Статистическая сводка и группировка. Статистический ряд распределения

Лабораторная работа №1

По математической статистике

Тема: Первичная обработка экспериментальных данных

3. Оценка в баллах. 1

5. Контрольные вопросы.. 2

6. Методика выполнения лабораторной работы.. 3

Цель работы

Приобретение навыков первичной обработки эмпирических данных методами математической статистики.

На основе совокупности опытных данных выполнить следующие задания:

Задание 1. Построить интервальный вариационный ряд распределения.

Задание 2. Построить гистограмму частот интервального вариационного ряда.

Задание 3. Составить эмпирическую функцию распределения и построить график.

а) моду и медиану;

б) условные начальные моменты;

в) выборочную среднюю;

г) выборочную дисперсию, исправленную дисперсию генеральной совокупности, исправленное среднее квадратичное отклонение;

д) коэффициент вариации;

е) асимметрию;

ж) эксцесс;

Задание 5. Определить границы истинных значений числовых характеристик, изучаемой случайной величины с заданной надёжностью.

Задание 6. Содержательная интерпретация результатов первичной обработки по условию задачи.

Оценка в баллах

Задания 1-5 6 баллов

Задание 6 2 балла

Защита лабораторной работы (устное собеседование по контрольным вопросам и лабораторной работе) - 2 балла

Работа сдается в письменной форме на листах формата А4 и включает:

1) Титульный лист (Приложение 1)

2) Исходные данные.

3) Представление работы по указанному образцу.

4) Результаты расчетов (выполненные вручную и/или с помощью MS Excel) в указанном порядке.

5) Выводы - содержательная интерпретация результатов первичной обработки по условию задачи.

6) Устное собеседование по работе и контрольным вопросам.



5. Контрольные вопросы


Методика выполнения лабораторной работы

Задание 1. Построить интервальный вариационный ряд распределения

Для того, чтобы статистические данные представить в виде вариационного ряда с равноотстоящими вариантами необходимо:

1.В исходной таблице данных найти наименьшее и наибольшее значения.

2.Определить размах варьирования :

3. Определить длину интервала h, если в выборке до 1000 данных, используют формулу: , где n – объем выборки – количество данных в выборке; для вычислений берут lgn).

Вычисленное отношение округляют до удобногоцелого значения .

4. Определить начало первого интервала для четного числа интервалов рекомендуют брать величину ; а для нечетного числа интервалов .

5. Записать интервалы группировок и расположить их в порядке возрастания границ

, ,………., ,

где - нижняя граница первого интервала. За берется удобное число не большее , верхняя граница последнего интервала должна быть не меньше . Рекомендуется, чтобы интервалы содержали в себе исходные значения случайной величины и выделять от 5 до 20 интервалов.

6. Записать исходные данные по интервалам группировок, т.е. подсчитать по исходной таблице число значений случайной величины, попадающих в указанные интервалы. Если некоторые значения совпадают с границами интервалов, то их относят либо только к предыдущему, либо только к последующему интервалу.

Замечание 1. Интервалы необязательно брать равными по длине. На участках, где значения располагаются гуще, удобнее брать более мелкие короткие интервалы, а там где реже - более крупные.

Замечание 2 .Если для некоторых значений получены “нулевые”, либо малые значения частот , то необходимо перегруппировать данные, укрупняя интервалы (увеличивая шаг ).

Лабораторная работа №1. Первичная обработка статистических данных

Построение рядов распределения

Упорядоченное распределение единиц совокупности на группы по какому-либо одному признаку называется рядом распределения . При этом признак может быть как количественным, тогда ряд называется вариационным , так и качественным, тогда ряд называют атрибутивным . Так, например, население города может быть распределено по возрастным группам в вариационный ряд, или по профессиональной принадлежности в атрибутивный ряд (конечно, можно предложить еще множество качественных и количественных признаков для построения рядов распределения, выбор признака определяется задачей статистического исследования).

