Магнитное поле (МП), графическое изображение. Магнитная индукция проводников различной формы

Библиографическое описание: Насекин К. Г., Маюров С. Г. Получение картины магнитного поля // Юный ученый. — 2015. — №1. — С. 75-78..04.2019).



Введение. Магнетизм

Природные магниты, попросту говоря, кусочки магнитного железняка - магнетита (химический состав: 31 % железа и 69 % кислорода) не везде назывались магнитами. В разных странах магнит называли по-разному, но большая часть всех этих названий переводится как «любящий». Так поэтичным языком древних описано свойство кусков магнита - притягивать железо.

«Любящий камень» - такое поэтическое название дали китайцы естественному магниту. Сила у естественных магнитов незначительна, и потому греческое название магнита - переводится как «геркулесов камень».

Не следует думать, что магнит действует только на железо. Есть ряд других тел, которые тоже испытывают на себе действие сильного магнита, хотя и не в такой степени, как железо. Металлы: никель, кобальт, марганец, платина, золото, серебро, алюминий - в слабой степени притягиваются магнитом. Еще замечательное свойство так называемых диамагнитных тел, например цинка, свинца, серы, висмута: эти тела отталкиваются от сильного магнита!

Жидкости и газы также испытывают на себе притяжение или отталкивание магнита, правда, в весьма слабой степени; магнит должен быть очень силен, чтобы проявить свое влияние на эти вещества.

Основная часть

Линии магнитных сил

У человека нет органа чувств, воспринимающего магнитное поле, поэтому о существовании магнитных сил, которые окружают магнит, он может лишь догадываться. Однако нетрудно косвенным образом обнаружить картины распределения этих сил. Лучше всего сделать это с помощью мелких железных опилок.

Для этого нужно взять магнит, сверху накрыть его стеклянной пластиной. На пластину положить лист бумаги. Далее насыпать опилки тонким ровным слоем на лист бумаги, встряхивая опилки легкими ударами. Магнитные силы свободно проходят сквозь бумагу и стекло; следовательно, железные опилки под действием магнита намагнитятся; когда мы встряхиваем их, они на мгновение отделяются от пластинки и могут под действием магнитных сил легко повернуться.

В результате опилки располагаются рядами, наглядно обнаруживая распределение невидимых магнитных линий. Магнитные силы создают сложную систему изогнутых линий. Можно увидеть, как, они лучисто расходятся от каждого полюса магнита. Чем ближе к полюсу, тем линии опилок гуще и четче; напротив, с удалением от полюса они разрежаются и утрачивают свою отчетливость, наглядно доказывая ослабление магнитных сил с расстоянием.

Актуальность работы

Работа посвящена совершенствованию получения картин магнитного поля, которые отчетливо показывают магнитные линии. Используя известные способы получения плоских картин, необходимо разработать способ получения объемных картин магнитного поля.

Получение изображения с помощью магнита и железных опилок

Чтобы получить такой рисунок, нужно взять: магнит, небольшое стекло, лист бумаги, железные опилки. Вначале мы положили магнит на верстак, далее накрыли его стеклом. На стекло положили лист бумаги, после чего сыпали железные опилки. Чтобы получился красивый рисунок нужно:

1) Не сыпать железные опилки с небольшой высоты от магнита. Из-за этого опилки слепляются в воздухе и падают на лист в куче.

2) Железные опилки лучше сыпать около полюсов, чтобы было четко видно магнитные линии.

Действие магнитного поля на экран дисплея

Магнитное поле магнита действует и на экран дисплея. Если взять магнит и поднести к экрану дисплея, то происходит много разных явлений:

1. Искажение изображения на экране дисплея.

2. Изменение цветовой палитры экрана дисплея.

Если магнит поднести прямо к стеклу дисплея, то возникает своеобразная и красивая картина на нем. Когда магнит отдаляется от экрана, картина становится менее четкой. На фотографиях, сделанных в этот момент, можно увидеть некоторую закономерность. Если на экран дисплея положить два кольцеобразных магнита, то образуется рисунок, отличающийся от рисунка, образованного одним магнита. На границе этих рисунков можно заметить линии, как-то связанные с магнитным полем. Если количество магнитов меняется или изменяется расположение полюсов магнита, то и рисунок будет другим. Если на экран дисплея положить кольцеобразный магнит с большой магнитной силой, то экран дисплея станет темным, а внутри кольца экран светится различными красками.

В книге написано, что магнитное поле действует на электроны. При этом взаимодействии электроны не попадают в нужное место и возникают искажения. Опыты проводились на старом мониторе.

