Удельная теплоемкость воды и алюминия. Вспоминаем физику – что такое теплоемкость воды

Как вы думаете, что быстрее нагревается на плите: литр воды в кастрюльке или же сама кастрюлька массой 1 килограмм? Масса тел одинакова, можно предположить, что нагревание будет происходить с одинаковой скоростью.

А не тут-то было! Можете проделать эксперимент - поставьте пустую кастрюльку на огонь на несколько секунд, только не спалите, и запомните, до какой температуры она нагрелась. А потом налейте в кастрюлю воды ровно такого же веса, как и вес кастрюли. По идее, вода должна нагреться до такой же температуры, что и пустая кастрюля за вдвое большее время, так как в данном случае нагреваются они обе - и вода, и кастрюля.

Однако, даже если вы выждете втрое большее время, то убедитесь, что вода нагрелась все равно меньше. Воде потребуется почти в десять раз большее время, чтобы нагреться до такой же температуры, что и кастрюля того же веса. Почему это происходит? Что мешает воде нагреваться? Почему мы должны тратить лишний газ на подогрев воды при приготовлении пищи? Потому что существует физическая величина, называемая удельной теплоемкостью вещества.

Удельная теплоемкость вещества

Эта величина показывает, какое количество теплоты надо передать телу массой один килограмм, чтобы его температура увеличилась на один градус Цельсия. Измеряется в Дж/(кг * ˚С). Существует эта величина не по собственной прихоти, а по причине разности свойств различных веществ.

Удельная теплоемкость воды примерно в десять раз выше удельной теплоемкости железа, поэтому кастрюля нагреется в десять раз быстрее воды в ней. Любопытно, что удельная теплоемкость льда в два раза меньше теплоемкости воды. Поэтому лед будет нагреваться в два раза быстрее воды. Растопить лед проще, чем нагреть воду. Как ни странно звучит, но это факт.

Расчет количества теплоты

Обозначается удельная теплоемкость буквой c и применяется в формуле для расчета количества теплоты:

Q = c*m*(t2 - t1),

где Q - это количество теплоты,
c - удельная теплоемкость,
m - масса тела,
t2 и t1 - соответственно, конечная и начальная температуры тела.

Формула удельной теплоемкости: c = Q / m*(t2 - t1)

Также из этой формулы можно выразить:

  • m = Q / c*(t2-t1) - массу тела
  • t1 = t2 - (Q / c*m) - начальную температуру тела
  • t2 = t1 + (Q / c*m) - конечную температуру тела
  • Δt = t2 - t1 = (Q / c*m) - разницу температур (дельта t)

А что насчет удельной теплоемкости газов? Тут все запутанней. С твердыми веществами и жидкостями дело обстоит намного проще. Их удельная теплоемкость - величина постоянная, известная, легко рассчитываемая. А что касается удельной теплоемкости газов, то величина эта очень различна в разных ситуациях. Возьмем для примера воздух. Удельная теплоемкость воздуха зависит от состава, влажности, атмосферного давления.

При этом, при увеличении температуры, газ увеличивается в объеме, и нам надо ввести еще одно значение - постоянного или переменного объема, что тоже повлияет на теплоемкость. Поэтому при расчетах количества теплоты для воздуха и других газов пользуются специальными графиками величин удельной теплоемкости газов в зависимости от различных факторов и условий.

/(кг·К) и т.д.

Удельная теплоёмкость обычно обозначается буквами c или С , часто с индексами.

На значение удельной теплоёмкости влияет температура вещества и другие термодинамические параметры. К примеру, измерение удельной теплоёмкости воды даст разные результаты при 20 °C и 60 °C. Кроме того, удельная теплоёмкость зависит от того, каким образом позволено изменяться термодинамическим параметрам вещества (давлению, объёму и т. д.); например, удельная теплоёмкость при постоянном давлении (C P ) и при постоянном объёме (C V ), вообще говоря, различны.

Формула расчёта удельной теплоёмкости:

c=\frac{Q}{ m\Delta T}, где c - удельная теплоёмкость, Q - количество теплоты , полученное веществом при нагреве (или выделившееся при охлаждении), m - масса нагреваемого (охлаждающегося) вещества, ΔT - разность конечной и начальной температур вещества.

Удельная теплоёмкость может зависеть (и в принципе, строго говоря, всегда, более или менее сильно, зависит) от температуры, поэтому более корректной является следующая формула с малыми (формально бесконечно малыми) \delta T и \delta Q:

c(T) = \frac 1 {m} \left(\frac{\delta Q}{\delta T}\right).

