьком столе под пресс папье.
M lle Bourienne радостно вскочила.
– Ах нет, – нахмурившись, крикнул он. – Поди ты, Михаил Иваныч.
Михаил Иваныч встал и пошел в кабинет. Но только что он вышел, старый князь, беспокойно оглядывавшийся, бросил салфетку и пошел сам.
– Ничего то не умеют, все перепутают.
Пока он ходил, княжна Марья, Десаль, m lle Bourienne и даже Николушка молча переглядывались. Старый князь вернулся поспешным шагом, сопутствуемый Михаилом Иванычем, с письмом и планом, которые он, не давая никому читать во время обеда, положил подле себя.
Перейдя в гостиную, он передал письмо княжне Марье и, разложив пред собой план новой постройки, на который он устремил глаза, приказал ей читать вслух. Прочтя письмо, княжна Марья вопросительно взглянула на отца.
Он смотрел на план, очевидно, погруженный в свои мысли.
– Что вы об этом думаете, князь? – позволил себе Десаль обратиться с вопросом.
– Я! я!.. – как бы неприятно пробуждаясь, сказал князь, не спуская глаз с плана постройки.
– Весьма может быть, что театр войны так приблизится к нам…
– Ха ха ха! Театр войны! – сказал князь. – Я говорил и говорю, что театр войны есть Польша, и дальше Немана никогда не проникнет неприятель.
Десаль с удивлением посмотрел на князя, говорившего о Немане, когда неприятель был уже у Днепра; но княжна Марья, забывшая географическое положение Немана, думала, что то, что ее отец говорит, правда.
– При ростепели снегов потонут в болотах Польши. Они только могут не видеть, – проговорил князь, видимо, думая о кампании 1807 го года, бывшей, как казалось, так недавно. – Бенигсен должен был раньше вступить в Пруссию, дело приняло бы другой оборот…
– Но, князь, – робко сказал Десаль, – в письме говорится о Витебске…
– А, в письме, да… – недовольно проговорил князь, – да… да… – Лицо его приняло вдруг мрачное выражение. Он помолчал. – Да, он пишет, французы разбиты, при какой это реке?
Десаль опустил глаза.
– Князь ничего про это не пишет, – тихо сказал он.
– А разве не пишет? Ну, я сам не выдумал же. – Все долго молчали.
– Да… да… Ну, Михайла Иваныч, – вдруг сказал он, приподняв голову и указывая на план постройки, – расскажи, как ты это хочешь переделать…
Михаил Иваныч подошел к плану, и князь, поговорив с ним о плане новой постройки, сердито взглянув на княжну Марью и Десаля, ушел к себе.
Княжна Марья видела смущенный и удивленный взгляд Десаля, устремленный на ее отца, заметила его молчание и была поражена тем, что отец забыл письмо сына на столе в гостиной; но она боялась не только говорить и расспрашивать Десаля о причине его смущения и молчания, но боялась и думать об этом.
Ввечеру Михаил Иваныч, присланный от князя, пришел к княжне Марье за письмом князя Андрея, которое забыто было в гостиной. Княжна Марья подала письмо. Хотя ей это и неприятно было, она позволила себе спросить у Михаила Иваныча, что делает ее отец.
– Всё хлопочут, – с почтительно насмешливой улыбкой, которая заставила побледнеть княжну Марью, сказал Михаил Иваныч. – Очень беспокоятся насчет нового корпуса. Читали немножко, а теперь, – понизив голос, сказал Михаил Иваныч, – у бюра, должно, завещанием занялись. (В последнее время одно из любимых занятий князя было занятие над бумагами, которые должны были остаться после его смерти и которые он называл завещанием.)
– А Алпатыча посылают в Смоленск? – спросила княжна Марья.
– Как же с, уж он давно ждет.