Получение объемных картин магнитного поля

В ходе работы были получены и сфотографированы картины магнитного поля различных магнитов с помощью железных опилок. При анализе результатов было замечено, что картины магнитного поля либо плоские, либо опилки поднимаются на небольшую высоту, и не дают полной информации о магнитном поле. Ведь, чтобы получить картины магнитного поля даже одного магнита нужно проделать несколько опытов. Чтобы получить картину магнитного поля одного магнита, нужен один опыт, другого магнита - второй опыт. Возник вопрос: как получить картины магнитного поля в объеме? Что нужно сделать, чтобы картина магнитного поля получилась в объеме? Возникает проблема, мешает сила тяжести, действующая на железные опилки. Для решения этой проблемы нужно уменьшить вес опилок. Уменьшить вес тела в обычных условиях можно только с помощью жидкости. В этом случае подходит жидкость «глицерин». Преимущества этой жидкости:

1. Имеет большую плотность, чем вода = 1260 кг/м 3

2. Глицерин прозрачен.

3. Глицерин безвреден для здоровья человека.

4. У глицерина хорошая вязкость.

Если взять воду, то выталкивающая сила будет меньше. Почему? У воды меньшая плотность, чем у глицерина. У воды маленькая вязкость.

Описание оборудования

Было взято два сосуда в форме прямоугольного параллелепипеда из оргстекла, размеры которых 85 x 85 x 55 мм. Один сосуд негерметизированный, для случая, если нужно добавить опилок или глицерина, но он закрывается с помощью бронзовых болтиков и становится герметичным. Чтобы герметизировать сосуд, поверхность краев сосуда смазывалась эпоксидной смолой, и крышка плотно прижималась к сосуду. Другой сосуд для демонстрации картин магнитного поля, был изготовлен, но в нем были оставлены два металлических стержня из железа. Перед герметизацией сосуда, в него нужно залить глицерин и засыпать железные опилки. Чтобы делать опыты нужно тщательно перемешать глицерин и опилки, вращая в руке сосуд.

1. Нужно взять сосуд без стержней и резкими движениями перемешать опилки в глицерине и поставить его на магнит с большой магнитной силой. Тогда железные опилки построят объемный рисунок магнитных линий не только на дне сосуда, но и на большом расстоянии от дна.

2. Нужно взять сосуд со стержнями и резкими движениями перемешать и поставить на магнит. Тогда железные опилки построят объемный рисунок возле стержней и на дне сосуда.

Чтобы железные опилки построили объемную картину магнитного поля, нужно несколько минут. Потом можно снять сосуд и поставить магнит в другом месте и картина снова изобразится. Но лучше оставить сосуд на сутки, так как глицерин слегка мутный, поэтому картина проявится лучше.

С помощью эпоксидной смолы, железных опилок в маленькой пластмассовой коробочке была попытка получения картины магнитного поля. Опыт удался, но его нужно повторить.

Мои впечатления: увидев эти явления, я был в изумлении от такого свойства магнита. Для меня это очень интересно и увлекательно. В зависимости от вида магнита, картины магнитного поля получаются разными. Картины магнитного поля всегда получаются красивыми, они могут меняться.

Магниты в воздухе

Когда проводились опыты получения картин магнитного поля, происходило следующее: при перемещении магнита под стеклом, железные опилки двигались вместе с магнитом и меняли угол наклона, высоту. Возник вопрос: что будет, если кусочки магнитов поместить в изменяющееся магнитное поле? Если подключить проволочную катушку с железным сердечником к источнику тока, возникнет магнитное поле. Если железные опилки поместить рядом с проволочной катушкой, то можно получить картину магнитного поля. Если подключить ее к источнику постоянного тока (батарее, аккумулятору), тогда железные опилки создадут неподвижную картину магнитного поля. А если к источнику переменного тока, то можно услышать слабое гудение, значит, опилки вибрируют. Это можно использовать для опытов. Рассмотрим ход опыта:

1. Взять шарики из пенопласта и поместить в них кусочки разбитого магнита.

3. После этого поместить пенопластовые шарики с кусочками магнитами в коробочку.

4. Поставить коробочку с шариками на катушку.

5. Катушку из медного провода подключить к источнику переменного тока.

В результате действия магнитного поля на осколки магнитов в шариках из действия опыта, в магнитном поле создается хаотичное движение молекул.

Магниты дома

В моей семье сувениры на магнитах можно увидеть на холодильнике. Эти магниты, так скажем декоративные. Они у нас появляются от родственников, знакомых, которые где-нибудь отдыхали, или сами привозим с отдыха, как традиция.

Но самое важное применение магнитов в холодильнике скрыто от наших глаз. В холодильнике магниты в виде полос используются в уплотнителе дверей. С помощью этого идет притяжение дверцы к корпусу и происходит уплотнение, влага не попадает в холодильник.

Еще у нас есть набор инструментов, в котором есть намагниченные отвертки. Такие отвертки нужны для того, чтобы не потерять какой-нибудь шуруп. Дома есть шторы, для придания нужной формы на них вешаются магнитные клипсы. Еще есть простой магнит, на него мы вешаем ключи от дома, чтобы они не потерялись. Раньше дома использовался музыкальный центр, у которого было две колонки, в этих колонках есть магниты. В бытовой технике часто используются магниты.