Значения удельной теплоёмкости некоторых веществ

(Для газов приведены значения удельной теплоёмкости в изобарном процессе (C p))

Таблица I: Стандартные значения удельной теплоёмкости
Вещество Агрегатное состояние Удельная
теплоёмкость,
кДж/(кг·K)
воздух (сухой) газ 1,005
воздух (100 % влажность) газ 1,0301
алюминий твёрдое тело 0,903
бериллий твёрдое тело 1,8245
латунь твёрдое тело 0,37
олово твёрдое тело 0,218
медь твёрдое тело 0,385
молибден твёрдое тело 0,250
сталь твёрдое тело 0,462
алмаз твёрдое тело 0,502
этанол жидкость 2,460
золото твёрдое тело 0,129
графит твёрдое тело 0,720
гелий газ 5,190
водород газ 14,300
железо твёрдое тело 0,444
свинец твёрдое тело 0,130
чугун твёрдое тело 0,540
вольфрам твёрдое тело 0,134
литий твёрдое тело 3,582
жидкость 0,139
азот газ 1,042
нефтяные масла жидкость 1,67 - 2,01
кислород газ 0,920
кварцевое стекло твёрдое тело 0,703
вода 373 К (100 °C) газ 2,020
вода жидкость 4,187
лёд твёрдое тело 2,060
сусло пивное жидкость 3,927
Значения приведены для стандартных условий , если это не оговорено особо.
Таблица II: Значения удельной теплоёмкости для некоторых строительных материалов
Вещество Удельная
теплоёмкость
кДж/(кг·K)
асфальт 0,92
полнотелый кирпич 0,84
силикатный кирпич 1,00
бетон 0,88
кронглас (стекло) 0,67
флинт (стекло) 0,503
оконное стекло 0,84
гранит 0,790
талькохлорит 0,98
гипс 1,09
мрамор , слюда 0,880
песок 0,835
сталь 0,47
почва 0,80
древесина 1,7

См. также

Напишите отзыв о статье "Удельная теплоёмкость"

Примечания

Литература

  • Таблицы физических величин. Справочник, под ред. И. К. Кикоина, М., 1976.
  • Сивухин Д. В. Общий курс физики. - Т. II. Термодинамика и молекулярная физика.
  • E. М. Лифшиц // под. ред. А. М. Прохорова Физическая энциклопедия . - М .: «Советская энциклопедия» , 1998. - Т. 2 . <

Отрывок, характеризующий Удельная теплоёмкость

– Сходит? – повторила Наташа.
– Я тебе про себя скажу. У меня был один cousin…
– Знаю – Кирилла Матвеич, да ведь он старик?
– Не всегда был старик. Но вот что, Наташа, я поговорю с Борей. Ему не надо так часто ездить…
– Отчего же не надо, коли ему хочется?
– Оттого, что я знаю, что это ничем не кончится.
– Почему вы знаете? Нет, мама, вы не говорите ему. Что за глупости! – говорила Наташа тоном человека, у которого хотят отнять его собственность.
– Ну не выйду замуж, так пускай ездит, коли ему весело и мне весело. – Наташа улыбаясь поглядела на мать.
– Не замуж, а так, – повторила она.
– Как же это, мой друг?
– Да так. Ну, очень нужно, что замуж не выйду, а… так.
– Так, так, – повторила графиня и, трясясь всем своим телом, засмеялась добрым, неожиданным старушечьим смехом.
– Полноте смеяться, перестаньте, – закричала Наташа, – всю кровать трясете. Ужасно вы на меня похожи, такая же хохотунья… Постойте… – Она схватила обе руки графини, поцеловала на одной кость мизинца – июнь, и продолжала целовать июль, август на другой руке. – Мама, а он очень влюблен? Как на ваши глаза? В вас были так влюблены? И очень мил, очень, очень мил! Только не совсем в моем вкусе – он узкий такой, как часы столовые… Вы не понимаете?…Узкий, знаете, серый, светлый…
– Что ты врешь! – сказала графиня.
Наташа продолжала:
– Неужели вы не понимаете? Николенька бы понял… Безухий – тот синий, темно синий с красным, и он четвероугольный.
– Ты и с ним кокетничаешь, – смеясь сказала графиня.
– Нет, он франмасон, я узнала. Он славный, темно синий с красным, как вам растолковать…
– Графинюшка, – послышался голос графа из за двери. – Ты не спишь? – Наташа вскочила босиком, захватила в руки туфли и убежала в свою комнату.
Она долго не могла заснуть. Она всё думала о том, что никто никак не может понять всего, что она понимает, и что в ней есть.
«Соня?» подумала она, глядя на спящую, свернувшуюся кошечку с ее огромной косой. «Нет, куда ей! Она добродетельная. Она влюбилась в Николеньку и больше ничего знать не хочет. Мама, и та не понимает. Это удивительно, как я умна и как… она мила», – продолжала она, говоря про себя в третьем лице и воображая, что это говорит про нее какой то очень умный, самый умный и самый хороший мужчина… «Всё, всё в ней есть, – продолжал этот мужчина, – умна необыкновенно, мила и потом хороша, необыкновенно хороша, ловка, – плавает, верхом ездит отлично, а голос! Можно сказать, удивительный голос!» Она пропела свою любимую музыкальную фразу из Херубиниевской оперы, бросилась на постель, засмеялась от радостной мысли, что она сейчас заснет, крикнула Дуняшу потушить свечку, и еще Дуняша не успела выйти из комнаты, как она уже перешла в другой, еще более счастливый мир сновидений, где всё было так же легко и прекрасно, как и в действительности, но только было еще лучше, потому что было по другому.