Любой ряд распределения характеризуется двумя элементами:

- варианта (х i ) – это отдельные значения признака единиц выборочной совокупности. Для вариационного ряда варианта принимает числовые значения, для атрибутивного – качественные (например, х=«государственный служащий»);

- частота (n i ) – число, показывающее, сколько раз встречается то или иное значение признака. Если частота выражена относительным числом (т.е. долей элементов совокупности, соответствующих данному значению варианты, в общем объеме совокупности), то она называется относительной частотой или частостью .

Вариационный ряд может быть:

- дискретным , когда изучаемый признак характеризуется определенным числом (как правило целым).

- интервальным , когда определены границы «от» и «до» для непрерывно варьируемого признака. Интервальный ряд также строят если множество значений дискретно варьируемого признака велико.

Интервальный ряд может строиться как с интервалами равной длины (равноинтервальный ряд) так и с неодинаковыми интервалами, если это диктуется условиями статистического исследования. Например, может рассматриваться ряд распределения доходов населения со следующими интервалами: <5тыс р., 5-10 тыс р., 10-20 тыс.р., 20-50 тыс р., и т.д. Если цель исследования не определяет способ построения интервального ряда, то строится равноинтервальный ряд, число интервалов в котором определяется по формуле Стерджесса:



где k – число интервалов, n – объем выборки. (Конечно, формула обычно дает число дробное, а в качестве числа интервалов выбирается ближайшее целое к полученному число.) Длина интервала в таком случае определяется по формуле

.

Графически вариационные ряды могут быть представлены в виде гистограммы (над каждым интервалом интервального ряда выстраивается «столбик» высоты, соответствующей частоте в этом интервале), полигона распределения (ломаная линия, соединяющая точки (х i ;n i ) либо кумуляты (строится по накопленным частотам, т.е. для каждого значения признака берется частота появления в совокупности объектов со значением признака меньшим данного).

При работе в Excel для построения вариационных рядов могут быть использованы следующие функции:

СЧЁТ(массив данных ) – для определения объема выборки. Аргументом является диапазон ячеек, в котором находятся выборочные данные.

СЧЁТЕСЛИ(диапазон; критерий ) – может быть использована для построения атрибутивного или вариационного ряда. Аргументами являются диапазон массива выборочных значений признака и критерий – числовое или текстовое значение признака или номер ячейки, в которой оно находится. Результатом является частота появления этого значения в выборке.

ЧАСТОТА(массив данных; массив интервалов ) – для построение вариационного ряда. Аргументами являются диапазон массива выборочных данных и столбец интервалов. Если требуется построить дискретный ряд, то здесь указываются значения варианты, если интервальный – то верхние границы интервалов (их еще называют «карманами»). Поскольку результатом является столбец частот, введение функции следует завершить нажатием сочетания клавиш CTRL+SHIFT+ENTER. Заметим, что задавая массив интервалов при введении функции, последнее значение в нем можно и не указывать – в соответствующий «карман» будут помещены все значения, не попавшие в предыдущие «карманы». Иногда это помогает избежать ошибки, состоящей в том, что наибольшее выборочное значение не помещается автоматически в последний «карман»

Кроме того, для сложных группировок (по нескольким признакам) используют инструмент «сводные таблицы». Для построения атрибутивных и вариационных рядов их тоже можно использовать, но это излишне усложняет задачу. Также для построения вариационного ряда и гистограммы существует процедура «гистограмма» из надстройки «Пакет анализа» (чтобы использовать надстройки в Excel, их нужно сначала загрузить, по умолчанию они не устанавливаются)

Проиллюстрируем процесс первичной обработки данных на следующих примерах.

Пример 1.1 . имеются данные о количественном составе 60 семей.

Построить вариационный ряд и полигон распределения

Решение .

Откроем таблицы Excel. Введем массив данных в диапазон А1:L5. Если Вы изучаете документ в электронной форме (в формате Word, например), для этого достаточно выделить таблицу с данными и скопировать ее в буфер, затем выделить ячейку А1 и вставить данные – они автоматически займут подходящий диапазон. Подсчитаем объем выборки n – число выборочных данных, для этого в ячейку В7 введем формулу =СЧЁТ(А1:L5). Заметим, что для того, чтобы в формулу ввести нужный диапазон, необязательно вводить его обозначение с клавиатуры, достаточно его выделить. Определим минимальное и максимальное значение в выборке, введя в ячейку В8 формулу =МИН(А1:L5), и в ячейку В9: =МАКС(А1:L5).

