Правила действий с десятичными числами. Обыкновенные и десятичные дроби и действия над ними

При сложении десятичных дробей надо записать их одну под другой так, чтобы одинаковые разряды были друг под другом, а запятая - под запятой, и сложить дроби так, как складывают натуральные числа. Сложим, напрнмер, дроби 12,7 и 3,442. Первая дробь содержит одну цифру после запятой, а вторая - три. Чтобы выполнить сложение, преобразуем первую дробь так, чтобы после запятой было три цифры: , тогда

Аналогично выполняется вычитание десятичных дробей. Найдем разность чисел 13,1 и 0,37:

При умножении десятичных дробей достаточно перемножить заданные числа, не обращая внимания на запятые (как натуральные числа), а затем в результате справа отделить запятой столько цифр, сколько их стоит после запятой в обоих множителях суммарно.

Например, умножим 2,7 на 1,3. Имеем . Запятой отделим справа две цифры (сумма цифр у множителей после запятой равна двум). В итоге получаем 2,7 1,3=3,51.

Если в произведении получается меньше цифр, чем надо отделить запятой, то впереди пишут недостающие нули, например:

Рассмотрим умножение десятичной дроби на 10, 100, 1000 и т. д. Пусть нужно умножить дробь 12,733 на 10. Имеем . Отделив справа запятой три цифры, получим Но . Значит,

12 733 10=127,33. Таким образом, умножение десятичной дроби на Ю сводится к переносу запятой на одну цифру вправо.

Вообще чтобы умножить десятичную дробь на 10, 100, 1000, надо в этой дроби перенести запятую на 1, 2, 3 цифры вправо Сприписав в случае необходимости к дроби справа определенное число нулей). Например,

Деление десятичной дроби на натуральное число выполняется так же, как деление натурального числа на натуральное, а запятую в частном ставят после того, как закончено деление целой части. Пусть надо разделить 22,1 на 13:

Если целая часть делимого меньше делителя, то в ответе получается нуль целых, например:

Рассмотрим теперь деление десятичной дроби на десятичную. Пусть нужно разделить 2,576 на 1,12. Для этого и в делимом, и в делителе перенесем запятую вправо на столько цифр, сколько их имеется после запятой в делителе (в данном примере на две). Иными словами, умножим делимое и делитель на 100 - от этого частное не изменится. Тогда нужно разделить дробь 257,6 на натуральное число 112, т. е. задача сводится к уже рассмотренному случаю:

Чтобы разделить десятичную дробь на надо в этой дроби перенести запятую на цифр влево (при этом в случае необходимости слева приписывается нужное число нулей). Например, .

Как для натуральных чисел деление не всегда выполнимо, так оно не всегда выполнимо и для десятичных дробей. Разделим для примера 2,8 на 0,09:

В результате получается так называемая бесконечная десятичная дробь. В таких случаях переходят к обыкновенным дробям. Например:

Может оказаться так, что одни числа записаны в виде обыкновенных дробей, другие - в виде смешанных чисел, третьи - в виде десятичных дробей. При выполнении действий над такими числами можно поступать по-разному: либо обратить десятичные дроби в обыкновенные и применить правила действий над обыкновенными дробями, либо обратить обыкновенные дроби и смешанные числа в десятичные дроби (если это возможно) и применить правила действий над десятичными дробями.

Дробь - число, которое состоит из целого числа долей единицы и представляется в виде: a/b

Числитель дроби (a) - число, находящееся над чертой дроби и показывающее количество долей, на которые была поделена единица.

Знаменатель дроби (b) - число, находящееся под чертой дроби и показывающее на сколько долей поделили единицу.

2. Приведение дробей к общему знаменателю

3. Арифметические действия над обыкновенными дробями

3.1. Сложение обыкновенных дробей

3.2. Вычитание обыкновенных дробей

3.3. Умножение обыкновенных дробей

3.4. Деление обыкновенных дробей

4. Взаимно обратные числа

5. Десятичные дроби

6. Арифметические действия над десятичными дробями

6.1. Сложение десятичных дробей

6.2. Вычитание десятичных дробей

6.3. Умножение десятичных дробей

6.4. Деление десятичных дробей

#1. Основное свойство дроби

Если числитель и знаменатель дроби умножить или разделить на одно и то же число, не равное нулю, то получится дробь, равная данной.