На другой день графиня, пригласив к себе Бориса, переговорила с ним, и с того дня он перестал бывать у Ростовых.

31 го декабря, накануне нового 1810 года, le reveillon [ночной ужин], был бал у Екатерининского вельможи. На бале должен был быть дипломатический корпус и государь.
На Английской набережной светился бесчисленными огнями иллюминации известный дом вельможи. У освещенного подъезда с красным сукном стояла полиция, и не одни жандармы, но полицеймейстер на подъезде и десятки офицеров полиции. Экипажи отъезжали, и всё подъезжали новые с красными лакеями и с лакеями в перьях на шляпах. Из карет выходили мужчины в мундирах, звездах и лентах; дамы в атласе и горностаях осторожно сходили по шумно откладываемым подножкам, и торопливо и беззвучно проходили по сукну подъезда.
Почти всякий раз, как подъезжал новый экипаж, в толпе пробегал шопот и снимались шапки.
– Государь?… Нет, министр… принц… посланник… Разве не видишь перья?… – говорилось из толпы. Один из толпы, одетый лучше других, казалось, знал всех, и называл по имени знатнейших вельмож того времени.
Уже одна треть гостей приехала на этот бал, а у Ростовых, долженствующих быть на этом бале, еще шли торопливые приготовления одевания.
Много было толков и приготовлений для этого бала в семействе Ростовых, много страхов, что приглашение не будет получено, платье не будет готово, и не устроится всё так, как было нужно.
Вместе с Ростовыми ехала на бал Марья Игнатьевна Перонская, приятельница и родственница графини, худая и желтая фрейлина старого двора, руководящая провинциальных Ростовых в высшем петербургском свете.
В 10 часов вечера Ростовы должны были заехать за фрейлиной к Таврическому саду; а между тем было уже без пяти минут десять, а еще барышни не были одеты.
Наташа ехала на первый большой бал в своей жизни. Она в этот день встала в 8 часов утра и целый день находилась в лихорадочной тревоге и деятельности. Все силы ее, с самого утра, были устремлены на то, чтобы они все: она, мама, Соня были одеты как нельзя лучше. Соня и графиня поручились вполне ей. На графине должно было быть масака бархатное платье, на них двух белые дымковые платья на розовых, шелковых чехлах с розанами в корсаже. Волоса должны были быть причесаны a la grecque [по гречески].
Все существенное уже было сделано: ноги, руки, шея, уши были уже особенно тщательно, по бальному, вымыты, надушены и напудрены; обуты уже были шелковые, ажурные чулки и белые атласные башмаки с бантиками; прически были почти окончены. Соня кончала одеваться, графиня тоже; но Наташа, хлопотавшая за всех, отстала. Она еще сидела перед зеркалом в накинутом на худенькие плечи пеньюаре. Соня, уже одетая, стояла посреди комнаты и, нажимая до боли маленьким пальцем, прикалывала последнюю визжавшую под булавкой ленту.