Есть такие сувениры, принцип действия которых основывается на использовании магнитного поля магнитов. У меня есть специальные магниты, из которых можно составлять различную цепочку. В кабинете физики есть сувенир «горизонтальная юла». Кончик юлы упирается в стекло, она висит над подставкой и ее можно раскручивать. Есть игра дартс. Современный дартс основан на действии магнита, у дротика на кончике магнит.

Результаты работы

1. Получены картины магнитного поля магнитов разной формы;

2. Получены картины магнитного поля магнитов с разной магнитной силой;

3. Получены картины искажений изображений экрана на дисплее;

4. Получены объемные картины магнитных полей магнитов разных форм и разной магнитной силой;

5. Составлена коллекция фотоизображений картин магнитных полей на цифровых носителях;

6. Сделана модель движущихся магнитов в переменном магнитном поле;

7. Сделана попытка получить «вечную» картину магнитного поля.

8. Работа может быть продолжена с целью получения более сложных картин магнитных полей.

Выводы

1. Картины магнитных полей бывают разнообразными.

2. Их вид зависит:

а) - от формы магнита;

б) - от магнитной силы;

в) - от наличия полюсов.

3. Магнитное поле действует на изображение на экране старого дисплея или телевизора и возникают различные явления

а) - появление пятен на экране дисплея;

б) - искажение изображения на экране дисплея;

в) - изменение цветовой палитры экрана дисплея;

г) в расположении пятен на экране дисплея угадывается, какая-то картина.

4. Объемные картины магнитного поля дают больше информации о расположении магнитных линий.

5. Переменное магнитное поле заставляет магниты двигаться.

Литература:

1. Карцев В. П. Приключения великих уравнений, издательство «Знание» М.-1978

2. Перельман Я. И. Занимательная физика, издательство «Наука» М.-1972

3. А. С. Енохович. Справочник по физике и технике, издательство «Просвещение» М.- 1983

4. А. Шилейко, Т. Шилейко Электроны…электроны, издательство «Детская литература» М.- 1983

5. Л. В. Тарасов Физика в природе М.: Просвещение, 1998 г.

«Определение магнитного поля» - По данным, полученным в ходе экспериментов, заполним таблицу. Ж. Верн. Когда мы подносим к магнитной стрелке магнит, она поворачивается. Графическое изображение магнитных полей. Ханс Кристиан Эрстед. Электрическое поле. Магнит имеет два полюса: северный и южный. Этап обобщения и систематизации знаний.

«Магнитное поле и его графическое изображение» - Неоднородное магнитное поле. Катушки с током. Магнитные линии. Гипотеза Ампера. Внутри полосового магнита. Разноименные магнитные полюса. Полярное сияние. Магнитное поле постоянного магнита. Магнитное поле. Земное магнитное поле. Магнитные полюсы. Биометрология. Концентрические окружности. Однородное магнитное поле.

«Энергия магнитного поля» - Скалярная величина. Расчёт индуктивности. Постоянные магнитные поля. Время релаксации. Определение индуктивности. Энергия катушки. Экстратоки в цепи с индуктивностью. Переходные процессы. Плотность энергии. Электродинамика. Колебательный контур. Импульсное магнитное поле. Самоиндукция. Плотность энергии магнитного поля.

«Характеристики магнитного поля» - Линии магнитной индукции. Правило Буравчика. Поворачиваются вдоль силовых линий. Компьютерная модель магнитного поля Земли. Магнитная постоянная. Магнитная индукция. Число носителей заряда. Три способа задать вектор магнитной индукции. Магнитное поле электрического тока. Ученый-физик Уильям Гильберт.

«Свойства магнитного поля» - Вид вещества. Магнитная индукция магнитного поля. Магнитная индукция. Постоянный магнит. Некоторые значения магнитной индукции. Магнитная стрелка. Громкоговоритель. Модуль вектора магнитной индукции. Линии магнитной индукции всегда замкнуты. Взаимодействие токов. Вращающий момент. Магнитные свойства вещества.

«Движение частиц в магнитном поле» - Спектрограф. Проявление действия силы Лоренца. Сила Лоренца. Циклотрон. Определение величины силы Лоренца. Контрольные вопросы. Направления силы Лоренца. Межзвёздное вещество. Задача эксперимента. Изменение параметров. Магнитное поле. Масс-спектрограф. Движение частиц в магнитном поле. Электронно-лучевая трубка.

Всего в теме 20 презентаций

Темы кодификатора ЕГЭ : взаимодействие магнитов, магнитное поле проводника с током.

Магнитные свойства вещества известны людям давно. Магниты получили своё название от античного города Магнесия: в его окрестностях был распространён минерал (названный впоследствии магнитным железняком или магнетитом), куски которого притягивали железные предметы.