3/7=3*3/7*3=9/21, то есть 3/7=9/21

a/b=a*m/b*m - так выглядит основное свойство дроби.

Другими словами, мы получим дробь, равную данной, умножив или разделив числитель и знаменатель исходной дроби на одно и то же натуральное число.

Если ad=bc , то две дроби a/b =c /d считаются равными.

Например, дроби 3/5 и 9/15 будут равными, так как 3*15=5*9, то есть 45=45

Сокращение дроби - это процесс замены дроби, при котором новая дробь получается равной исходной, но с меньшим числителем и знаменателем.

Сокращать дроби принято, опираясь на основное свойство дроби.

Например, 45/60=15/ ​20 =9/12=3/4 ​ (числитель и знаменатель делится на число 3, на 5 и на 15 ).

Несократимая дробь - это дробь вида 3/4 ​ , где числитель и знаменатель являются взаимно простыми числами. Основная цель сокращения дроби - сделать дробь несократимой.

2. Приведение дробей к общему знаменателю

Чтобы привести две дроби к общему знаменателю, надо:

1) разложить знаменатель каждой дроби на простые множители;

2) умножить числитель и знаменатель первой дроби на недостающие

множители из разложения второго знаменателя;

3) умножить числитель и знаменатель второй дроби на недостающие множители из первого разложения.

Примеры: приведите дроби к общему знаменателю .

Разложим знаменатели на простые множители: 18=3∙3∙2, 15=3∙5

Умножили числитель и знаменатель дроби на недостающий множитель 5 из второго разложения.

числитель и знаменатель дроби на недостающие множители 3 и 2 из первого разложения.

= , 90 – общий знаменатель дробей .

3. Арифметические действия над обыкновенными дробями

3.1. Сложение обыкновенных дробей

а) При одинаковых знаменателях числитель первой дроби складывают с числителем второй дроби, оставляя знаменатель прежним. Как видно на примере:

a/b+c/b=(a+c)/b ​ ;

б) При разных знаменателях дроби сначала приводят к общему знаменателю, а затем выполняют сложение числителей по правилу а) :

7/3+1/4=7*4/12+1*3/12=(28+3)/12=31/12

3.2. Вычитание обыкновенных дробей

а) При одинаковых знаменателях из числителя первой дроби вычитают числитель второй дроби, оставляя знаменатель прежним:

a/b-c/b=(a-c)/b ​ ;

б) Если же знаменатели дробей различны, то сначала дроби приводят к общему знаменателю, а затем повторяют действия как в пункте а) .

3.3. Умножение обыкновенных дробей

Умножение дробей подчиняется следующему правилу:

a/b*c/d=a*c/b*d,

то есть перемножают отдельно числители и знаменатели.

Например:

3/5*4/8=3*4/5*8=12/40.

3.4. Деление обыкновенных дробей

Деление дробей производят следующим способом:

a/b:c/d=a*d/b*c,

то есть дробь a/b умножается на дробь, обратную данной, то есть умножается на d/c.

Пример: 7/2:1/8=7/2*8/1=56/2=28

4. Взаимно обратные числа

Если a*b=1, то число b является обратным числом для числа a .

Пример: для числа 9 обратным является 1/9 , так как 9*1/9= 1 , для числа 5 - обратное число 1/5 , так как 5* 1/5 = 1 .

5. Десятичные дроби

Десятичной дробью называется правильная дробь, знаменатель которой равен 10, 1000, 10 000, …, 10^n 1 0 , 1 0 0 0 , 1 0 0 0 0 , . . . , 1 0 n .

Например: 6/10=0,6; 44/1000=0,044 .

Таким же способом пишутся неправильные со знаменателем 10^n или смешанные числа.

Например: 51/10=5,1; 763/100=7,63

В виде десятичной дроби представляется любая обыкновенная дробь со знаменателем, который является делителем некой степени числа 10 .

менателем, который является делителем некой степени числа 10 .

Пример: 5 - делитель числа 100 , поэтому дробь 1/5=1 *20/5*20=20/100=0,2 0 = 0 , 2 .