Рис.1.1 Пример 1. Первичная обработка статистических данных в таблицах Excel

Далее, подготовим таблицу для построения вариационного ряда, введя названия для столбца интервалов (значений варианты) и столбца частот. В столбец интервалов введем значения признака от минимального (1) до максимального (6), заняв диапазон В12:В17. Выделим столбец частот, введем формулу =ЧАСТОТА(А1:L5;В12:В17) и нажмем сочетание клавиш CTRL+SHIFT+ENTER

Рис.1.2 Пример 1. Построение вариационного ряда

Для контроля вычислим сумму частот при помощи функции СУММ (значок функции S в группе «Редактирование» на вкладке «Главная»), вычисленная сумма должна совпасть с ранее вычисленным объемом выборки в ячейке В7.

Теперь построим полигон: выделив полученный диапазон частот, выберем команду «График» на вкладке «Вставка». По умолчанию значениями на горизонтальной оси будут порядковые числа - в нашем случае от 1 до 6, что совпадает со значениями варианты (номерами тарифных разрядов).

Название ряда диаграммы «ряд 1» можно либо изменить, воспользовавшись той же опцией «выбрать данные» вкладки «Конструктор», либо просто удалить.

Рис.1.3. Пример 1. Построение полигона частот

Пример 1.2 . Имеются данные о выбросах загрязняющих веществ из 50 источников:

10,4 18,6 10,3 26,0 45,0 18,2 17,3 19,2 25,8 18,7
28,2 25,2 18,4 17,5 41,8 14,6 10,0 37,8 10,5 16,0
18,1 16,8 38,5 37,7 17,9 29,0 10,1 28,0 12,0 14,0
14,2 20,8 13,5 42,4 15,5 17,9 19, 10,8 12,1 12,4
12,9 12,6 16,8 19,7 18,3 36,8 15,0 37,0 13,0 19,5

Составить равноинтервальный ряд, построить гистограмму

Решение

Внесем массив данных в лист Excel, он займет диапазон А1:J5 Как и в предыдущей задаче, определим объем выборки n, минимальное и максимальное значения в выборке. Поскольку теперь требуется не дискретный, а интервальный ряд, и число интервалов в задаче не задано, вычислим число интервалов k по формуле Стерджесса. Для этого в ячейку В10 введем формулу =1+3,322*LOG10(B7).

Рис.1.4. Пример 2. Построение равноинтервального ряда

Полученное значение не является целым, оно равно примерно 6,64. Поскольку при k=7 длина интервалов будет выражаться целым числом (в отличие от случая k=6) выберем k=7, введя это значение в ячейку С10. Длину интервала d вычислим в ячейке В11, введя формулу =(В9-В8)/С10.

Зададим массив интервалов, указывая для каждого из 7 интервалов верхнюю границу. Для этого в ячейке Е8 вычислим верхнюю границу первого интервала, введя формулу =B8+B11; в ячейке Е9 верхнюю границу второго интервала, введя формулу =E8+B11. Для вычисления оставшихся значений верхних границ интервалов зафиксируем номер ячейки В11 в введенной формуле при помощи знака $, так что формула в ячейке Е9 примет вид =E8+B$11, и скопируем содержимое ячейки Е9 в ячейки Е10-Е14. Последнее полученное значение равно вычисленному ранее в ячейке В9 максимальному значению в выборке.

Рис.1.5. Пример 2. Построение равноинтервального ряда


Теперь заполним массив «карманов» при помощи функции ЧАСТОТА, как это было сделано в примере 1.