Взаимодействие магнитов

На двух сторонах каждого магнита расположены северный полюс и южный полюс . Два магнита притягиваются друг к другу разноимёнными полюсами и отталкиваются одноимёнными. Магниты могут действовать друг на друга даже сквозь вакуум! Всё это напоминает взаимодействие электрических зарядов, однако взаимодействие магнитов не является электрическим . Об этом свидетельствуют следующие опытные факты.

Магнитная сила ослабевает при нагревании магнита. Сила же взаимодействия точечных зарядов не зависит от их температуры.

Магнитная сила ослабевает, если трясти магнит. Ничего подобного с электрически заряженными телами не происходит.

Положительные электрические заряды можно отделить от отрицательных (например, при электризации тел). А вот разделить полюса магнита не получается: если разрезать магнит на две части, то в месте разреза также возникают полюса, и магнит распадается на два магнита с разноимёнными полюсами на концах (ориентированных точно так же, как и полюса исходного магнита).

Таким образом, магниты всегда двухполюсные, они существуют только в виде диполей . Изолированных магнитных полюсов (так называемых магнитных монополей - аналогов электрического заряда)в при роде не существует (во всяком случае, экспериментально они пока не обнаружены). Это, пожалуй, самая впечатляющая асимметрия между электричеством и магнетизмом.

Как и электрически заряженные тела, магниты действуют на электрические заряды. Однако магнит действует только на движущийся заряд; если заряд покоится относительно магнита, то действия магнитной силы на заряд не наблюдается. Напротив, наэлектризованное тело действует на любой заряд,вне зависимости от того, покоится он или движется.

По современным представлениям теории близкодействия, взаимодействие магнитов осуществляется посредством магнитного поля .А именно, магнит создаёт в окружающем пространстве магнитное поле, которое действует на другой магнит и вызывает видимое притяжение или отталкивание этих магнитов.

Примером магнита служит магнитная стрелка компаса. С помощью магнитной стрелки можно судить о наличии магнитного поля в данной области пространства, а также о направлении поля.

Наша планета Земля является гигантским магнитом. Неподалёку от северного географического полюса Земли расположен южный магнитный полюс. Поэтому северный конец стрелки компаса, поворачиваясь к южному магнитному полюсу Земли, указывает на географический север. Отсюда, собственно, и возникло название «северный полюс» магнита.

Линии магнитного поля

Электрическое поле, напомним, исследуется с помощью маленьких пробных зарядов, по действию на которые можно судить о величине и направлении поля. Аналогом пробного заряда в случае магнитного поля является маленькая магнитная стрелка.

Например, можно получить некоторое геометрическое представление о магнитном поле, если разместить в разных точках пространства очень маленькие стрелки компаса. Опыт показывает, что стрелки выстроятся вдоль определённых линий -так называемых линий магнитного поля . Дадим определение этого понятия в виде следующих трёх пунктов.

1. Линии магнитного поля, или магнитные силовые линии - это направленные линии в пространстве, обладающие следующим свойством: маленькая стрелка компаса, помещённая в каждой точке такой линии, ориентируется по касательной к этой линии .

2. Направлением линии магнитного поля считается направление северных концов стрелок компаса, расположенных в точках данной линии .

3. Чем гуще идут линии, тем сильнее магнитное поле в данной области пространства .

Роль стрелок компаса с успехом могут выполнять железные опилки: в магнитном поле маленькие опилки намагничиваются и ведут себя в точности как магнитные стрелки.

Так, насыпав железных опилок вокруг постоянного магнита, мы увидим примерно следующую картину линий магнитного поля (рис. 1 ).

Рис. 1. Поле постоянного магнита

Северный полюс магнита обозначается синим цветом и буквой ; южный полюс - красным цветом и буквой . Обратите внимание, что линии поля выходят из северного полюса магнита и входят в южный полюс: ведь именно к южному полюсу магнита будет направлен северный конец стрелки компаса.

Опыт Эрстеда

Несмотря на то, что электрические и магнитные явления были известны людям ещё с античности, никакой взаимосвязи между ними долгое время не наблюдалось. В течение нескольких столетий исследования электричества и магнетизма шли параллельно и независимо друг от друга.

Тот замечательный факт, что электрические и магнитные явления на самом деле связаны друг с другом, был впервые обнаружен в 1820 году - в знаменитом опыте Эрстеда.

Схема опыта Эрстеда показана на рис. 2 (изображение с сайта rt.mipt.ru). Над магнитной стрелкой ( и - северный и южный полюсы стрелки) расположен металлический проводник, подключённый к источнику тока. Если замкнуть цепь, то стрелка поворачивается перпендикулярно проводнику!
Этот простой опыт прямо указал на взаимосвязь электричества и магнетизма. Эксперименты последовавшие за опытом Эрстеда, твёрдо установили следующую закономерность: магнитное поле порождается электрическими токами и действует на токи .

Рис. 2. Опыт Эрстеда

Картина линий магнитного поля, порождённого проводником с током, зависит от формы проводника.