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер паропроницаемости и скорости переноса пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

Исходная величина

Преобразованная величина

джоуль на килограмм на кельвин джоуль на килограмм на °C джоуль на грамм на °C килоджоуль на килограмм на кельвин килоджоуль на килограмм на °C калория (межд.) на грамм на °C калория (межд.) на грамм на °F калория (терм.) на грамм на °C килокалория (межд.) на кг на °C калория (терм.) на кг на °C килокалория (межд.) на кг на кельвин килокалория (терм.) на кг на кельвин кгс-метр на килограмм на кельвин фунт-сила фут на фунт на °Ранкина BTU (межд.) на фунт на °F BTU (терм.) на фунт на °F BTU (межд.) на фунт на °Ранкина BTU (терм.) на фунт на °Ранкина BTU (межд.) на фунт на °C стоградусная тепл. ед. на фунт на °C

Массовая концентрация в растворе

Подробнее об удельной теплоемкости

Общие сведения

Молекулы движутся под воздействием тепла - это движение называется молекулярной диффузией . Чем выше температура вещества, тем быстрее молекулы движутся и тем более интенсивно происходит диффузия. На движение молекул влияет не только температура, но и давление, вязкость вещества и его концентрация, сопротивление диффузии, расстояние, которое проходят молекулы при их перемещениях, и их масса. Например, если сравнить как происходит процесс диффузии в воде и в мёде, когда все другие переменные, кроме вязкости, равны, то очевидно, что молекулы в воде движутся и диффундируют быстрее, чем в мёде, так как у мёда более высокая вязкость.

Для движения молекулам необходима энергия, и чем быстрее они движутся, тем больше энергии им требуется. Тепло - один из видов энергии, используемой в этом случае. То есть, если поддерживать в веществе определенную температуру, то молекулы будут двигаться, а если температуру увеличить, то и движение ускорится. Энергию в форме тепла получают, сжигая топливо, например природный газ, уголь, или древесину. Если нагреть несколько веществ, используя одинаковое количество энергии, то некоторые вещества, скорее всего, будут нагреваться быстрее, чем остальные, из-за более интенсивной диффузии. Теплоемкость и удельная теплоемкость описывают как раз эти свойства веществ.

Удельная теплоемкость определяет какое количество энергии (то есть, тепла) требуется, чтобы изменить температуру тела или вещества определенной массы на определенную величину. Это свойство отличается от теплоемкости , которая определяет количество энергии, необходимое чтобы изменить температуру всего тела или вещества на определенную температуру. В вычислениях теплоемкости, в отличие от удельной теплоемкости, не учитывают массу. Теплоемкость и удельную теплоемкость вычисляют только для веществ и тел в устойчивом агрегатном состоянии, например для твердых тел. В этой статье рассматриваются оба эти понятия, так как они взаимосвязаны.

Теплоемкость и удельная теплоемкость материалов и веществ

Металлы

У металлов очень прочная молекулярная структура, так как расстояние между молекулами в металлах и других твердых телах намного меньше, чем в жидкостях и газах. Благодаря этому, молекулы могут двигаться только на очень маленькие расстояния, и, соответственно, для того чтобы заставить их двигаться с большей скоростью необходимо намного меньше энергии, чем для молекул жидкостей и газов. Благодаря этому свойству, их удельная теплоемкость мала. Это значит, что температуру металла поднять очень легко.

Вода

С другой стороны, у воды очень высокая удельная теплоемкость, даже по сравнению с другими жидкостями, поэтому нужно намного больше энергии, чтобы нагреть одну единицу массы воды на один градус, по сравнению с веществами, удельная теплоемкость которых ниже. Вода имеет высокую теплоемкость благодаря прочным связям между атомами водорода в молекуле воды.

Вода - один из главных составляющих всех живых организмов и растений на Земле, поэтому ее удельная теплоемкость играет большую роль для жизни на нашей планете. Благодаря высокой удельной теплоемкости воды, температура жидкости в растениях и температура полостной жидкости в организме животных мало изменяется даже в очень холодные или очень жаркие дни.

Вода обеспечивает систему поддержания теплового режима как у животных и растений, так и на поверхности Земле в целом. Огромная часть нашей планеты покрыта водой, поэтому именно вода играет большую роль в регулировании погоды и климата. Даже при большом количестве тепла, поступающем в результате воздействия солнечного излучения на поверхность Земли, температура воды в океанах, морях и других водоемах увеличивается постепенно, и окружающая температура тоже меняется медленно. С другой стороны, влияние на температуру интенсивности тепла от солнечного излучения велико на планетах, где нет больших поверхностей, покрытых водой, таких как Земля, или в районах Земли, где мало воды. Это особенно заметно, если посмотреть на разность дневных и ночных температур. Так, например, вблизи океана разница между дневной и ночной температурами невелика, но в пустыне она огромна.