6. Арифметические действия над десятичными дробями

6.1. Сложение десятичных дробей

Для сложения двух десятичных дробей, нужно их расположить так, чтобы друг под другом оказались одинаковые разряды и запятая под запятой, а затем выполнить сложение дробей как обычных чисел.

6.2. Вычитание десятичных дробей

Выполняется аналогично сложению.

6.3. Умножение десятичных дробей

При умножении десятичных чисел достаточно перемножить заданные числа, не обращая внимания на запятые (как натуральные числа), а в полученном ответе запятой справа отделяется столько цифр, сколько их стоит после запятой в обоих множителях суммарно.

Давайте выполним умножение 2,7 на 1,3 . Имеем 27 \cdot 13=351 2 7 ⋅ 1 3 = 3 5 1 . Отделяем справа две цифры запятой (у первого и второго числа - одна цифра после запятой; 1+1=2 1 + 1 = 2 ). В итоге получаем 2,7 \cdot 1,3=3,51 2 , 7 ⋅ 1 , 3 = 3 , 5 1 .

Если в полученном результате получается меньше цифр, чем надо отделить запятой, то впереди пишут недостающие нули, например:

Для умножения на 10 , 100 , 1000 , надо в десятичной дроби перенести запятую на 1 , 2 , 3 цифры вправо (в случае необходимости справа приписывается определенное число нулей).

Например: 1,47 \cdot 10 000 = 14 700 1 , 4 7 ⋅ 1 0 0 0 0 = 1 4 7 0 0 .

6.4. Деление десятичных дробей

Деление десятичной дроби на натуральное число производят также, как и деление натурального числа на натуральное. Запятая в частном ставится после того, как закончено деление целой части.

Если целая часть делимого меньше делителя, то в ответе получается нуль целых, например:

Рассмотрим деление десятичной дроби на десятичную. Пусть нужно разделить 2,576 на 1,12 . Первым делом, умножим делимое и делитель дроби на 100 , то есть перенесем запятую вправо в делимом и делителе на столько знаков, сколько их стоит в делителе после запятой (в данном примере на две). Затем нужно выполнить деление дроби 257,6 на натуральное число 112 , то есть задача сводится к уже рассмотренному случаю:

Бывает так, что не всегда получается конечная десятичная дробь при делении одного числа на другое. В результате получается бесконечная десятичная дробь. В таких случаях переходят к обыкновенным дробям.

Например, 2,8: 0,09= 28/10: 9/100= 28*100/10*9=2800/90=280/9 = 31 1/9 .

Действия с дробями. В этой статье разберём примеры, всё подробно с пояснениями. Рассматривать будем обыкновенные дроби. В дальнейшем разберём и десятичные. Рекомендую посмотреть весь и изучать последовательно.

1. Сумма дробей, разность дробей.

Правило: при сложении дробей с равными знаменателями, в результате получаем дробь – знаменатель которой остаётся тот же, а числитель её будет равен сумме числителей дробей.

Правило: при вычислении разности дробей с одинаковыми знаменателями получаем дробь – знаменатель остаётся тот же, а из числителя первой дроби вычитается числитель второй.

Формальная запись суммы и разности дробей с равными знаменателями:


Примеры (1):


Понятно, что когда даны обыкновенные дроби, то всё просто, а если смешанные? Ничего сложного…

Вариант 1 – можно перевести их в обыкновенные и далее вычислять.

Вариант 2 – можно отдельно «работать» с целой и дробной частью.

Примеры (2):


Ещё:

А если будет дана разность двух смешанных дробей и числитель первой дроби будет меньше числителя второй? Тоже можно действовать двумя способами.

Примеры (3):

*Перевели в обыкновенные дроби, вычислили разность, перевели полученную неправильную дробь в смешанную.


*Разбили на целые и дробные части, получили тройку, далее представили 3 как сумму 2 и 1, при чём единицу представили как 11/11, далее нашли разность 11/11 и 7/11 и вычислили результат. Смысл изложенных преобразований заключается в том, чтобы взять (выделить) единицу и представить её в виде дроби с нужным нам знаменателем, далее от этой дроби мы уже можем вычесть другую.

