Прямая пропорциональность. Записи с меткой "прямая пропорциональность"

Две величины называются прямо пропорциональными , если при увеличении одной из них в несколько раз другая увеличивается во столько же раз. Соответственно, при уменьшении одной из них в несколько раз, другая уменьшается во столько же раз.

Зависимость между такими величинами — прямая пропорциональная зависимость. Примеры прямой пропорциональной зависимости:

1) при постоянной скорости пройденный путь прямо пропорционально зависит от времени;

2) периметр квадрата и его сторона — прямо пропорциональные величины;

3) стоимость товара, купленного по одной цене, прямо пропорционально зависит от его количества.

Чтобы отличить прямую пропорциональную зависимость от обратной можно использовать пословицу: «Чем дальше в лес, тем больше дров».

Задачи на прямо пропорциональные величины удобно решать с помощью пропорции.

1) Для изготовления 10 деталей нужно 3,5 кг металла. Сколько металла пойдет на изготовление 12 таких деталей?

(Рассуждаем так:

1. В заполненном столбце стрелку ставим в направлении от большего числа к меньшему.

2. Чем больше деталей, тем больше металла нужно для их изготовления. Значит, это прямо пропорциональная зависимость.

Пусть х кг металла нужно для изготовления 12 деталей. Составляем пропорцию (в направлении от начала стрелки к ее концу):

12:10=х:3,5

Чтобы найти , надо произведение крайних членов разделить на известный средний член:

Значит, потребуется 4,2 кг металла.

Ответ: 4,2 кг.

2) За 15 метров ткани заплатили 1680 рублей. Сколько стоят 12 метров такой ткани?

(1. В заполненном столбце стрелку ставим в направлении от большего числа к меньшему.

2. Чем меньше ткани покупают, тем меньше за нее надо заплатить. Значит, это прямо пропорциональная зависимость.

3. Поэтому вторая стрелка одинаково направлена с первой).

Пусть х рублей стоят 12 метров ткани. Составляем пропорцию (от начала стрелки к ее концу):

15:12=1680:х

Чтобы найти неизвестный крайний член пропорции, произведение средних членов делим на известный крайний член пропорции:

Значит, 12 метров стоят 1344 рубля.

Ответ: 1344 рубля.

Пример

1,6 / 2 = 0,8; 4 / 5 = 0,8; 5,6 / 7 = 0,8 и т. д.

Коэффициент пропорциональности

Неизменное отношение пропорциональных величин называется коэффициентом пропорциональности . Коэффициент пропорциональности показывает, сколько единиц одной величины приходится на единицу другой .

Прямая пропорциональность

Прямая пропорциональность - функциональная зависимость , при которой некоторая величина зависит от другой величины таким образом, что их отношение остаётся постоянным. Иначе говоря, эти переменные изменяются пропорционально , в равных долях, то есть, если аргумент изменился в два раза в каком-либо направлении, то и функция изменяется тоже в два раза в том же направлении.

Математически прямая пропорциональность записывается в виде формулы:

f (x ) = a x ,a = c o n s t

Обратная пропорциональность

Обра́тная пропорциона́льность - это функциональная зависимость , при которой увеличение независимой величины(аргумента) вызывает пропорциональное уменьшение зависимой величины(функции).

Математически обратная пропорциональность записывается в виде формулы:

Свойства функции:

Источники

Wikimedia Foundation . 2010 .

>>Математика:Прямая пропорциональность и ее график

Прямая пропорциональность и её график

Среди линейных функций у = kx + m особо выделяют случай, когда m = 0; в этом случае принимает вид у = kx и ее называют прямой пропорциональностью. Это название объясняется тем, что две величины у и х называют прямо пропорциональными, если их отношение равно конкретному
числу, отличному от нуля. Здесь , это число k называют коэффициентом пропорциональности.

Многие реальные ситуации моделируются с помощью прямой пропорциональности.