Высокая теплоемкость воды также означает, что вода не только медленно нагревается, но и медленно остывает. Благодаря этому свойству воду часто используют как хладагент, то есть, как охлаждающую жидкость. К тому же, использовать воду выгодно благодаря ее низкой цене. В странах с холодным климатом горячая вода циркулирует в трубах для обогрева. В смеси с этиленгликолем ее используют в радиаторах автомобилей для охлаждения двигателя. Такие жидкости называют антифризом. Теплоемкость этиленгликоля ниже, чем теплоемкость воды, поэтому теплоемкость такой смеси тоже ниже, а значит эффективность системы охлаждения с антифризом также ниже, чем системы с водой. Но с этим приходится мириться, так как этиленгликоль не дает воде замерзнуть зимой и повредить каналы системы охлаждения автомобиля. В охлаждающие жидкости, предназначенные для более холодного климата, добавляют больше этиленгликоля.

Теплоемкость в повседневной жизни

При прочих равных условиях, теплоемкость материалов определяет, как быстро они нагреваются. Чем выше теплоемкость, тем больше энергии необходимо, чтобы нагреть этот материал. То есть, если два материала с разной теплоемкостью нагревать одинаковым количеством тепла и в одинаковых условиях, то вещество с меньшей теплоемкостью будет быстрее нагреваться. Материалы с высокой теплоемкостью, наоборот, нагреваются и отдают тепло назад в окружающую среду медленнее.

Кухонные принадлежности и посуда

Чаще всего мы выбираем материалы для посуды и кухонных принадлежностей, основываясь на их теплоемкости. Это в основном касается предметов, которые напрямую контактируют с теплом, например кастрюль, тарелок, форм для выпекания, и другой аналогичной посуды. Например, для кастрюль и сковородок лучше использовать материалы с низкой теплоемкостью, например металлы. Это помогает теплу легче и быстрее передаваться от нагревателя через кастрюлю к продуктам питания и ускоряет процесс приготовления пищи.

С другой стороны, так как материалы с высокой теплоемкостью долго держат тепло, их хорошо использовать для изоляции, то есть когда необходимо сохранить тепло продуктов, и не дать ему уйти в окружающую среду или, наоборот, не дать теплу помещения нагреть охлажденные продукты. Чаще всего такие материалы используют для тарелок и чашек, в которых подают горячую или, наоборот, очень холодную еду и напитки. Они помогают не только сохранить температуру продукта, но и не дают людям обжечься. Посуда из керамики и вспененного полистирола - хорошие примеры использования таких материалов.

Теплоизолирующие продукты питания

В зависимости от ряда факторов, например содержания воды и жира в продуктах, их теплоемкость и удельная теплоемкость бывает разной. В кулинарии знания о теплоемкости продуктов дают возможность использовать некоторые продукты для изоляции. Если теплоизолирующими продуктами накрыть другую еду, то они помогут этой еде под ними дольше сохранить тепло. Если у блюд под этими теплоизолирующими продуктами высокая теплоемкость, то они и так медленно отдают тепло в окружающую среду. После того, как они хорошо прогреются, они теряют тепло и воду еще медленнее благодаря изолирующим продуктам сверху. Поэтому они дольше остаются горячими.

Пример теплоизолирующего продукта - сыр, особенно на пицце и других похожих блюдах. Пока он не расплавился, он пропускает водяные пары, что позволяет продуктам под ним быстро остыть, так как содержащаяся в них вода испаряется и при этом охлаждает содержащие ее продукты. Растаявший же сыр покрывает поверхность блюда и изолирует продукты под ним. Часто под сыром оказываются продукты с высоким содержанием воды, например соусы и овощи. Благодаря этому у них высокая теплоемкость, и они долго держат тепло, особенно потому, что находятся под расплавленным сыром, который не выпускает наружу водяные пары. Именно поэтому пицца из духовки настолько горяча, что можно легко обжечься соусом или овощами, даже когда тесто по краям уже остыло. Поверхность пиццы под сыром долго не остывает, что делает возможным доставку пиццы на дом в хорошо изолированной термо-сумке.

В некоторых рецептах соусы используют так же, как и сыр, для теплоизоляции продуктов под ним. Чем больше содержание жира в соусе, тем лучше он изолирует продукты - особенно хороши в этом случае соусы, основанные на масле или сливках. Это опять связано с тем, что жир препятствует испарению воды и, следовательно, отбору тепла, требуемого для испарения.