Когда Михаил Иваныч вернулся с письмом в кабинет, князь в очках, с абажуром на глазах и на свече, сидел у открытого бюро, с бумагами в далеко отставленной руке, и в несколько торжественной позе читал свои бумаги (ремарки, как он называл), которые должны были быть доставлены государю после его смерти.
Когда Михаил Иваныч вошел, у него в глазах стояли слезы воспоминания о том времени, когда он писал то, что читал теперь. Он взял из рук Михаила Иваныча письмо, положил в карман, уложил бумаги и позвал уже давно дожидавшегося Алпатыча.
На листочке бумаги у него было записано то, что нужно было в Смоленске, и он, ходя по комнате мимо дожидавшегося у двери Алпатыча, стал отдавать приказания.
– Первое, бумаги почтовой, слышишь, восемь дестей, вот по образцу; золотообрезной… образчик, чтобы непременно по нем была; лаку, сургучу – по записке Михаила Иваныча.
Он походил по комнате и заглянул в памятную записку.
– Потом губернатору лично письмо отдать о записи.
Потом были нужны задвижки к дверям новой постройки, непременно такого фасона, которые выдумал сам князь. Потом ящик переплетный надо было заказать для укладки завещания.
Отдача приказаний Алпатычу продолжалась более двух часов. Князь все не отпускал его. Он сел, задумался и, закрыв глаза, задремал. Алпатыч пошевелился.

Турбина это любое вращающееся устройство, которое использует энергию движущегося рабочего тела (флюида), чтобы производить работу. Типичные флюиды турбин это: ветер, вода, пар и гелий. Ветряные мельницы и гидроэлектростанции использовали турбины десятилетия чтобы вращать электрогенераторы и производить энергию для промышленности и жилья. Простые турбины известны гораздо дольше, первые из них появились в древней Греции.

В истории энергогенерации, тем не менее, собственно газовые турбины появились не так давно. Первая, практически полезная газовая турбина начала генерировать электричество в Neuchatel, Швейцария в 1939 году. Она была разработана Brown Boveri Company. Первая газовая турбина, приводящая в действие самолёт также заработала в 1939 году в Германии, с использованием газовой турбины, разработанной Гансом П. фон Огайн. В Англии в 1930-е изобретение и конструирование газовой турбины Франком Виттлом привело к первому полёту с газотурбинным двигателем в 1941 году.

Рисунок 1. Схема авиационной турбины (а) и газовой турбины для наземного использования (б)

Термин "газовая турбина" легко вводит в заблуждение, поскольку для многих это означает турбинный двигатель, который использует газ в качестве топлива. На самом деле газовая турбина (показанная схематически на рис. 1) имеет компрессор, который подаёт и сжимает газ (как правило - воздух); камеру сгорания, где сжигание топлива нагревает сжатый газ и собственно турбину, которая извлекает энергию из потока горячих, сжатых газов. Этой энергии достаточно, чтобы питать компрессор и остаётся для полезных применений. Газовая турбина - это двигатель внутреннего сгорания (ДВС) использующий непрерывное сгорание топлива для производства полезной работы. Этим турбина отличается от карбюраторных или дизельных двигателей внутреннего сгорания, где процесс сжигания прерывистый.

Поскольку с 1939 года использование газовых турбин началось одновременно и в энергетике и в авиации - для авиационных и наземных газовых турбин используются различные названия. Авиационные газовые турбины называются турбореактивными или реактивными двигателями, а прочие газовые турбины называются газотурбинными двигателями. В английском языке имеется даже больше названий для этих, однотипных в общем, двигателей.

Использование газовых турбин

В авиационном турбореактивном двигателе энергия турбины приводит в действие компрессор, который засасывает воздух в двигатель. Горячий газ, покидающий турбину, выбрасывается в атмосферу через выхлопное сопло, что создаёт силу тяги. На рис. 1а изображена схема турбореактивного двигателя.


Рисунок 2. Схематичное изображение авиационного турбореактивного двигателя.

Типичный турбореактивный двигатель показан на рис. 2. Такие двигатели создают тягу от 45 кгс до 45000 кгс при собственном весе от 13 кг до 9000 кг. Самые маленькие двигатели приводят в движение крылатые ракеты, самые большие - огромные самолёты. Газовая турбина на рис. 2 - это турбовентиляторный двигатель с компрессором большого диаметра. Тяга создаётся и воздухом, который всасывается компрессором и воздухом, который проходит собственно через турбину. Двигатель имеет большие размеры и способен создавать большую тягу на маленькой скорости при взлёте, что и делает его наиболее подходящим для коммерческих самолётов. Турбореактивный двигатель не имеет вентилятора и создаёт тягу воздухом, который полностью проходит через газовый тракт. Турбореактивные двигатели имеют малые фронтальные размеры и производят наибольшую тягу на высоких скоростях, что делает их наиболее подходящими для использования на истребителях.