Ещё пример:


Вывод: имеется универсальный подход – для того, чтобы вычислить сумму (разность) смешанных дробей с равными знаменателями их всегда можно перевести в неправильные, далее выполнить необходимое действие. После этого если в результате получаем неправильную дробь переводим её в смешанную.

Выше мы рассмотрели примеры с дробями, у которых равные знаменатели. А если знаменатели будут отличаться? В этом случае дроби приводятся к одному знаменателю и выполняется указанное действие. Для изменения (преобразования) дроби используется основное свойство дроби.

Рассмотрим простые примеры:


В данных примерах мы сразу видим каким образом можно преобразовать одну из дробей, чтобы получить равные знаменатели.

Если обозначить способы приведения дробей к одному знаменателю, то этот назовём СПОСОБ ПЕРВЫЙ .

То есть, сразу при «оценке» дроби нужно прикинуть сработает ли такой подход – проверяем делится ли больший знаменатель на меньший. И если делится, то выполняем преобразование — домножаем числитель и знаменатель так чтобы у обеих дробей знаменатели стали равными.

Теперь посмотрите на эти примеры:

К ним указанный подход не применим. Существуют ещё способы приведения дробей к общему знаменателю, рассмотрим их.

Способ ВТОРОЙ .

Умножаем числитель и знаменатель первой дроби на знаменатель второй, а числитель и знаменатель второй дроби на знаменатель первой:

*Фактически мы приводим дроби к виду, когда знаменатели становятся равными. Далее используем правило сложения робей с равными знаменателями.

Пример:

*Данный способ можно назвать универсальным, и он работает всегда. Единственный минус в том, что после вычислений может получится дробь которую необходимо будет ещё сократить.

Рассмотрим пример:

Видно что числитель и знаменатель делится на 5:

Способ ТРЕТИЙ.

Необходимо найти наименьшее общее кратное (НОК) знаменателей. Это и будет общий знаменатель. Что это за число такое? Это наименьшее натуральное число, которое делится на каждое из чисел.

Посмотрите, вот два числа: 3 и 4, есть множество чисел, которые делятся на них – это 12, 24, 36, … Наименьшее из них 12. Или 6 и 15, на них делятся 30, 60, 90 …. Наименьшее 30. Вопрос – а как определить это самое наименьшее общее кратное?

Имеется чёткий алгоритм, но часто это можно сделать и сразу без вычислений. Например, по указанным выше примерам (3 и 4, 6 и 15) никакого алгоритма не надо, мы взяли большие числа (4 и 15) увеличили их в два раза и увидели, что они делятся на второе число, но пары чисел могут быть и другими, например 51 и 119.

Алгоритм. Для того, чтобы определить наименьшее общее кратное нескольких чисел, необходимо:

— разложить каждое из чисел на ПРОСТЫЕ множители

— выписать разложение БОЛЬШЕГО из них

— умножить его на НЕДОСТАЮЩИЕ множители других чисел

Рассмотрим примеры:

50 и 60 => 50 = 2∙5∙5 60 = 2∙2∙3∙5

в разложении большего числа не хватает одной пятёрки

=> НОК(50,60) = 2∙2∙3∙5∙5 = 300

48 и 72 => 48 = 2∙2∙2∙2∙3 72 = 2∙2∙2∙3∙3

в разложении большего числа не хватает двойки и тройки

=> НОК(48,72) = 2∙2∙2∙2∙3∙3 = 144

* Наименьшее общее кратное двух простых чисел равно их произведению

Вопрос! А чем полезно нахождение наименьшего общего кратного, ведь можно пользоваться вторым способом и полученную дробь просто сократить? Да, можно, но это не всегда удобно. Посмотрите, какой получится знаменатель для чисел 48 и 72, если их просто перемножить 48∙72 = 3456. Согласитесь, что приятнее работать с меньшими числами.

Рассмотрим примеры:

*51 = 3∙17 119 = 7∙17

в разложении большего числа не хватает тройки

=> НОК(51,119) = 3∙7∙17

А теперь применим первый способ:

*Посмотрите какая разница в вычислениях, в первом случае их минимум, а во втором нужно потрудиться отдельно на листочке, да ещё и дробь которую получили сократить необходимо. Нахождение НОК упрощает работу значительно.