В кулинарии для термоизоляции иногда используют также материалы, не пригодные в пищу. Повара в странах Центральной Америке, на Филиппинах, в Индии, Таиланде, Вьетнаме и во многих других странах часто используют в этих целях листья банана. Их можно не только собрать в саду, но и купить в магазине или на рынке - их даже импортируют для этих целей в страны, где не выращивают бананы. Иногда в целях изоляции используют алюминиевую фольгу. Она не только предотвращает испарение воды, но и помогает сохранить тепло внутри за счет предотвращения теплопередачи в форме излучения. Если обернуть в фольгу крылышки и другие выступающие части птицы при ее запекании, то фольга не даст им перегреться и сгореть.

Приготовление пищи

У продуктов с высоким содержанием жира, например у сыра, низкая теплоёмкость. Они сильнее нагреваются при меньшем количестве энергии, по сравнению с продуктами с высокой теплоёмкостью, и достигают температур, достаточно высоких для того, чтобы произошла реакция Майяра. Реакция Майяра - это химическая реакция, которая происходит между сахарами и аминокислотами, и изменяет вкус и внешний вид продуктов. Эта реакция важна в некоторых способах приготовления пищи, например для выпечки хлеба и кондитерских изделий из муки, запекания продуктов в духовом шкафу, а также для жарения. Чтобы увеличить температуру продуктов до температуры, при которой протекает эта реакция, в кулинарии используют продукты с высоким содержанием жира.

Сахар в кулинарии

Удельная теплоемкость сахара еще ниже, чем у жира. Так как сахар быстро нагревается до температур более высоких, чем температура кипения воды, работа с ним на кухне требует соблюдения правил безопасности, особенно во время приготовления карамели или конфет. Необходимо быть предельно осторожным, расплавляя сахар, и не пролить его на незащищенную кожу, так как температура сахара достигает 175° C (350° F) и ожог от расплавленного сахара будет очень серьезный. В некоторых случаях необходимо проверить консистенцию сахара, но этого ни в коем случае нельзя делать голыми руками, если сахар нагрет. Часто люди забывают, как быстро и насколько сильно сахар может нагреться, поэтому и получают ожоги. В зависимости от того, для чего нужен расплавленный сахар, его консистенцию и температуру можно проверить, используя холодную воду, как описано ниже.

Свойства сахара и сахарного сиропа изменяются в зависимости от того, при какой температуре его готовить. Горячий сахарный сироп может быть жидким, как самый жидкий мед, густым, или где-то между жидким и густым. В рецептах конфет, карамели и сладких соусов обычно указана не только температура, до которой должен быть нагрет сахар или сироп, но и стадия твердости сахара, например стадия «мягкого шара» или стадия «твердого шара». Название каждой стадии соответствует консистенции сахара. Чтобы определить консистенцию кондитер капает несколько капель сиропа в ледяную воду, охлаждая их. После этого консистенцию проверяют на ощупь. Так, например, если охлажденный сироп загустел, но не затвердел, а остается мягким и из него можно слепить шарик, то считается, что сироп в стадии «мягкого шара». Если форму застывшего сиропа очень трудно, но все же можно изменить руками, то он в стадии «твердого шара». Кондитеры часто используют пищевой термометр а также проверяют консистенцию сахара вручную.

Пищевая безопасность

Зная теплоемкость продуктов, можно определить, как долго их нужно охлаждать или нагревать, чтобы достичь температуры, при которой они не будет портиться, и при которой погибают вредные для организма бактерии. Например, чтобы достичь определенной температуры, продукты с более высокой теплоемкостью охлаждают или нагревают дольше, чем продукты с низкой теплоемкостью. То есть, продолжительность приготовления блюда зависит от того, какие в него входят продукты, а также - насколько быстро из него испаряется вода. Испарение важно, так как оно требует больших затрат энергии. Часто, чтобы проверить, до какой температуры нагрелось блюдо или продукты в нем, используют пищевой термометр. Особенно удобно использовать его во время приготовления рыбы, мяса и птицы.

Микроволновые печи

То, насколько эффективно нагревается еда в микроволновой печи, зависит, кроме других факторов, от удельной теплоемкости продуктов. Микроволновое излучение, вырабатываемое магнетроном микроволновой печи, заставляет молекулы воды, жира и некоторых других веществ двигаться быстрее, в результате чего еда нагревается. Молекулы жира легко заставить двигаться благодаря их низкой теплоемкости, и поэтому жирная еда нагревается до более высоких температур, чем еда, содержащая много воды. Достигнутая температура может быть настолько высока, что ее достаточно для реакции Майяра. Продукты с высоким содержанием воды не достигают таких температур из-за высокой теплоемкости воды, поэтому и реакция Майяра в них не протекает.