В газовых турбинах неавиационного применения часть энергии турбины используется для приведения в действие компрессора. Оставшаяся энергия - "полезная энергия" снимается с вала турбины на устройстве использования энергии, таком как электрический генератор или винт корабля.

Типичная газовая турбина для наземного использования показана на рис. 3. Такие установки могут генерировать энергию от 0,05 МВт до 240 МВт. Установка, показанная на рис. 3 это газовая турбина, производная от авиационной, но более лёгкая. Более тяжёлые установки созданы специально для наземного использования и называются промышленными турбинами. Хотя турбины, производные от авиационных, всё чаще используются как основные энергогенераторы, они по-прежнему наиболее часто используются как компрессоры для перекачки природного газа, приводят в действие корабли и используются как дополнительные генераторы электроэнергии на периоды пиковых нагрузок. Генераторы на газовых турбинах могут быстро включаться в работу, поставляя энергию в моменты наибольшей потребности в ней.


Рисунок 3. Наиболее простая, одностадийная, газовая турбина для наземного применения. Например, в энергетике. 1 – компрессор, 2 – камера сгорания, 3 – турбина.

Наиболее важные преимущества газовой турбины таковы:

  1. Она способна вырабатывать много энергии при относительно небольших размере и весе.
  2. Газовая турбина работает в режиме постоянного вращения, в отличие от поршневых двигателей, работающих с постоянно меняющимися нагрузками. Поэтому турбины служат долго и требуют относительно мало обслуживания.
  3. Хотя газовая турбина запускается при помощи вспомогательного оборудования, такого как электрические моторы или другая газовая турбина, запуск занимает минуты. Для сравнения, время запуск паровой турбины измеряется часами.
  4. В газовой турбине может использоваться разнообразное топливо. В больших наземных турбинах обычно используется природный газ, в то время, как в авиационных преимущественно лёгкие дистилляты (керосин). Дизельное топливо или специально обработанный мазут также может быть использован. Возможно также использование горючих газов от процесса пиролиза, газификации и переработки нефти, а также биогаз.
  5. Обычно газовые турбины используют атмосферный воздух в качестве рабочего тела. При генерации электричества газовой турбине не нужен охладитель (такой как вода).

В прошлом одним из главных недостатков газовых турбин была низкая эффективность по сравнению с прочими ДВС или паровыми турбинами электростанций. Тем не менее, за последние 50 лет совершенствование их конструкции увеличило тепловой КПД с 18% в 1939 году на газовой турбине Neuchatel до нынешнего КПД 40% при работе в простом цикле и около 55% в комбинированном цикле (об этом ниже). В будущем КПД газовых турбин повысится ещё больше, ожидается, что эффективность в простом цикле повысится до 45-47% и в комбинированном цикле до 60%. Эти ожидаемые величины КПД существенно выше, чем у других распространённых двигателей, таких как паровых турбин.

Циклы газовой турбины

Циклограмма показывает, что происходит, когда воздух входит, проходит по газовому тракту и выходит из газовой турбины. Обычно циклограмма показывает отношение между объёмом воздуха и давлением в системе. На рис. 4а показан цикл Брайтона, который показывает изменение свойств фиксированного объёма воздуха проходящего через газовую турбину во время её работы. Ключевые области этой циклограммы показаны также на схематичном изображении газовой турбины на рис. 4б.


Рисунок 4а. Диаграмма цикла Брайтона в координатах P-V для рабочего тела, показывающая потоки работы (W) и тепла (Q).


Рисунок 4б. Схематичное изображение газовой турбины, показывающее точки с диаграммы цикла Брайтона.

Воздух сжимается от точки 1 до точки 2. Давление газа при этом растёт, а объём газа уменьшается. Затем воздух нагревается при постоянном давлении от точки 2 до точки 3. Это тепло производится топливом, вводимым в камеру сгорания и его непрерывным горением.

Горячий сжатый воздух от точки 3 начинает расширяться между точками 3 и 4. Давление и температура в этом интервале падают, а объём газа увеличивается. В двигателе на рис. 4б это представлено потоком газа от точки 3 до через турбину до точки 4. При этом производится энергия, которая затем может быть использована. В рис. 1а поток направляется из точки 3" в точку 4 через выходное сопло и производит тягу. «Полезная работа» на рис. 4а показана кривой 3’-4. Это энергия, способная приводить в действие вал привода наземной турбины или создавать тягу авиационного двигателя. Цикл Брайтона завершается на рис. 4 процессом, в котором объём и температура воздуха уменьшаются, т.к. тепло выбрасывается в атмосферу.