Например, путь s и время t при постоянной скорости, 20 км/ч связаны зависимостью s = 20t; это - прямая пропорциональность, причем k = 20.

Другой пример:

стоимость у и число х батонов хлеба по цене 5 руб. за батон связаны зависимостью у = 5х; это - прямая пропорциональность, где k = 5.

Доказательство. Осуществим его в два этапа.
1. у = kx - частный случай линейной функции, а графиком линейной функции является прямая; обозначим ее через I.
2. Пара х = 0, у = 0 удовлетворяет уравнению у - kx, а потому точка (0; 0) принадлежит графику уравнения у = kx, т. е. прямой I.

Следовательно, прямая I проходит через начало координат. Теорема доказана.

Надо уметь переходить не только от аналитической модели у = kx к геометрической (графику прямой пропорциональности), но и от геометрической модели к аналитической. Рассмотрим, например, прямую на координатной плоскости хОу, изображенную на рисунке 50. Она является графиком прямой пропорциональности, нужно лишь найти значение коэффициента k. Так как у , то достаточно взять любую точку на прямой и найти отношение ординаты этой точки к ее абсциссе. Прямая проходит через точку Р(3; 6), а для этой точки имеем: Значит, k = 2, а потому заданная прямая линия служит графиком прямой пропорциональности у = 2х.

Вследствие этого коэффициент k в записи линейной функции у = kx + m также называют угловым коэффициентом. Если k>0, то прямая у = kx + m образует с положительным направлением оси х острый угол (рис. 49, а), а если k < О, - тупой угол (рис. 49, б).

Календарно-тематическое планирование по математике, видео по математике онлайн , Математика в школе скачать

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Типы зависимостей

Рассмотрим зарядку батареи. В качестве первой величины возьмем время, которое она заряжается. Вторая величина – время, которое она будет работать после зарядки. Чем дольше будет заряжаться батарея, тем дольше она будет работать. Процесс будет длиться до тех пор, пока батарея не полностью зарядится.

Зависимость времени работы батареи от времени, которое она заряжается

Замечание 1

Такая зависимость называется прямой :

С увеличением одной величины увеличивается и вторая. С уменьшением одной величины уменьшается и вторая величина.

Рассмотрим другой пример.

Чем больше книг прочитает ученик, тем меньше ошибок сделает в диктанте. Или чем выше подняться в горы, тем ниже будет атмосферное давление.

Замечание 2

Такая зависимость называется обратной :

С увеличением одной величины уменьшается вторая. С уменьшением одной величины увеличивается вторая величина.

Таким образом, в случае прямой зависимости обе величины изменяются одинаково (обе либо увеличиваются, либо уменьшаются), а в случае обратной зависимости – противоположно (одна увеличивается, а другая уменьшается либо наоборот).

Определение зависимостей между величинами

Пример 1

Время, затраченное для похода в гости к другу, составляет $20$ минут. При увеличении скорости (первой величины) в $2$ раза найдем, как изменится время (вторая величина), которое будет затрачено на путь к другу.

Очевидно, что время уменьшится в $2$ раза.

Замечание 3

Такую зависимость называют пропорциональной :

Во сколько раз изменится одна величина, во столько раз изменится и вторая.

Пример 2

За $2$ булки хлеба в магазине нужно заплатить 80 рублей. Если нужно купить $4$ булки хлеба (количество хлеба увеличивается в $2$ раза), во сколько раз придется больше заплатить?

Очевидно, что стоимость также увеличится в $2$ раза. Имеем пример пропорциональной зависимости.

В обоих примерах были рассмотрены пропорциональные зависимости. Но в примере с булками хлеба величины изменяются в одну сторону, следовательно, зависимость является прямой . А в примере с походом к другу зависимость между скоростью и временем – обратная . Таким образом, существует прямо пропорциональная зависимость и обратно пропорциональная зависимость .