Ещё примеры:


*Во втором примере и так видно, что наименьшее число, которое делится на 40 и 60 равно 120.

ИТОГ! ОБЩИЙ АЛГОРИТМ ВЫЧИСЛЕНИЙ!

— приводим дроби к обыкновенным, если есть целая часть.

— приводим дроби к общему знаменателю (сначала смотрим делится ли один знаменатель на другой, если делится то умножаем числитель и знаменатель этой другой дроби; если не делится действуем посредством других указанных выше способов).

— получив дроби с равными знаменателями, выполняем действия (сложение, вычитание).

— если необходимо, то результат сокращаем.

— если необходимо, то выделяем целую часть.

2. Произведение дробей.

Правило простое. При умножении дробей умножаются их числители и знаменатели:

Примеры:

Уже в начальной школе учащиеся сталкиваются с дробями. И потом они появляются в каждой теме. Забывать действия с этими числами нельзя. Поэтому нужно знать всю информацию про обыкновенные и десятичные дроби. Понятия эти несложные, главное - разбираться во всем по порядку.

Зачем нужны дроби?

Окружающий нас мир состоит из целых предметов. Поэтому в долях необходимости нет. Зато повседневная жизнь постоянно наталкивает людей на работу с частями предметов и вещей.

Например, шоколад состоит из нескольких долек. Рассмотрим ситуацию, когда его плитка образована двенадцатью прямоугольниками. Если ее разделить на двоих, то получится по 6 частей. Она хорошо разделится и на троих. А вот пятерым не удастся дать по целому числу долек шоколада.

Кстати, эти дольки - уже дроби. А дальнейшее их деление приводит к появлению более сложных чисел.

Что такое «дробь»?

Это число, состоящее из частей единицы. Внешне оно выглядит как два числа, разделенные горизонтальной или наклонной чертой. Эта черта носит название дробной. Число, записанное сверху (слева), называется числителем. То, что стоит снизу (справа), является знаменателем.

По сути, дробная черта оказывается знаком деления. То есть числитель можно назвать делимым, а знаменатель — делителем.

Какие существуют дроби?

В математике их имеется всего два вида: обыкновенные и десятичные дроби. С первыми школьники знакомятся в начальных классах, называя их просто «дроби». Вторые узнают в 5 классе. Именно тогда появляются эти названия.

Обыкновенные дроби — все те, что записываются в виде двух чисел, разделенных чертой. Например, 4/7. Десятичная — это число, в котором дробная часть имеет позиционную запись и отделяется от целой при помощи запятой. К примеру, 4,7. Учащимся нужно четко уяснить, что два приведенных примера — это совершенно разные числа.

Каждую простую дробь можно записать в виде десятичной. Это утверждение почти всегда верно и в обратном направлении. Существуют правила, которые позволяют записать обыкновенной дробью десятичную дробь.

Какие подвиды имеют указанные виды дробей?

Начать лучше в хронологическом порядке, так как они изучаются. Первыми идут обыкновенные дроби. Среди них можно выделить 5 подвидов.

    Правильная. Ее числитель всегда меньше знаменателя.

    Неправильная. У нее числитель больше или равен знаменателю.

    Сократимая/несократимая. Она может оказаться как правильной, так и неправильной. Важно другое, есть ли у числителя со знаменателем общие множители. Если имеются, то на них полагается разделить обе части дроби, то есть сократить ее.

    Смешанная. К ее привычной правильной (неправильной) дробной части приписывается целое число. Причем оно всегда стоит слева.

    Составная. Она образуется из двух разделенных друг на друга дробей. То есть в ней насчитывается сразу три дробные черты.

У десятичных дробей есть всего два подвида:

    конечная, то есть та, у которой дробная часть ограничена (имеет конец);

    бесконечная — число, у которого цифры после запятой не заканчиваются (их можно писать бесконечно).

Как переводить десятичную дробь в обыкновенную?

Если это конечное число, то применяется ассоциация, основанная на правиле — как слышу, так пишу. То есть нужно правильно прочитать ее и записать, но уже без запятой, а с дробной чертой.