Рисунок 5. Система с закрытым циклом.

Большинство газовых турбин работают в режиме открытого цикла. В открытом цикле воздух забирается из атмосферы (точка 1 на рис. 4а и 4б) и выбрасывается назад в атмосферу в точке 4, таким образом, горячий газ охлаждается в атмосфере, после выброса из двигателя. В газовой турбине работающей по закрытому циклу рабочее тело (жидкость или газ) постоянно используется для охлаждения отходящих газов (в точке 4) в теплообменнике (показанном схематично на рис. 5) и направляется на вход в компрессор. Поскольку используется закрытый объём с ограниченным количеством газа, турбина закрытого цикла – это не двигатель внутреннего сгорания. В системе с закрытым циклом горение не может поддерживаться и обычная камера сгорания заменяется вторичным теплообменником, который нагревает сжатый воздух перед тем, как он войдёт в турбину. Тепло обеспечивается внешним источником, например, ядерным реактором, угольной топкой с псевдоожиженным слоем или иным источником тепла. Предлагалось использовать газовые турбины закрытого цикла в полётах на Марс и других длительных космических полётах.

Газовая турбина, которая сконструирована и работает в соответствии с циклом Брайсона (рис. 4) называется газовой турбиной простого цикла. Большинство газовых турбин на самолётах работают по простому циклу, так как необходимо поддерживать вес и фронтальный размер двигателя как можно меньшими. Тем не менее, для наземного или морского использования становится возможным добавить дополнительное оборудование к турбине простого цикла, чтобы увеличить эффективность и/или мощность двигателя. Используются три типа модификаций: регенерация, промежуточное охлаждение и двойной нагрев.

Регенерация предусматривает установку теплообменника (рекуператора) на пути отходящих газов (точка 4 на рис. 4б). Сжатый воздух из точки 2 на рис. 4б предварительно нагревается на теплообменнике выхлопными газами перед входом в камеру сжигания (рис. 6а).

Если регенерация хорошо реализована, то есть эффективность теплооменника велика, а падение давления в нём мало, эффективность будет больше, чем при простом цикле работы турбины. Тем не менее, следует брать во внимание также стоимость регенератора. Регенераторы использовались в газотурбинных двигателях в танках Абрамс М1 - главном боевом танке операции "Буря в пустыне" и в экспериментальных газотурбинных двигателях автомобилей. Газовые турбины с регенерацией повышают эффективность на 5-6% и их эффективность ещё выше при работе под неполной нагрузкой.

Промежуточное охлаждение также подразумевает использование теплообменников. Промежуточный охладитель (интеркулер) охлаждает газ во время его сжатия. Например, если компрессор состоит из двух модулей, высокого и низкого давления, интеркулер должен быть установлен между ними, чтобы охлаждать поток газа и уменьшить количество работы, необходимой для сжатия в компрессоре высокого давления (рис. 6б). Охлаждающим агентом может быть атмосферный воздух (так называемые аппараты воздушного охлаждения) или вода (например, морская вода в судовой турбине). Несложно показать, что мощность газовой турбины с хорошо сконструированным интеркулером увеличивается.

Двойной нагрев используется в турбинах и это способ увеличить выходную мощность турбины без изменения работы компрессора или повышения рабочей температуры турбины. Если газовая турбина имеет два модуля, высокого и низкого давления, то используется перегреватель (обычно ещё одна камера сжигания), чтобы повторно нагреть поток газа между турбинами высокого и низкого давления (рис. 6в). Это может увеличить выходную мощность на 1-3%. Двойной нагрев в авиационных турбинах реализуется добавлением камеры дожигания у сопла турбины. Это увеличивает тягу, но существенно увеличивает потребление топлива.