Рис.1.6. Пример 2. Построение равноинтервального ряда

По полученному вариационном ряду построим гистограмму: выделим столбец частот и выберем на вкладке «Вставка» «Гистограмма». Получив гистограмму, изменим в ней подписи горизонтальной оси на значения в диапазоне интервалов, для этого выберем опцию «Выбрать данные» вкладки «Конструктор». В появившемся окне выберем команду «Изменить» для раздела «Подписи горизонтальной оси» и введем диапазон значений варианты, выделив его «мышью».

Рис.1.7. Пример 2. Построение гистограммы

Рис.1.8. Пример 2. Построение гистограммы

Практическое занятие 1

ВАРИАЦИОННЫЕ РЯДЫ РАСПРЕДЕЛЕНИЯ

Вариационным рядом или рядом распределения называют упорядоченное распределение единиц совокупности по возрастающим (чаще) или по убывающим (реже) значениям признака и подсчет числа единиц с тем или иным значением признака.

Существует 3 вида ряда распределения:

1) ранжированный ряд – это перечень отдельных единиц совокупности в порядке возрастания изучаемого признака; если численность единиц совокупности достаточно велика ранжированный ряд становится громоздким, и в таких случаях ряд распределения строится с помощью группировки единиц совокупности по значениям изучаемого признака (если признак принимает небольшое число значений, то строится дискретный ряд, а в противном случае – интервальный ряд);

2) дискретный ряд – это таблица, состоящая из двух столбцов (строк) – конкретных значений варьирующего признака X i и числа единиц совокупности с данным значением признака f i – частот; число групп в дискретном ряду определяется числом реально существующих значений варьирующего признака;

3) интервальный ряд – это таблица, состоящая из двух столбцов (строк) – интервалов варьирующего признака X i и числа единиц совокупности, попадающих в данный интервал (частот), или долей этого числа в общей численности совокупностей (частостей).

Числа, показывающие, сколько раз отдельные варианты встречаются в данной совокупности, называются частотами или весами вариант и обозначаются строчной буквой латинского алфавита f . Общая сумма частот вариационного ряда равна объему данной совокупности, т. е.

где k – число групп, n – общее число наблюдений, или объем совокупности.

Частоты (веса) выражают не только абсолютными, но и от­носительными числами – в долях единицы или в процентах от общей численности вариант, составляющих данную совокуп­ность. В таких случаях веса называют относительными частотами или частостями. Общая сумма частностей равна единице

или
,

если частоты выражены в про­центах от общего числа наблюдений п. Замена частот частостями не обязательна, но иногда оказывается полезной и даже необхо­димой в тех случаях, когда приходится сопоставлять друг с дру­гом вариационные ряды, сильно отличающиеся по их объемам.

В зависимости от того, как варьирует признак – дискретно или непрерывно, в широком или узком диапазоне, – статистиче­ская совокупность распределяется в безынтервальный или интер­вальный вариационные ряды. В первом случае частоты относятся непосредственно к ранжированным значениям признака, которые приобретают положение отдельных групп или классов вариаци­онного ряда, во втором – подсчитывают частоты, относящиеся к отдельным промежуткам или интервалам (от – до), на которые разбивается общая вариация признака в пределах от минималь­ной до максимальной варианты данной совокупности. Эти проме­жутки, или классовые интервалы, могут быть равными и не рав­ными по ширине. Отсюда различают равно- и неравноинтервальные вариационные ряды. В неравноинтервальных рядах характер распределения час­тот меняется по мере изменения ширины классовых интервалов. Неравноинтервальную группировку в биологии применяют сравнительно редко. Как правило, биометрические данные рас­пределяются в равноинтервальные ряды, что позволяет не только выявлять закономерность варьирования, но и облегчает вычисле­ние сводных числовых характеристик вариационного ряда, сопо­ставление рядов распределения друг с другом.

Приступая к построению равноинтервального вариационного ряда, важно правильно наметить ширину классового интервала. Дело в том, что грубая группировка (когда устанавливают очень широкие классовые интервалы) искажает типичные черты варьи­рования и ведет к снижению точности числовых характеристик ряда. При выборе чрезмерно узких интервалов точность обобщающих числовых характеристик повышается, но ряд получается слишком растянутым и не дает четкой картины варьирования.