В качестве подсказки о необходимом знаменателе, нужно запомнить, что он всегда единица и несколько нулей. Последних нужно написать столько, сколько цифр в дробной части рассматриваемого числа.

Как перевести десятичные дроби в обыкновенные, если их целая часть отсутствует, то есть равна нулю? Например, 0,9 или 0,05. После применения указанного правила, получается, что нужно написать ноль целых. Но оно не указывается. Остается записать только дробные части. У первого числа знаменатель будет равен 10, у второго — 100. То есть указанные примеры ответами будут иметь числа: 9/10, 5/100. Причем последнее оказывается можно сократить на 5. Поэтому результатом для нее нужно записать 1/20.

Как из десятичной дроби сделать обыкновенную, если ее целая часть отлична от нуля? Например, 5,23 или 13,00108. В обоих примерах читается целая часть и записывается ее значение. В первом случае это — 5, во втором — 13. Потом нужно переходить к дробной части. С ними полагается провести ту же операцию. У первого числа появляется 23/100, у второго — 108/100000. Второе значение снова нужно сократить. В ответе получаются такие смешанные дроби: 5 23/100 и 13 27/25000.

Как перевести бесконечную десятичную дробь в обыкновенную?

Если она является непериодической, то такую операцию провести не удастся. Этот факт связан с тем, что каждая десятичная дробь всегда переводится или в конечную или в периодическую.

Единственное, что допускается делать с такой дробью, — это округлять ее. Но тогда десятичная будет приблизительно равно той бесконечной. Ее уже можно превратить в обыкновенную. Но обратный процесс: перевод в десятичную — никогда не даст начального значения. То есть бесконечные непериодические дроби в обыкновенные не переводятся. Это нужно запомнить.

Как записать бесконечную периодическую дробь в виде обыкновенной?

В этих числах после запятой всегда появляются одна или несколько цифр, которые повторяются. Их называют периодом. Например, 0,3(3). Здесь «3» в периоде. Их относят к классу рациональных, так как могут быть преобразованы в обыкновенные дроби.

Тем, кто встречался с периодическими дробями, известно, что они могут быть чистыми или смешанными. В первом случае период начинается сразу от запятой. Во втором — дробная часть начинается с каких-либо цифр, а потом начинается повтор.

Правило, по которому нужно записать в виде обыкновенной дроби бесконечную десятичную, будет разным для указанных двух видов чисел. Чистые периодические дроби записать обыкновенными достаточно просто. Как с конечными, их нужно преобразовать: в числитель записать период, а знаменателем будет цифра 9, повторяющаяся столько раз, сколько цифр содержит период.

Например, 0,(5). Целой части у числа нет, поэтому сразу нужно приступать к дробной. В числитель записать 5, а в знаменатель одну 9. То есть ответом будет дробь 5/9.

Правило о том, как записать обыкновенной десятичную периодическую дробь, являющуюся смешанной.

    Посмотреть на длину периода. Столько 9 будет иметь знаменатель.

    Записать знаменатель: сначала девятки, потом нули.

    Чтобы определить числитель, нужно записать разность двух чисел. Уменьшаемым будут все цифры после запятой, вместе с периодом. Вычитаемым — оно же без периода.

Например, 0,5(8) - запишите периодическую десятичную дробь в виде обыкновенной. В дробной части до периода стоит одна цифра. Значит ноль будет один. В периоде тоже только одна цифра — 8. То есть девятка одна. То есть в знаменателе нужно написать 90.

Для определения числителя из 58 нужно вычесть 5. Получается 53. Ответом к примеру придется записать 53/90.

Как переводятся обыкновенные дроби в десятичные?

Самым простым вариантом оказывается число, в знаменателе которого стоит число 10, 100 и прочее. Тогда знаменатель просто отбрасывается, а между дробной и целой частями ставится запятая.

Бывают ситуации, когда знаменатель легко превращается в 10, 100 и т. д. Например, числа 5, 20, 25. Их достаточно умножить на 2, 5 и 4 соответственно. Только умножать полагается не только знаменатель, но и числитель на то же число.