Высокие температуры, которых достигает жир в микроволновой печи, позволяют получить жареную корочку у некоторых продуктов, например бекона, но эти температуры могут представлять опасность при использовании микроволновых печей, особенно если не следовать правилам пользования печью, описанными в инструкции по эксплуатации. Например, когда в печи разогревают или готовят блюда из жирных продуктов, то не следует использовать пластмассовую посуду, так как даже посуда для микроволновых печей не рассчитана на температуры, которых достигает жир. Также следует не забывать, что жирная еда очень горяча, и есть ее осторожно, чтобы не обжечься.

Удельная теплоемкость материалов, используемых в быту

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Количество тепла, при получении которого температура тела повышается на один градус, называется теплоемкостью. Согласно этому определению.

Теплоемкость, отнесенная к единице массы, называется удельной теплоемкостью. Теплоемкость, отнесенная к одному молю, называется моляpной теплоемкостью.

Итак, теплоемкость опpеделяется чеpез понятие количества теплоты. Но последнее, как и pабота, зависит от пpоцесса. Значит и теплоемкость зависит от пpоцесса. Сообщать теплоту - нагpевать тело - можно пpи pазличных условиях. Однако пpи pазличных условиях на одно и то же увеличение темпеpатуpы тела потpебуется pазличное количество теплоты. Следовательно, тела можно хаpактеpизовать не одной теплоемкостью, а бесчисленным множеством (столько же, сколько можно пpидумать всевозможных пpоцессов, пpи котоpых пpоисходит теплопеpедача). Однако на пpактике обычно пользуются опpеделением двух теплоемкостей: теплоемкости пpи постоянном объеме и теплоемкости пpи постоянном давлении.

Теплоемкость различается в зависимости от того, при каких условиях происходит нагревание тела - при постоянном объеме или при постоянном давлении.

Если нагревание тела происходит при постоянном объеме, т. е. dV = 0, то работа равна нулю. В этом случае передаваемое телу тепло идет только на изменение его внутренней энергии, dQ = dE , и в этом случае теплоемкость равна изменению внутренней энергии при изменении температуры на 1 К, т. е.

.Поскольку для газа
, то
.Эта формула определяет теплоемкость 1 моля идеального газа, называемую молярной. При нагревании газа при постоянном давлении его объем меняется, сообщенное телу тепло идет не только на увеличение его внутренней энергии, но и на совершение работы, т.е.dQ = dE + PdV . Теплоемкость при постоянном давлении
.

Для идеального газа PV = RT и поэтому PdV = RdT .

Учитывая это, найдем
.Отношение
представляет собой величину, характерную для каждого газа и определяемую числом степеней свободы молекул газа. Измерение теплоемкости тела есть, таким образом, способ непосредственного измерения микроскопических характеристик составляющих его молекул.

Ф
ормулы для теплоемкости идеального газа приблизительно верно описывают эксперимент, причем, в основном, для одноатомных газов. Согласно формулам, полученным выше, теплоемкость не должна зависеть от температуры. На самом деле наблюдается картина, изображенная на рис., полученная опытным путем для двухатомного газа водорода. На участке 1 газ ведет себя как система частиц, обладающих лишь поступательными степенями свободы, на участке 2 возбуждается движение, связанное с вращательными степенями свободы и, наконец, на участке 3 появляются две колебательные степени свободы. Ступеньки на кривой хорошо согласуются с формулой (2.35), однако между ними теплоемкость растет с температурой, что соответствует как бы нецелому переменному числу степеней свободы. Такое поведение теплоемкости указывает на недостаточность используемого нами представления об идеальном газе для описания реальных свойств вещества.

Связь молярной теплоёмкости с удельной теплоёмкостью С =M с, где с - удельная теплоёмкость , М - молярная масса .Формула Майера.

Для любого идеального газа справедливо соотношение Майера:

,где R - универсальная газовая постоянная, - молярная теплоемкость при постоянном давлении, - молярная теплоемкость при постоянном объёме.

05.04.2019, 01:47

Удельная теплоемкость

Теплоемкость - это количество теплоты, поглощаемой телом при нагревании на 1 градус.

Теплоемкость тела обозначается заглавной латинской буквой С.

От чего зависит теплоемкость тела? Прежде всего, от его массы. Ясно, что для нагрева, напри­мер, 1 килограмма воды потребуется больше тепла, чем для нагрева 200 граммов.

А от рода вещества? Проделаем опыт. Возьмем два одинаковых сосуда и, налив в один из них воду массой 400 г, а в другой - растительное масло массой 400 г, начнем их нагревать с помощью одинаковых горелок. Наблюдая за показаниями термометров, мы увидим, что масло нагревается быстрее. Чтобы нагреть воду и масло до одной и той же температуры, воду следует нагревать доль­ше. Но чем дольше мы нагреваем воду, тем большее количество теплоты она получает от горелки.