Газотурбинная электростанция с комбинированным циклом часто обозначается аббревиатурой ПГЦ. Комбинированый цикл означает электростанцию в которой газовая турбина и паровая турбина используются вместе чтобы достичь большей эффективности, чем при их использовании по-отдельности. Газовая турбина приводит в действие электрогенератор. Выхлопные газы турбины используются для получения пара в теплообменнике, этот пар приводит в действие паровую турбину, которая также производит электричество. Если пар используется для отопления, установка называется когенерационной электростанцией. Прочем, в России обычно используется аббревиатура ТЭЦ (теплоэнергоцентраль). Но на ТЭЦ, как правило, работают не газовые турбины, а обычные паровые турбины. А использованный пар используется для нагрева, так что ТЭЦ и когенерационная электростанция - не синонимы. На рис. 7 упрощённая схема когенерационной электростанции, там показано два последовательно установленных тепловых двигателя. Верхний двигатель - это газовая турбина. Она передаёт энергию нижнему двигателю - паровой турбине. Паровая турбина затем передаёт тепло в конденсатор.


Рисунок 7. Схема электростанции комбинированного цикла.

Эффективность комбинированного цикла \(\nu_{cc} \) может быть представлена довольно простым выражением: \(\nu_{cc} = \nu_B + \nu_R - \nu_B \times \nu_R \) Другими словами - это сумма КПД каждой из ступеней минус их произведение. Это уравнение показывает, почему когенерация так эффективна. Предположим, \(\nu_B = 40% \), это разумная верхняя оценка эффективности для газовой турбины, работающей по циклу Брайтона. Разумная оценка эффективности паровой турбины, работающей по циклу Ранкина на второй ступени когенерациии - \(\nu_R = 30% \). Подставив эти значения в уравнение получим: \(\nu_{cc} = 0,40 + 0,30 - 0,40 \times 0,3 = 0,70 - 0,12 = 0,58 \). То есть КПД такой системы составит 58%.

Это верхняя оценка эффективности когенерационной электростанции. Практическая эффективность будет ниже из-за неизбежных потерей энергии между ступенями. Практически в системах когенерации энергии, введённых в эксплуатацию в последние годы, достигнута эффективность 52-58%.

Компоненты газовой турбины

Работу газовой турбины лучше всего разобрать, разделив её на три подсистемы: компрессор, камеру сгорания и турбину, как это сделано на рис. 1. Далее мы кратко рассмотрим каждую из этих подсистем.

Компрессоры и турбины

Компрессор соединен с турбиной общим валом, так что турбина может вращать компрессор. Газовая турбина с одним валом имеет единственный вал, соединяющий турбину и компрессор. Двухвальная газовая турбина (рис. 6б и 6в) имеют два конических вала. Более длинный соединён с компрессором низкого давления и турбиной низкого давления. Он вращается внутри более короткого полого вала, который соединяет компрессор высокого давления с турбиной высокого давления. Вал, соединяющий турбину и компрессор высокого давления вращается быстрее, чем вал турбины и компрессора низкого давления. Трёхвальная газовая турбина имеет третий вал, соединяющий турбину и компрессор среднего давления.

Газовые турбины могут быть центробежными или осевыми, либо комбинированного типа. Центробежный компрессор, в котором сжатый воздух выходит вокруг наружного периметра машины, надёжен, обычно стоит меньше, но ограничен степенью сжатия 6-7 к 1. Они широко применялись ранее и используются по сей день в небольших газовых турбинах.

В более эффективных и производительных осевых компрессорах сжатый воздух выходит вдоль оси механизма. Это наиболее распространённый тип газовых компрессоров (см. рис. 2 и 3). Центробежные компрессоры состоят из большого количества одинаковых секций. Каждая секция содержит вращающееся колесо с лопатками турбины и колесо с неподвижными лопатками (статорами). Секции расположены таким образом, что сжатый воздух последовательно проходит каждую секцию отдавая часть своей энергии на каждой из них.

Турбины имеют более простую конструкцию, по сравнению с компрессором, так как сжать поток газа труднее, чем вызывать его обратное расширение. Осевые турбины, подобные изображённым на рис. 2 и 3 имеют меньше секций, чем центробежный компрессор. Существуют небольшие газовые турбины, которые используют центробежные турбины (с радиальным вводом газа), но наиболее распространены осевые турбины.

Конструирование и производство турбины сложно, так как требуется увеличить срок жизни компонентов в горячем газовом потоке. Проблема с надёжностью конструкции наиболее критична в первой ступени турбины, где температуры наиболее велики. Используются специальные материалы и проработанная система охлаждения, чтобы лопатки турбины, которые плавятся при температуре 980-1040 градусов Цельсия в газовом потоке, температура которого достигает 1650 градусов Цельсия.