Для всех остальных случаев пригодится простое правило: разделить числитель на знаменатель. В этом случае может получиться два варианта ответов: конечная или периодическая десятичная дробь.

Действия с обыкновенными дробями

Сложение и вычитание

С ними учащиеся знакомятся раньше других. Причем сначала у дробей одинаковые знаменатели, а потом разные. Общие правила можно свести к такому плану.

    Найти наименьшее общее кратное знаменателей.

    Записать дополнительные множители ко всем обыкновенным дробям.

    Умножить числители и знаменатели на определенные для них множители.

    Сложить (вычесть) числители дробей, а общий знаменатель оставить без изменения.

    Если числитель уменьшаемого меньше вычитаемого, то нужно выяснить, перед нами смешанное число или правильная дробь.

    В первом случае у целой части нужно занять единицу. К числителю дроби прибавить знаменатель. А потом выполнять вычитание.

    Во втором — необходимо применить правило вычитания из меньшего числа большее. То есть из модуля вычитаемого вычесть модуль уменьшаемого, а в ответ поставить знак «-».

    Внимательно посмотреть на результат сложения (вычитания). Если получилась неправильная дробь, то полагается выделить целую часть. То есть разделить числитель на знаменатель.

    Умножение и деление

    Для их выполнения дроби не нужно приводить к общему знаменателю. Это упрощает выполнение действий. Но в них все равно полагается следовать правилам.

      При умножении обыкновенных дробей необходимо рассмотреть числа в числителях и знаменателях. Если какой-либо числитель и знаменатель имеют общий множитель, то их можно сократить.

      Перемножить числители.

      Перемножить знаменатели.

      Если получилась сократимая дробь, то ее полагается снова упростить.

      При делении нужно сначала заменить деление на умножение, а делитель (вторую дробь) — на обратную дробь (поменять местами числитель и знаменатель).

      Потом действовать, как при умножении (начиная с пункта 1).

      В заданиях, где умножить (делить) нужно на целое число, последнее полагается записать в виде неправильной дроби. То есть со знаменателем 1. Потом действовать, как было описано выше.

    Действия с десятичными дробями

    Сложение и вычитание

    Конечно, всегда можно превратить десятичную дробь в обыкновенную. И действовать по уже описанному плану. Но иногда удобнее действовать без этого перевода. Тогда правила для их сложения и вычитания будут совершенно одинаковыми.

      Уравнять число цифр в дробной части числа, то есть после запятой. Приписать в ней недостающее количество нулей.

      Записать дроби так, чтобы запятая оказалась под запятой.

      Сложить (вычесть) как натуральные числа.

      Снести запятую.

    Умножение и деление

    Важно, что здесь не нужно дописывать нули. Дроби полагается оставлять в том виде, как они даны в примере. А дальше идти по плану.

      Для умножения нужно написать дроби одна под другой, не обращая внимание на запятые.

      Умножить, как натуральные числа.

      Поставить в ответе запятую, отсчитав от правого конца ответа столько цифр, сколько их стоит в дробных частях обоих множителей.

      Для деления нужно сначала преобразовать делитель: сделать его натуральным числом. То есть умножить его на 10, 100 и т. д., в зависимости от того, сколько цифр в дробной части делителя.

      На то же число умножить делимое.

      Разделить десятичную дробь на натуральное число.

      Поставить в ответе запятую в тот момент, когда закончится деление целой части.

    Как быть, если в одном примере есть оба вида дробей?

    Да в математике часто встречаются примеры, в которых нужно выполнить действия над обыкновенными и десятичными дробями. В таких заданиях возможны два пути решения. Нужно объективно взвесить числа и выбрать оптимальный.

    Первый путь: представить обыкновенные десятичными

    Он подходит, если при делении или переводе получаются конечные дроби. Если хотя бы одно число дает периодическую часть, то этот прием применять запрещено. Поэтому, даже если не нравится работать с обыкновенными дробями, придется считать их.

    Второй путь: записать десятичные дроби обыкновенными

    Этот прием оказывается удобным, если в части после запятой стоят 1-2 цифры. Если их больше, может получиться очень большая обыкновенная дробь и десятичные записи позволят сосчитать задание быстрее и проще. Поэтому всегда нужно трезво оценивать задание и выбирать самый простой метод решения.