Магнитное поле прямого провода с током

Линии магнитного поля прямолинейного провода с током являются концентрическими окружностями. Центры этих окружностей лежат на проводе, а их плоскости перпендикулярны проводу (рис. 3 ).

Рис. 3. Поле прямого провода с током

Для определения направления линий магнитного поля прямого тока существуют два альтернативных правила.

Правило часовой стрелки . Линии поля идут против часовой стрелки, если смотреть так, чтобы ток тёк на нас .

Правило винта (или правило буравчика , или правило штопора - это уж кому что ближе;-)). Линии поля идут туда, куда надо вращать винт (с обычной правой резьбой), чтобы он двигался по резьбе в направлении тока .

Пользуйтесь тем правилом, которое вам больше по душе. Лучше привыкнуть к правилу часовой стрелки - вы сами впоследствии убедитесь, что оно более универсально и им проще пользоваться (а потом с благодарностью вспомните его на первом курсе, когда будете изучать аналитическую геометрию).

На рис. 3 появилось и кое-что новое: это вектор , который называется индукцией магнитного поля , или магнитной индукцией . Вектор магнитной индукции является аналогом вектора напряжённости электрического поля: он служит силовой характеристикой магнитного поля, определяя силу, с которой магнитное поле действует на движущиеся заряды.

О силах в магнитном поле мы поговорим позже, а пока отметим лишь, что величина и направление магнитного поля определяется вектором магнитной индукции . В каждой точке пространства вектор направлен туда же,куда и северный конец стрелки компаса, помещённой в данную точку, а именно по касательной к линии поля в направлении этой линии. Измеряется магнитная индукция в теслах (Тл).

Как и в случае электрического поля, для индукции магнитного поля справедлив принцип суперпозиции . Он заключается в том, что индукции магнитных полей , создаваемых в данной точке различными токами, складываются векторно и дают результирующий вектор магнитной индукции: .

Магнитное поле витка с током

Рассмотрим круговой виток, по которому циркулирует постоянный ток . Источник,создающий ток, мы на рисунке не показываем.

Картина линий поля нашего витка будет иметь приблизительно следующий вид (рис. 4 ).

Рис. 4. Поле витка с током

Нам будет важно уметь определять, в какое полупространство (относительно плоскости витка) направлено магнитное поле. Снова имеем два альтернативных правила.

Правило часовой стрелки . Линии поля идут туда, глядя откуда ток кажется циркулирующим против часовой стрелки .

Правило винта . Линии поля идут туда, куда будет перемещаться винт (с обычной правой резьбой), если вращать его в направлении тока .

Как видите, ток и поле меняются ролями - по сравнению с формулировками этих правил для случая прямого тока.

Магнитное поле катушки с током

Катушка получится, если плотно, виток к витку, намотать провод в достаточно длинную спираль (рис. 5 - изображение с сайта en.wikipedia.org). В катушке может быть несколько десятков, сотен или даже тысяч витков. Катушка называется ещё соленоидом .

Рис. 5. Катушка (соленоид)

Магнитное поле одного витка, как мы знаем, выглядит не очень-то просто. Поля? отдельных витков катушки накладываются друг на друга, и, казалось бы, в результате должна получиться совсем уж запутанная картина. Однако это не так: поле длинной катушки имеет неожиданно простую структуру (рис. 6 ).

Рис. 6. поле катушки с током

На этом рисунке ток в катушке идёт против часовой стрелки, если смотреть слева (так будет, если на рис. 5 правый конец катушки подключить к «плюсу» источника тока, а левый конец - к «минусу»). Мы видим, что магнитное поле катушки обладает двумя характерными свойствами.

1. Внутри катушки вдали от её краёв магнитное поле является однородным : в каждой точке вектор магнитной индукции одинаков по величине и направлению. Линии поля - параллельные прямые; они искривляются лишь вблизи краёв катушки, когда выходят наружу.

2. Вне катушки поле близко к нулю. Чем больше витков в катушке - тем слабее поле снаружи неё.

Заметим, что бесконечно длинная катушка вообще не выпускает поле наружу: вне катушки магнитное поле отсутствует. Внутри такой катушки поле всюду является однородным.

Ничего не напоминает? Катушка является «магнитным» аналогом конденсатора. Вы же помните, что конденсатор создаёт внутри себя однородное электрическое поле, линии которого искривляются лишь вблизи краёв пластин, а вне конденсатора поле близко к нулю; конденсатор с бесконечными обкладками вообще не выпускает поле наружу, а всюду внутри него поле однородно.

А теперь - главное наблюдение. Сопоставьте, пожалуйста, картину линий магнитного поля вне катушки (рис. 6 ) с линиями поля магнита на рис. 1 . Одно и то же, не правда ли? И вот мы подходим к вопросу, который, вероятно, у вас уже давно возник: если магнитное поле порождается токами и действует на токи, то какова причина возникновения магнитного поля вблизи постоянного магнита? Ведь этот магнит вроде бы не является проводником с током!