Камера сгорания

Удачная конструкция камеры сгорания должна удовлетворять многим требованиям и её правильное конструирование было непростым делом со времён турбин Виттла и фон Огайна. Относительная важность каждого из требований к камере сгорания зависит от области применения турбины и, разумеется, некоторые требования вступают в противоречие друг с другом. При конструировании камеры сгорания неизбежны компромиссы. Большинство требований к конструкции имеют отношение к цене, эффективности и экологической безопасности двигателя. Вот перечень базовых требований к камере сгорания:

  1. Высокая эффективность сгорания топлива при любых условиях работы.
  2. Низкий уровень выбросов недогара топлива и монооксида углерода (угарного газа), низкие выбросы оксидов азота при большой нагрузке и отсутствие видимых выбросов дыма (минимизация загрязнения окружающей среды).
  3. Малое падение давления при прохождении газа через камеру сгорания. 3-4% потери давления – это обычная величина падения давления.
  4. Горение должно быть устойчивым при всех режимах работы.
  5. Горение должно быть устойчивым при очень низких температурах и низком давлении на большой высоте (для авиационных двигателей).
  6. Горение должно быть ровным, без пульсаций или срывов.
  7. Температура должна быть стабильной.
  8. Большой срок службы (тысячи часов), особенно для промышленных турбин.
  9. Возможность использования разных видов топлива. Для наземных турбин типично использование природного газа или дизельного топлива. Для авиационных турбин керосина.
  10. Длина и диаметр камеры сгорания должны соответствовать размера двигательной сборки.
  11. Общая стоимость владения камерой сгорания должна быть минимальной (это включает исходную стоимость, стоимость эксплуатации и ремонта).
  12. Камера сгорания для авиационных двигателей должна иметь минимальный вес.

Камера сгорания состоит из минимум трёх основных частей: оболочки, жаровой трубы и системы впрыска топлива. Оболочка должна выдерживать рабочее давление и может быть частью конструкции газовой турбины. Оболочка закрывает относительно тонкостенную жаровую трубу в которой и происходит сгорания и систему впрыска топлива.

По сравнению с другими типами двигателей, такими как дизельные и поршневые автомобильные двигатели, газовые турбины производят наименьшее количество выбросов загрязняющих веществ в атмосферу на единицу мощности. Среди выбросов газовых турбин наибольшие опасения вызывают недогоревшее топливо, монооксид углерода (угарный газ), оксиды азота (NOx) и дым. Хотя вклад авиационных турбин в общие выбросы загрязняющих веществ составляет менее 1%, выбросы производимые непосредственно в тропосферу удвоились между 40 и 60 градусами северной широты, вызвав увеличение концентрации озона на 20%. В стратосфере, где летают сверхзвуковые самолёты, выбросы NOx вызывают разрушение озона. Оба эффекта вредят окружающей среде, так что уменьшение содержания оксидов азота (NOx) в выбросах авиационных двигателей – это то, что должно произойти в 21 столетии.

Это довольно короткая статья, которая старается охватить все аспекты применения турбин, от авиации до энергетики, да ещё и не полагается на формулы. Чтобы лучше ознакомиться с темой могу порекомендовать книгу «Газовая турбина на железнодорожном транспорте» http://tapemark.narod.ru/turbo/index.html . Если опустить главы, связанные со спецификой использования турбин на железной дороге – книга по-прежнему очень понятная, но гораздо более подробная.

Газовая турбина - это двигатель, в котором в процессе непрерывной работы основной орган устройства (ротор) превращает (в других случаях пара или воды) в работу механического плана. При этом струя рабочего вещества воздействует на закрепленные по окружности ротора лопатки, приводя их в движение. По направлению газового потока турбины делятся на осевые (газ перемещается параллельно оси турбины) или радиальные (перпендикулярное движение относительно той же оси). Существуют как одно- , так и многоступенчатые механизмы.

Газовая турбина может действовать на лопатки двумя способами. Во-первых, это активный процесс, когда газ подается в рабочую зону на высоких скоростях. При этом газовый поток стремится перемещаться прямолинейно, а стоящая на его пути изогнутая лопаточная деталь отклоняет его, поворачиваясь сама. Во-вторых, это процесс реактивного типа, когда скорость подачи газа невелика, однако при этом используются высокие давления. типа в чистом виде почти не встречается, т. к. в их турбинах присутствует которая действует на лопатки вместе с силой реакции.