Прямая пропорциональность

Рассмотрим $2$ пропорциональные величины: количество булок хлеба и их стоимость. Пусть $2$ булки хлеба стоят $80$ рублей. При увеличении количества булок в $4$ раза ($8$ булок) их общая стоимость будет составлять $320$ рублей.

Отношение количества булок: $\frac{8}{2}=4$.

Отношение стоимости булок: $\frac{320}{80}=4$.

Как видно, эти отношения равны между собой:

$\frac{8}{2}=\frac{320}{80}$.

Определение 1

Равенство двух отношений называется пропорцией .

При прямо пропорциональной зависимости получается отношение, когда изменение первой и второй величины совпадает:

$\frac{A_2}{A_1}=\frac{B_2}{B_1}$.

Определение 2

Две величины называются прямо пропорциональными , если при изменении (увеличении или уменьшении) одной из них во столько же раз изменяется (увеличивается или уменьшается соответственно) и другая величина.

Пример 3

Автомобиль проехал $180$ км за $2$ часа. Найти время, за которое он с той же скоростью проедет в $2$ раза большее расстояние.

Решение .

Время прямо пропорционально расстоянию:

$t=\frac{S}{v}$.

Во сколько раз увеличится расстояние, при постоянной скорости, во столько же раз увеличится время:

$\frac{2S}{v}=2t$;

$\frac{3S}{v}=3t$.

Автомобиль проехал $180$ км – за время $2$ часа

Автомобиль проедет $180 \cdot 2=360$ км – за время $x$ часов

Чем больше расстояние проедет автомобиль, тем большее время ему понадобится. Следовательно, зависимость между величинами прямо пропорциональная.

Составим пропорцию:

$\frac{180}{360}=\frac{2}{x}$;

$x=\frac{360 \cdot 2}{180}$;

Ответ : автомобилю потребуется $4$ часа.

Обратная пропорциональность

Определение 3

Решение .

Время обратно пропорционально скорости:

$t=\frac{S}{v}$.

Во сколько раз увеличивается скорость, при том же пути, во столько же раз уменьшается время:

$\frac{S}{2v}=\frac{t}{2}$;

$\frac{S}{3v}=\frac{t}{3}$.

Запишем условие задачи в виде таблицы:

Автомобиль проехал $60$ км - за время $6$ часов

Автомобиль проедет $120$ км – за время $x$ часов

Чем больше скорость автомобиля, тем меньше времени ему понадобится. Следовательно, зависимость между величинами обратно пропорциональная.

Составим пропорцию.

Т.к. пропорциональность обратная, второе отношение в пропорции переворачиваем:

$\frac{60}{120}=\frac{x}{6}$;

$x=\frac{60 \cdot 6}{120}$;

Ответ : автомобилю потребуется $3$ часа.

Прямая и обратная пропорциональности

Если t - время движение пешехода (в часах), s - пройденный путь (в километрах), и он движется равномерно со скоростью 4 км/ч, то зависимость между этими величинами можно выразить формулой s = 4t. Так как каждому значению t соответствует единственное значение s, то можно говорить о том, что с помощью формулы s = 4t задана функция. Ее называют прямой пропорциональностью и определяют следующим образом.

Определение. Прямой пропорциональностью называется функция, которая может быть задана при помощи формулы у=kх, где k - неравное нулю действительное число.

Название функции у = k х связано с тем, что в формуле у = kх есть переменные х и у, которые могут быть значениями величин. А если отношение двух величин равно некоторому числу, отличному от нуля, их называют прямо пропорциональными . В нашем случае = k (k≠0). Это число называют коэффициентом пропорциональности.

Функция у = k х является математической моделью многих реальных ситуаций, рассматриваемых уже в начальном курсе математики. Одна из них описана выше. Другой пример: если в одном пакете муки 2 кг, а куплено х таких пакетов, то всю массу купленной муки (обозначим ее через у) можно представить в виде формулы у = 2х, т.е. зависимость между количеством пакетов и всей массой купленной муки является прямой пропорциональностью с коэффициентом k=2.