Для получения хорошо обозримого вариационного ряда и обеспечения достаточной точности вычисляемых по нему числовых характеристик следует разбить вариацию признака (в пределах от минимальной до максимальной варианты) на такое число групп или классов, которое удовлетворяло бы обоим требо­ваниям. Эту задачу решают делением размаха варьирования признака на число групп или классов, намечаемых при построе­нии вариационного ряда:

,

где h – величина интервала; X м a x и X min – максимальное и минимальное значения в совокупности; k – число групп.

При построении интервального ряда распределения необходимо выбирать оптимальное число групп (интервалов признака) и установливать длину (размах) интервала. Поскольку при анализе ряда распределения сравнивают частоты в разных интервалах, необходимо, чтобы длина интервалов была постоянной. Если приходится иметь дело с интервальным рядом распределения с неравными интервалами, то для сопоставимости нужно частоты или частости привести к единице интервала, полученное значение называется плотностью ρ , то есть
.

Оптимальное число групп выбирается так, чтобы достаточной мере отразилось разнообразие значений признака в совокупности и в то же время закономерность распределении, его форма не искажалась случайными колебаниями частот. Если групп будет слишком мало, не проявится закономерность вариации; если групп будет чрезмерно много, случайные скачки частот исказят форму распределения.

Чаще всего число групп в ряду распределения определяют по формуле Стерждесса:

где n – численность совокупности.

Существенную помощь в анализе ряда распределения и его свойств оказывает графическое изображение. Интервальный ряд изображается столбиковой диаграммой, в которой основания столбиков, расположенные по оси абсцисс, – это интервалы значений варьирующего признака, а высоты столбиков – частоты, соответствующие масштабу по оси ординат. Диаграмма такого типа называется гистограммой.

Если имеется дискретный ряд распределения или используются середины интервалов, то графическое изображение такого ряда называется полигоном , которое получается соединением прямыми точек с координатами X i и f i .

Если по оси абсцисс откладывать значения классов, а по оси ординат – накопленные частоты с последующим соединени­ем точек прямыми линиями, получается график, называемый кумулятой. Накопленные частоты находят последо­вательным суммированием, или кумуляцией частот в направлении от первого класса до конца вариационного ряда.

Пример . Имеются данные о яйценоскости 50 кур-несушек за 1 год, содер­жащихся на птицеферме (табл. 1.1).

Т а б л и ц а 1.1

Яйценоскость кур-несушек

№ курицы-несушки

Яйценоскость, шт.

№ курицы-несушки

Яйценоскость, шт.

№ курицы-несушки

Яйценоскость, шт.

№ курицы-несушки

Яйценоскость, шт.

№ курицы-несушки

Яйценоскость, шт.

Требуется построить интервальный ряд распределения и отобразить его графически в виде гистограммы, полигона и кумуляты.

Видно, что признак варь­ирует от 212 до 245 яиц, полученных от несушки за 1 год.

В нашем примере по формуле Стерждесса определим число групп:

k = 1 + 3,322lg 50 = 6,643 ≈ 7.

Рассчитаем длину (размах) интервала по формуле:

.

Построим интервальный ряд с 7 группами и интервалом 5 шт. яиц (табл. 1.2). Для построения графиков в таблице рассчитаем середину интервалов и накопленную частоту.

Т а б л и ц а 1.2

Интервальный ряд распределения яйценоскости

Группа кур-несушек по величине яйценоскости

X i

Число кур-несушек

f i

Середина интервала

Х i ’

Накопленная частота

f i

Построим гистограмму распределения яйценоскости (рис. 1.1).

Р и с. 1.1. Гистограмма распределения яйценоскости

Данные гистограммы показывают характерную для многих признаков форму распределения: чаще встречаются значения средних интервалов признака, реже – крайние (малые и большие) значения признака. Форма этого распределения близка к нормальному закону распределения, которое образуется, если на варьирующую переменную влияет большое число факторов, ни один из которых не имеет преобладающего значения.