Где сегодня применяется газовая турбина? Принцип работы устройства позволяет использовать его для приводов генераторов электротока, компрессоров и др. Широкое распространение турбины такого вида получили на транспорте (судовые газотурбинные установки). По сравнению с паровыми аналогами они имеют сравнительно небольшой вес и габариты, для них не нужно обустройство котельной, конденсационной установки.

Газовая турбина достаточно быстро готова к работе после запуска, развивает полную мощность приблизительно за 10 минут, проста в обслуживании, требует небольшого количества воды для охлаждения. В отличие от двигателей внутреннего сгорания, она не имеет инерционных воздействий от кривошипно-шатунного механизма. в полтора раза короче, чем дизельные двигатели и более чем в два раза легче. У устройств есть возможность работать на топливе низкого качества. Вышеуказанные качества позволяют считать двигатели такого плана представляющими особый интерес для судов на и на подводных крыльях.

Газовая турбина как основной компонент двигателя имеет и ряд существенных недостатков. В их числе отмечают высокую шумность, меньшую, чем у дизелей, экономичность, небольшой срок работы при высоких температурах (если используемая газовая среда имеет температуру около 1100 о С, то сроки использования турбины могут составлять в среднем до 750 часов).

КПД газовой турбины зависит от того, в какой системе она используется. Например, устройства, применяемые в энергетике с начальной температурой газов выше 1300 градусов Цельсия, со воздуха в компрессоре не более 23 и не менее 17 имеют при автономных операциях коэффициент около 38,5%. Такие турбины не очень широко распространены и применяются в основном для перекрытия нагрузочных пиков в электросистемах. Сегодня около 15 газовых турбин с мощностью до 30 МВт работают на ряде теплоэлектростанций России. На многоступенчатых установках достигается гораздо более высокий показатель полезного действия (около 0,93) за счет высокой эффективности конструктивных элементов.

Закреплённые на дисках) и статор , выполненный в виде выравнивающего аппарата (направляющие лопатки , закреплённые в корпусе).

Газовые турбины используются в составе газотурбинных двигателей , стационарных газотурбинных установок (ГТУ) и парогазовых установок (ПГУ).

Газ под высоким давлением поступает через сопловой аппарат турбины в область низкого давления, при этом расширяясь и ускоряясь. Далее, поток газа попадает на рабочие лопатки турбины, отдавая им часть своей кинетической энергии и сообщая лопаткам крутящий момент. Рабочие лопатки передают крутящий момент через диски турбины на вал. Газовая турбина чаще всего используется как привод генераторов.

Механически газовые турбины могут быть значительно проще, чем поршневые двигатели внутреннего сгорания . Более сложные турбины (которые используются в современных турбореактивных двигателях), могут иметь несколько валов, сотни турбинных и статорных лопаток, а также обширную систему сложных трубопроводов, камер сгорания и теплообменников.

Типы газовых турбин

Газовые турбины часто используются во многих ракетах на жидком топливе, а также для питания турбонасосов, что позволяет использовать их в легковесных резервуарах низкого давления, хранящих значительную сухую массу.

Промышленные газовые турбины для производства электричества

Газовая турбина серии GE H. Эта 480-мегаваттная турбинная установка имеет тепловой кпд 60 % в конфигурациях комбинированного цикла.

Отличие промышленных газовых турбин от авиационных в том, что их массогабаритные характеристики значительно выше, они имеют каркас, подшипники и лопастную систему более массивной конструкции. По размерам промышленные турбины варьируются от монтируемых на грузовики мобильных установок до огромных комплексных систем. Парогазовые турбины могут иметь высокий КПД - до 60 % - при использовании выхлопа газовой турбины в рекуперативном генераторе пара для работы паровой турбины. С целью увеличения КПД они также могут работать в когенераторных конфигурациях: выхлоп используется в системах теплоснабжения - ГВС и отопления, а также с использыванием абсорбционных холодильных машинах в системах хладоснабжения. Одновременное использование выхлопа для получения тепла и холода называется режимом тригенерации . Коэффициент использования топлива в тригенераторном режиме, в сравнении с когенераторным может достигать более 90 %.