Напомним некоторые свойства прямой пропорциональности, которые изучаются в школьном курсе математики.

1. Областью определения функции у = k х и областью ее значений является множество действительных чисел.

2. Графиком прямой пропорциональности является прямая, проходящая через начало координат. Поэтому для построения графика прямой пропорциональности достаточно найти лишь одну точку, принадлежащую ему и не совпадающую с началом координат, а затем через эту точку и начало координат провести прямую.

Например, чтобы построить график функции у = 2х, достаточно иметь точку с координатами (1, 2), а затем через нее и начало координат провести прямую (рис. 7).

3. При k > 0 функция у = kх возрастает на всей области определения; при k < 0 - убывает на всей области определения.

4. Если функция f - прямая пропорциональность и (х 1 , у 1), (х 2 , у 2) - пары соответственных значений переменных х и у, причем х 2 ≠0 то .

Действительно, если функция f - прямая пропорциональность, то она может быть задана формулой у=kх, и тогда у 1 = kх 1 , у 2 = kх 2 . Так как при х 2 ≠0 и k≠0, то у 2 ≠0. Поэтому и значит .

Если значениями переменных х и у служат положительные действительные числа, то доказанное свойство прямой пропорциональности можно сформулировать так: с увеличением (уменьшением) значения переменной х в несколько раз соответствующее значение переменной у увеличивается (уменьшается) во столько же раз.

Это свойство присуще только прямой пропорциональности, и им можно пользоваться при решении текстовых задач, в которых рассматриваются прямо пропорциональные величины.

Задача 1. За 8 ч токарь изготовил 16 деталей. Сколько часов потребуется токарю на изготовление 48 деталей, если он будет работать с той же производительностью?

Решение. В задаче рассматриваются величины - время работы токаря, количество сделанных им деталей и производительность (т.е. количество деталей, изготавливаемых токарем за 1 ч), причем последняя величина постоянна, а две другие принимают различные значения. Кроме того количество сделанных деталей и время работы- величины прямо пропорциональные, так как их отношение равно некоторому числу, не равному нулю, а именно - числу деталей, изготавливаемых токарем за 1 ч. Если количество сделанных деталей обозначить буквой у, время работы х, а производительность - k, то получим, что = k или у = kх, т.е. математической моделью ситуации, представленной в задаче, является прямая пропорциональность.

Решить задачу можно двумя арифметическими способами:

1 способ: 2 способ:

1) 16:8 = 2 (дет.) 1) 48:16 = 3 (раза)

2) 48:2 = 24(ч) 2) 8-3 = 24 (ч)

Решая задачу первым способом, мы сначала нашли коэффициент пропорциональности к, он равен 2, а затем, зная, что у = 2х, нашли значение х при условии, что у = 48.

При решении задачи вторым способом мы воспользовались свойством прямой пропорциональности: во сколько раз увеличивается количество деталей, сделанных токарем, во столько же раз увеличивается и количество времени на их изготовление.

Перейдем теперь к рассмотрению функции, называемой обратной пропорциональностью.

Если t - время движения пешехода (в часах), v - его скорость (в км/ч) и он прошел 12 км, то зависимость между этими величинами можно выразить формулой v∙t = 20 или v = .

Так как каждому значению t (t ≠ 0) соответствует единственное значение скорости v, то можно говорить о том, что с помощью формулы v = задана функция. Ее называют обратной пропорциональностью и определяют следующим образом.

Определение. Обратной пропорциональностью называется функция, которая может быть задана при помощи формулы у = , где k - неравное нулю действительное число.

Название данной функции связано с тем, что в у = есть переменные х и у, которые могут быть значениями величин. А если произведение двух величин равно некоторому числу, отличному от нуля, то их называют обратно пропорциональными. В нашем случае ху = k(к ≠0). Это число k называют коэффициентом пропорциональности.