Состоит из трех частей, каждая из которых содержит 48 карточек с примерами на совместное выполнение сложения и вычитания, умножения и деления, а также всех четырех арифметических действий с десятичными дробями. Все карточки однотипны и включают в себя примеры различной трудности с учетом особенностей, характерных для отдельных действий. Каждой карточка состоит из восьми примеров, содержащих от четырех до шести действий, причем примеры с одинаковыми номерами аналогичны друг другу. Так первые два примера всех карточек пятой и шестой частей не содержат скобок, в третьих и четвертых примерах обязательно присутствует одна пара скобок, в пятых и шестых - две пары скобок, в седьмых - три пары, а восьмые примеры содержат скобки в скобках. Аналогичным образом подобны друг другу и примеры седьмой части. Для качественной проработки всех арифметических действий карточки были составлены таким образом, что: - в каждом примере на сложение и вычитание (часть 5) обязательно есть целое слагаемое, а один из промежуточных ответов является целым числом; - в каждом примере на умножение и деление (часть 6) обязательно присутствует множитель, являющийся целой (положительной или отрицательной) степенью десятки, причем в каждом варианте встречаются все четыре случая (уножение и деление на положительную и на отрицательную степень десятки). Кроме того, в КАЖДОМ НЕЧЕТНОМ ПРИМЕРЕ КАЖДОГО ВАРИАНТА содержится по крайней мере одно действие деления, частное которого имеет НУЛЕВОЙ СРЕДНИЙ РАЗРЯД. В других примерах таких частных нет; - в каждом примере седьмой части присутствуют все четыре арифметических действия и по возможности реализованы особенности примеров из пятой и шестой частей. Для этого в каждом примере одно из действий сложения или вычитания производится с целым числом или дает целый результат. Все примеры этой части, в которых при делении получается ЧАСТНОЕ СО СРЕДНИМ НУЛЕВЫМ РАЗРЯДОМ, отмечены в ответах знаком (!) после своего номера, причем ТАКИЕ ЧАСТНЫЕ ОБЯЗАТЕЛЬНЫ ВО ВТОРОМ И ЧЕТВЕРТОМ ПРИМЕРАХ КАЖДОГО ВАРИАНТА. Кроме того, в каждом варианте встречаются и уножение и деление как на положительную, так и на отрицательную степень десятки. ВСЕ ЗАДАНИЯ ВСЕХ ВАРИАНТОВ СНАБЖЕНЫ ОТВЕТАМИ ПО КАЖДОМУ ДЕЙСТВИЮ, причем КОНЕЧНЫЙ ОТВЕТ КАЖДОГО ПРИМЕРА определенным образом СВЯЗАН С ЕГО ПОРЯДКОВЫМ НОМЕРОМ И НОМЕРОМ ВАРИАНТА, то есть вторым числом после номера части. А именно: - конечный ответ любого примера пятой части представляет собой число, целая часть которого является номером варианта, а дробная часть - порядковым номером примера. Так ответом четвертого примера варианта 5.20 (то есть двадцатого варианта пятой части) является число 20,4; - конечный ответ любого примера шестой части представляет собой число, целая часть которого также является номером варианта, а дробная часть состоит из двух цифр - нуля и номера примера. Так седьмой пример варианта 6.12 имеет конечный ответ 12,07; - конечный ответ любого примера седьмой части является числом, целая часть которого равна сумме номера варианта и номера примера, а дробная часть образована так же, как и в шестой части. Таким образом, третий пример варианта 7.28 имеет конечный ответ 31,03. Большое количество различных вариантов по каждой теме позволяет учителю легко организовать в классе индивидуальную работу всех учащихся. Данные карточки могут многократно применяться на уроках при отработке вычислительных навыков у учащихся, на самостоятельных и контрольных работах, на дополнительных занятиях, в качестве домашнего задания и т.п. Кроме того, данный дидактический материал может использоваться при изучении правил раскрытия скобок и изменения порядка действий для облегчения вычислений. Конечно, данные карточки будут полезны и при обучении учащихся работе на микрокалькуляторах. Формирование и решение всех заданий выполнено на компьютере по оригинальным программам.