Гипотеза Ампера. Элементарные токи

Поначалу думали, что взаимодействие магнитов объясняется особыми магнитными зарядами, сосредоточенными на полюсах. Но, в отличие от электричества, никто не мог изолировать магнитный заряд; ведь, как мы уже говорили, не удавалось получить по отдельности северный и южный полюс магнита - полюса всегда присутствуют в магните парами.

Сомнения насчёт магнитных зарядов усугубил опыт Эрстеда, когда выяснилось, что магнитное поле порождается электрическим током. Более того, оказалось, что для всякого магнита можно подобрать проводник с током соответствующей конфигурации, такой, что поле этого проводника совпадает с полем магнита.

Ампер выдвинул смелую гипотезу. Нет никаких магнитных зарядов. Действие магнита объясняется замкнутыми электрическими токами внутри него .

Что это за токи? Эти элементарные токи циркулируют внутри атомов и молекул; они связаны с движением электронов по атомным орбитам. Магнитное поле любого тела складывается из магнитных полей этих элементарных токов.

Элементарные токи могут быть беспорядочным образом расположены друг относительно друга. Тогда их поля взаимно погашаются, и тело не проявляет магнитных свойств.

Но если элементарные токи расположены согласованно,то их поля,складываясь,усиливают друг друга. Тело становится магнитом (рис. 7 ; магнитое поле будет направлено на нас; также на нас будет направлен и северный полюс магнита).

Рис. 7. Элементарные токи магнита

Гипотеза Ампера об элементарных токах прояснила свойства магнитов.Нагревание и тряска магнита разрушают порядок расположения его элементарных токов, и магнитные свойства ослабевают. Неразделимость полюсов магнита стала очевидной: в месте разреза магнита мы получаем те же элементарные токи на торцах. Способность тела намагничиваться в магнитном поле объясняется согласованным выстраиванием элементарных токов, «поворачивающихся» должным образом (о повороте кругового тока в магнитном поле читайте в следующем листке).

Гипотеза Ампера оказалась справедливой - это показало дальнейшее развитие физики. Представления об элементарных токах стали неотъемлемой частью теории атома, разработанной уже в ХХ веке - почти через сто лет после гениальной догадки Ампера.

При построении картины магнитного поля используются те же правила что и при построении картины электрического поля в электростатике.

Линии индукции магнитного поля (или напряжённости) есть силовые линии магнитного поля. Линия же, где магнитный потенциал постоянен, называется эквипотенциальной.

Если в магнитное поле внести ферромагнитное тело, то силовые линии будут входить в него под углом 90  (т.е. поле искажается). Если же вносится не ферромагнитное тело, то искажения поля не происходит.

Аналогия электростатического (электрического) и магнитного полей

Существует два типа соответствий.

1) Одинаковое распределение линейных зарядов в электростатическом поле и линейных токов в магнитном поле.

В этом случае картины полей подобны, но силовые линии в электростатическом поле – это эквипотенциальные в магнитном поле и наоборот, то есть картина поля повёрнута на угол , меняется смысл линий.

2) Одинаковая форма граничных эквипотенциальных поверхностей в обоих полях. В этом случае картины полей полностью подобны.

Физическая природа полей различна, электростатическое поле создаётся зарядами, магнитное поле создаётся током, то есть в магнитном поле нет понятия магнитного заряда (
, величина, условно введенная).

Индуктивность

Для контуров (катушек), у которых магнитная проницаемость
и не зависит от напряженности магнитного поля, потокосцепление пропорционально току

, где

- коэффициент пропорциональности, называемый индуктивностью;

- электрический ток.

Потокосцепление равно:

, где

Ф – магнитный поток;

w – число витков.

Из выше приведённых формул следует:

Индуктивность зависит от геометрических размеров контура, числа витков, свойств среды, но не зависит от величины тока, протекающего по катушке.

Методика определения индуктивности :

    Условно считаем известным ток в катушке.

    Через известный ток выражаем магнитный поток.

    Магнитный поток подставляем в формулу индуктивности, где неизвестные токи сокращаются.

Методика расчета индуктивности аналогична методике расчета емкости

Пример: Определить индуктивность катушки, равномерно намотанной на сердечник прямоугольного сечения, внутренний радиус которого R 1 , наружный R 2 , высота h, число витков

По закону полного тока определяется Н:

Поток через полоску

Полный поток:

Потокосцепление равно:

Эдс самоиндукции и взаимоиндукции

ЭДС самоиндукции пропорциональна скорости изменения тока в этой катушке

- ЭДС самоиндукции.

Явление наведения ЭДС в каком-либо контуре при изменении тока в другом контуре называется взаимоиндукцией, а наведённая ЭДС – ЭДС взаимоиндукции.

- ЭДС взаимоиндукции,

где, М- взаимная индуктивность.