Функция у = является математической моделью многих реальных ситуаций, рассматриваемых уже в начальном курсе математики. Одна из них описана перед определением обратной пропорциональности. Другой пример: если купили 12 кг муки и разложили ее в л: банок по у кг в каждую, то зависимость между данными величинами можно представить в виде х-у = 12, т.е. она является обратной пропорциональностью с коэффициентом k=12.

Напомним некоторые свойства обратной пропорциональности, известные из школьного курса математики.

1.Областью определения функции у = и областью ее значений х является множество действительных чисел, отличных от нуля.

2. Графиком обратной пропорциональности является гипербола.

3. При k > 0 ветви гиперболы расположены в 1 -й и 3-й четвертях и функция у = является убывающей на всей области определения х (рис. 8).

Рис. 8 Рис.9

При к < 0 ветви гиперболы расположены во 2-й и 4-й четвертях и функция у = является возрастающей на всей области определения х (рис. 9).

4. Если функция f - обратная пропорциональность и (х 1 , у 1), (х 2 , у 2) - пары соответственных значений переменных х и у, то .

Действительно, если функция f - обратная пропорциональность, то она может быть задана формулой у = ,и тогда . Так как х 1 ≠0, х 2 ≠0, х 3 ≠0, то

Если значениями переменных х и у служат положительные действительные числа, то это свойство обратной пропорциональности можно сформулировать так: с увеличением (уменьшением) значения переменной х в несколько раз соответствующее значение переменной у уменьшается (увеличивается) во столько же раз.

Это свойство присуще только обратной пропорциональности, и им можно пользоваться при решении текстовых задач, в которых рассматриваются обратно пропорциональные величины.

Задача 2. Велосипедист, двигаясь со скоростью 10 км/ч, проехал расстояние от А до В за 6 ч. Сколько времени потратит велосипедист на обратный путь, если будет ехать со скоростью 20 км/ч?

Решение. В задаче рассматриваются величины: скорость движения велосипедиста, время движения и расстояние от А до В, причем последняя величина постоянна, а две другие принимают различные значения. Кроме того, скорость и время движения - величины обратно пропорциональные, так как их произведение равно некоторому числу, а именно пройденному расстоянию. Если время движения велосипедиста обозначить буквой у, скорость - х, а расстояние АВ - k, то получим, что ху = k или у = , т.е. математической моделью ситуации, представленной в задаче, является обратная пропорциональность.

Решить задачу можно двумя способами:

1 способ: 2 способ:

1) 10-6 = 60 (км) 1) 20:10 = 2 (раза)

2) 60:20 = 3(4) 2) 6:2 = 3(ч)

Решая задачу первым способом, мы сначала нашли коэффициент пропорциональности к, он равен 60, а затем, зная, что у = , нашли значение у при условии, что х = 20.

При решении задачи вторым способом мы воспользовались свойством обратной пропорциональности: во сколько раз увеличивается скорость движения, во столько же раз уменьшается время на прохождение одного и того же расстояния.

Заметим, что при решении конкретных задач с обратно пропорциональными или прямо пропорциональными величинами накладываются некоторые ограничения на х и у, в частности, они могут рассматриваться не на всем множестве действительных чисел, а на его подмножествах.

Задача 3. Лена купила х карандашей, а Катя в 2 раза больше. Обозначьте число карандашей, купленных Катей через у, выразите у через х и постройте график установленного соответствия при условии, что х≤5. Является ли это соответствие функцией? Какова ее область определения и область значений?

Решение. Катя купила у = 2х карандашей. При построении графика функции у=2х необходимо учесть, что переменная х обозначает количество карандашей и х≤5, значит, она может принимать только значения 0, 1, 2, 3, 4, 5. Это и будет область определения данной функции. Чтобы получить область значений данной функции, надо каждое значение х из области определения умножить на 2, т.е. это будет множество {0, 2, 4, 6, 8, 10}. Следовательно, графиком функции у = 2х с областью определения {0, 1, 2, 3, 4, 5} будет множество точек, изображенных на рисунке 10. Все эти точки принадлежат прямой у = 2х.