Таким образом, для нагревания одной и той же массы разных веществ до одинаковой темпе­ратуры требуется разное количество теплоты. Количество теплоты, необходимое для нагревания тела и, следовательно, его теплоемкость зависят от рода вещества, из которого состоит это тело.

Так, например, чтобы увеличить на 1 °С температуру воды массой 1 кг, требуется количество теплоты, равное 4200 Дж, а для нагревания на 1 °С такой же массы подсолнечного масла необхо­димо количество теплоты, равное 1700 Дж.

Физическая величина, показывающая, какое количество теплоты требуется для нагревания 1 кг вещества на 1 °С, называется удельной теплоемкостью этого вещества.

У каждого вещества своя удельная теплоемкость, которая обозначается латинской буквой с и измеряется в джоулях на килограмм-градус (Дж/(кг·K)).

Удельная теплоемкость одного и того же вещества в разных агрегатных состояниях (твердом, жидком и газообразном) различна. Например, удельная теплоемкость воды равна 4200 Дж/(кг·K) , а удельная теплоемкость льда Дж/(кг·K) ; алюминий в твердом состоянии имеет удельную теплоемкость, равную 920 Дж/(кг·K) , а в жидком - Дж/(кг·K) .

Заметим, что вода имеет очень большую удельную теплоемкость. Поэтому вода в морях и океанах, нагреваясь летом, поглощает из воздуха большое количество тепла. Благодаря этому в тех местах, которые расположены вблизи больших водоемов, лето не бывает таким жарким, как в местах, удаленных от воды.


Удельная теплоемкость твердых веществ

В таблице приведены средние значения удельной теплоемкости веществ в интервале температур от 0 до 10°С(если не указана другая температура)

Вещество Удельная теплоемкость, кДж/(кг·K)
Азот твердый(при t=-250 °С) 0,46
Бетон (при t=20 °С) 0,88
Бумага (при t=20 °С) 1,50
Воздух твердый (при t=-193 °С) 2,0
Графит
0,75
Дерево дуб
2,40
Дерево сосна, ель
2,70
Каменная соль
0,92
Камень
0,84
Кирпич (при t=0 °С) 0,88


Удельная теплоемкость жидкостей

Вещество Температура,°C
Бензин (Б-70)
20
2,05
Вода
1-100
4,19
Глицерин
0-100
2,43
Керосин 0-100
2,09
Масло машинное
0-100
1,67
Масло подсолнечное
20
1,76
Мед
20
2,43
Молоко
20
3,94
Нефть 0-100
1,67-2,09
Ртуть
0-300
0,138
Спирт
20
2,47
Эфир
18
3,34

Удельная теплоемкость металлов и сплавов

Вещество Температура,°C Удельная теплоемкость,к Дж/(кг·K)
Алюминий
0-200
0,92
Вольфрам
0-1600
0,15
Железо
0-100
0,46
Железо
0-500
0,54
Золото
0-500
0,13
Иридий
0-1000
0,15
Магний
0-500
1,10
Медь
0-500
0,40
Никель
0-300
0,50
Олово
0-200
0,23
Платина
0-500
0,14
Свинец
0-300
0,14
Серебро
0-500
0,25
Сталь
50-300
0,50
Цинк
0-300
0,40
Чугун
0-200
0,54

Удельная теплоемкость расплавленных металлов и сжиженных сплавов

Вещество Температура,°C Удельная теплоемкость,к Дж/(кг·K)
Азот
-200,4
2,01
Алюминий
660-1000
1,09
Водород
-257,4
7,41
Воздух
-193,0
1,97
Гелий
-269,0
4,19
Золото
1065-1300
0,14
Кислород
-200,3
1,63
Натрий
100
1,34
Олово
250
0,25
Свинец
327
0,16
Серебро
960-1300
0,29

Удельная теплоемкость газов и паров

при нормальном атмосферном давлении

Вещество Температура,°C Удельная теплоемкость,к Дж/(кг·K)
Азот
0-200
1,0
Водород
0-200
14,2
Водяной пар
100-500
2,0
Воздух
0-400
1,0
Гелий
0-600
5,2
Кислород
20-440
0,92
Оксид углерода(II)
26-200
1,0
Оксид углерода(IV) 0-600
1,0
Пары спирта
40-100
1,2
Хлор
13-200
0,50