Турбины в больших промышленных газовых турбинах работают на синхронных с частотой переменного тока скоростях - 3000 или 3600 оборотов в минуту (об./мин.).

Газовые турбины простого цикла могут выпускаться как для большой, так и для малой мощности. Одно из их преимуществ - способность входить в рабочий режим в течение нескольких минут, что позволяет использовать их как мощность во время пиковых нагрузок. Поскольку они менее эффективны, чем электростанции комбинированного цикла, они обычно используются как пиковые электростанции и работают от нескольких часов в день до нескольких десятков часов в год, в зависимости, от потребности в электроэнергии и генерирующей емкости. В областях с недостаточной базовой нагрузкой и на электростанциях, где электрическая мощность выдается в зависимости от нагрузки, газотурбинная установка может регулярно работать в течение большей части суток. Типичная турбина простого цикла может выдавать от 100 до 300 мегаватт (МВт) мощности и иметь тепловой КПД 35-40 %. Максимальные КПД турбин простого цикла достигает 41 %.

Микротурбины

Отчасти, успех микротурбин обусловлен развитием электроники, делающей возможной работу оборудования без вмешательства человека. Микротурбины применяются в самых сложных проектах автономного электроснабжения.

Преимущества и недостатки газотурбинных двигателей

Преимущества газотурбинных двигателей

  • Очень высокое отношение мощности к весу, по сравнению с поршневым двигателем;
  • Возможность получения большего количества пара при работе (в отличие от поршневого двигателя)
  • В сочетании с паровым котлом и паровой турбиной более высокий КПД по сравнению с поршневым двигателем
  • Перемещение только в одном направлении, с намного меньшей вибрацией, в отличие от поршневого двигателя.
  • Меньшее количество движущихся частей, чем у поршневого двигателя.
  • Существенно меньше выбросов вредных веществ по сравнению с поршневыми двигателями
  • Низкие эксплуатационные нагрузки.
  • Низкая стоимость и потребление смазочного масла.
  • Низкие требования к качеству топлива. ГТД потребляют любое горючее, которое можно распылить: газ, нефтепродукты , органические вещества и пылеобразный уголь .

Недостатки газотурбинных двигателей

  • Стоимость намного выше, чем у аналогичных по размерам поршневых двигателей, поскольку материалы применяемые в турбине должны иметь высокую жаростойкость и жаропрочность, а также высокую удельную прочность. Машинные операции также более сложные;
  • Имеют меньший КПД при любом режиме работы, чем поршневые двигатели. (Официальные данные (стр.3) КПД на максимальной нагрузке 25-33%, при этом Официальные данные по поршневым двигателям - 41-42%)
  • Низкий механический и электрический КПД (потребление газа более чем в 1.5 раза больше на 1 кВтЧ электроэнергии по сравнению с поршневым двигателем)
  • Резкое снижение КПД на малых нагрузках (в отличие от поршневого двигателя)
  • Необходимость использования газа высокого давления, что обуславливает необходимость применения дожимных компрессоров с дополнительным расходом энергии и падением общей эффективности системы.
  • Задержка отклика на изменения настроек мощности.
  • Медленный запуск и выход на режим
  • Существенное влияние пусков-остановов на ресурс

Эти недостатки объясняют, почему дорожные транспортные средства, которые меньше, дешевле и требуют менее регулярного обслуживания, чем танки, вертолеты и крупные катера, не используют газотурбинные двигатели, несмотря на неоспоримые преимущества в размере и мощности. А также то, почему в аэропортах при короткой стыковке двигатели самолета не останавливают - излишне потребленное топливо дешевле ремонта турбин из-за пусков-остановов.

Примечания

Литература

  • Дейч М. Е. Техническая газодинамика. - М.: Энергия, 1974.
  • Дейч М. Е. Газодинамика решёток турбомашин. - М.: Энергоатомиздат, 1996.

См. также

Ссылки

  • Газовая турбина - статья из Большой советской энциклопедии
Паровая машина Двигатель Стирлинга Пневматический двигатель
По виду рабочего тела
Газовые Газотурбинная установка Газотурбинная электростанция Газотурбинные двигатели‎
Паровые Парогазовая установка Конденсационная турбина
Гидравлические турбины‎ Пропеллерная турбина