Слайд 1

«Магнитное поле и его графическое изображение. Неоднородное и однородное магнитное поле. Зависимость направления магнитных линий от направления тока в проводнике».

Слайд 2

Слово «магнит» произошло от названия города Магнессии (теперь это город Маниса в Турции).
«камень Геркулеса». «любящий камень», «мудрое железо», и «царственный камень»
Магнетизм известен с пятого века до нашей эры, но изучение его сущности продвигалось очень медленно. Впервые свойства магнита были описаны в 1269 году. В этом же году ввели понятие магнитного полюса.

Слайд 3

Слово МАГНИТ (от греческого. magnetic eitos) Минерал, состоящий из: FeO(31%) и Fe2O3 (69%). В нашей стране его добывают на Урале, в Курской области (Курская магнитная аномалия), В Карелии. Магнитный железняк – хрупкий минерал, его плотность 5000 кг/м*3

Слайд 4

Разнообразные искусственные магниты
Редкоземельные магниты – спеченные и магнитопласты

Слайд 5

Магнит обладает на разных участках различной притягивающей силой, на полюсах эта сила наиболее заметна.

Слайд 6

СВОЙСТВА ПОСТОЯННЫХ МАГНИТОВ
взаимно притягиваются или отталкиваются

Слайд 7

Земной шар – большой магнит.

Слайд 8

ГАНС ХРИСТИАН ЭРСТЕД (1777 – 1851)
Датский профессор химии, открыл существование магнитного поля вокруг проводника с током

Слайд 9

Опыт Эрстеда
если по проводнику протекает электрический ток, то расположенная рядом магнитная стрелка изменяет свою ориентацию в пространстве

Слайд 10

Опыт Эрстеда 1820 г.
О чем говорит отклонение магнитной стрелки при замыкании электрической цепи?
Вокруг проводника с током существует магнитное поле. На него – то и реагирует магнитная стрелка. Магнитное поле – особый вид материи. Оно не имеет ни цвета, ни вкуса, ни запаха.

Слайд 11

Условия существования магнитного поля
а) электрические заряды; б) наличие электрического тока

Слайд 12

Сделаем выводы.
Вокруг проводника с током (т.е. вокруг движущихся зарядов) существует магнитное поле. Оно действует на магнитную стрелку, отклоняя её. Электрический ток и магнитное поле неотделимы друг от друга. Источником возникновения магнитного поля является электрический ток. .

Слайд 13

Как можно обнаружить МП?
а) с помощью железных опилок. Попадая в МП, железные опилки намагничиваются и располагаются вдоль магнитных линий, подобно маленьким магнитным стрелкам; б) по действию на проводник с током. Попадая в МП вокруг проводника с током, магнитная стрелка начинает двигаться, т.к. со стороны МП на неё действует сила.

Слайд 14

Почему вокруг магнитов постоянно существует магнитное поле?
Компьютерная модель атома бериллия.
Внутри любого атома существуют молекулярные токи

Слайд 15

Изображение магнитного поля
Линии магнитного поля – воображаемые линии, вдоль которых ориентируются магнитные стрелки

Слайд 16

север N
юг S
Линии магнитного поля проводника с током направлены по концентрическим окружностям

Слайд 17

Расположение железных опилок вокруг полосового магнита

Слайд 18

Графическое изображение магнитных линий вокруг полосового магнита

Слайд 19

Расположение железных опилок вокруг прямого проводника с током
Магнитные линии магнитного поля тока представляют собой замкнутые кривые, охватывающие проводник Направление, которое указывает северный полюс магнитной стрелки в каждой точке поля, принято за направление магнитных линей магнитного поля.

Слайд 20

Расположение железных опилок вдоль магнитных силовых линий.

Слайд 21

Соленоид – проводник, имеющий вид спирали (катушка). «солен» - греч. «трубка»

Слайд 22

Магнитное поле катушки и постоянного магнита
Катушка с током, как и магнитная стрелка имеет 2 полюса – северный и южный. Магнитное действие катушки тем сильнее, чем больше витков в ней. При увеличении силы тока магнитное поле катушки усиливается.

Слайд 23

Магнитное поле
Неоднородное.
Однородное.
Магнитные линии искривлены их густота меняется от точки к точке.
Магнитные линии параллельны друг другу и расположены с одинаковой густотой (например, внутри постоянного магнита).

Слайд 24

Что нужно знать о магнитных линиях?
1.Магнитные линии – замкнутые кривые, поэтому МП называют вихревым. Это означает, что в природе не существует магнитных зарядов. 2.Чем гуще расположены магнитные линии, тем МП сильнее. 3.Если магнитные линии расположены параллельно друг другу с одинаковой густотой, то такое МП называют однородным. 4. Если магнитные линии искривлены – это значит, что сила, действующая на магнитную стрелку в разных точках МП, разная. Такое МП называют неоднородным.

Слайд 25

Определение направления магнитной линии
Способы определения направления магнитной линии
При помощи магнитной стрелки
По правилу буравчика (1 правило правой руки)
По 2 правилу правой руки

Слайд 26

Правило буравчика
Известно, что направление линий магнитного поля тока связано с направлением тока в проводнике. Эта связь может быть выражена простым правилом, которое называется правилом буравчика. Правило буравчика заключается в следующем: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитного поля тока. С помощью правила буравчика по направлению тока можно определить направлений линий магнитного поля, создаваемого этим током, а по направлению линий магнитного поля – направление тока, создающего это поле.

Слайд 27

Правило буравчика (винта)
Если буравчик с правой нарезкой ввинчивать по направлению тока, то направление вращения рукоятки совпадет с направлением магнитного поля.

Слайд 28

Правило правой руки для прямого проводника с током
Если правую руку расположить так, чтобы большой палец был направлен по току, то остальные четыре пальца покажут направление линии магнитной индукции

Слайд 29

+
-
Определение направления линий магнитного поля прямого проводника с током (правило буравчика)

Слайд 30

Слайд 31

Определение направления магнитного поля, пронизывающего соленоид (2 правило правой руки)

Слайд 32

+
-
2 правило правой руки (для определения направления магнитного поля, пронизывающего соленоид)
Ладонь правой руки расположить так, чтобы четыре пальца были по направлению тока, текущего по виткам соленоида, тогда большой палец укажет на направление магнитного поля, пронизывающего соленоид.

Слайд 33

Какие утверждения являются верными?
А.В природе существуют электрические заряды. Б.В природе существуют магнитные заряды. В.В природе не существует электрических зарядов. Г.В природе не существует магнитных зарядов. а) А и Б, б) А и В, в) А и Г, г) Б, В и Г.

Слайд 34

Закончить фразу: «Вокруг проводника с током существует...
а) магнитное поле; б) электрическое поле; в) электрическое и магнитное поле.

Слайд 35

Какими бывают магнитные линии?
I
Северный полюс магнитной стрелки указывает направление магнитных линий с помощью которых изображается магнитное поле.
На что указывает северный полюс магнитной стрелки?

Слайд 36

Направление магнитных линий совпадает с … направлением магнитной стрелки.
a. Южным
b. Северным
c. Не связано с магнитной стрелкой

Слайд 37

На рисунке показана картина магнитных линий прямого тока. В какой точке магнитное поле самое сильное?
а) б) в) г)

Слайд 38

Определить направление тока по известному направлению магнитных линий.

Слайд 39

Слайд 40

Какой из вариантов соответствует схеме расположения магнитных линий вокруг прямолинейного проводника с током, расположенного перпендикулярно плоскости рисунка?
а) б) в) г) д)

Слайд 41

Сирано де Бержерак
Я изобрел шесть средств Подняться в мир планет! … Сесть на железный круг И, взяв большой магнит, Его забросить вверх высоко, Докуда будет видеть око; Он за собой железо приманит, - Вот средство верное! А лишь он вас притянет, Схватить его и бросить вверх опять, - Так поднимать он бесконечно станет! Возможно ли подобное космическое путешествие? Почему?

Слайд 45

Домашнее задание: §42-44. Упражнение 33,34,35.

Слайд 46

Влияние магнитных полей на организм человека и животных.
Все живые организмы, в том числе и человек, рождаются и развиваются в естественных условиях планеты Земля, которая создает вокруг себя постоянное магнитное поле - магнитосферу. Это поле играет очень существенную роль для всех биохимических процессов в организме. Основа лечебного эффекта магнитного поля - улучшение кровообращения и состояния кровеносных сосудов.

Слайд 47

Долго искали магнитный компас у почтового голубя, однако мозги птицы никак не реагировали на магнитные поля. Наконец компас обнаружили в... брюшной полости! Навигационные способности мигрирующих животных всегда поражали людей. Ведь какой-то компас приводит их к месту, расположенному за тысячи километров от места рожденья.

Слайд 48

Сенсационного результата первыми добились калифорнийские ученые, биологи в содружестве с физиками. Гелиобиологу Джозею Кришвингу с помощниками удалось обнаружить кристаллы магнитного железняка в мозгах человека. Кришвинг долго изучал в магнитных полях образцы тканей, полученных при посмертных вскрытиях, и пришел к выводу, что количества магнетика в мозговых оболочках как раз ровно столько, сколько необходимо для работы простейшего биологического компаса.

Слайд 49

Каждый из нас носит в голове самый настоящий компас, точнее, сразу несколько компасов с микроскопически малыми "стрелками". Однако умение пользоваться скрытым чувством, как мы видим, есть далеко не у каждого. Можно с полной ответственностью заявить, что человеку не следует терять самообладания в любой сложной ситуации. Для заблудившегося в пустыне, в океане, в горах или в лесу (что более актуально для нас) всегда имеется шанс найти верную дорогу к спасению.