Полигон и кумулята распределения яйценоскости имеют вид (рис. 1.2 и 1.3).

Р и с. 1.2. Полигон распределения яйценоскости

Р и с. 1.3. Кумулята распределения яйценоскости

Технология решения задачи в табличном процессоре Microsoft Excel следующая.

1. Введите исходные данные в соответствии с рис. 1.4.

2. Ранжируйте ряд.

2.1. Выделите ячейки А2:А51.

2.2. Щелкните левой кнопкой мыши на панели инструментов на кнопке <Сортировка по возрастанию > .

3. Определите величину интервала для построения интервального ряд распределения.

3.1. Скопируйте ячейку А2 в ячейку Е53.

3.2. Скопируйте ячейку А51 в ячейку Е54.

3.3. Рассчитайте размах вариации. Для этого введите в ячейку Е55 формулу =E54-E53 .

3.4. Рассчитайте число групп вариации. Для этого введите в ячейку Е56 формулу =1+3,322*LOG10(50) .

3.5. Введите в ячейку Е57 округленное число групп.

3.6. Рассчитайте длину интервала. Для этого введите в ячейку Е58 формулу =E55/E57 .

3.7. Введите в ячейку Е59 округленную длину интервала.

4. Постройте интервальный ряд.

4.1. Скопируйте ячейку Е53 в ячейку В64.

4.2. Введите в ячейку В65 формулу =B64+$E$59 .

4.3. Скопируйте ячейку В65 в ячейки В66:В70.

4.4. Введите в ячейку С64 формулу =B65 .

4.5. Введите в ячейку С65 формулу =C64+$E$59 .

4.6. Скопируйте ячейку С65 в ячейки С66:С70.

Результаты решения выводятся на экран дисплея в следующем виде (рис. 1.5).

5. Рассчитайте частоту интервалов.

5.1. Выполните команду Сервис , Анализ данных , щелкнув поочередно левой кнопкой мыши.

5.2. В диалоговом окне Анализ данных с помощью левой кнопки мыши установите: Инструменты анализа  <Гистограмма> (рис. 1.6).

5.3. Щелкните левой кнопкой мыши на кнопке <ОК>.

5.4. На вкладке Гистограмма установите параметры в соответствии с рис. 1.7.

5.5. Щелкните левой кнопкой мыши на кнопке <ОК>.

Результаты решения выводятся на экран дисплея в следующем виде (рис. 1.8).

6. Заполните таблицу «Интервальный ряд распределения».

6.1. Скопируйте ячейки В74:В80 в ячейки D64:D70.

6.2. Рассчитайте сумму частот. Для этого выделите ячейки D64:D70 и щелкните левой кнопкой мыши на панели инструментов на кнопке <Автосумма > .

6.3. Рассчитайте середину интервалов. Для этого введете в ячейку Е64 формулу =(B64+C64)/2 и скопируйте в ячейки Е65:Е70.

6.4. Рассчитайте накопленные частоты. Для этого скопируйте ячейку D64 в ячейку F64. В ячейку F65 введите формулу =F64+D65 и скопируйте в ячейки F66:F70.

Результаты решения выводятся на экран дисплея в следующем виде (рис. 1.9).

7. Отредактируйте гистограмму.

7.1. Щелкните правой кнопкой мыши на диаграмме на названии «карман» и на появившейся вкладке нажмите кнопку <Очистить>.

7.2. Щелкните правой кнопкой мыши на диаграмме и на появившейся вкладке нажмите кнопку <Исходные данные>.

7.3. В диалоговом окне Исходные данные измените подписи оси Х. Для этого выделите ячейки В64:С70 (рис. 1.10).

7.5. Нажмите клавишу .

Результаты выводятся на экран дисплея в следующем виде (рис. 1.11).

8. Постройте полигон распределения яйценоскости.

8.1. Щелкните левой кнопкой мыши на панели инструментов на кнопке <Мастер диаграмм > .

8.2. В диалоговом окне Мастер диаграмм (шаг 1 из 4) с помощью левой кнопки мыши установите: Стандартные  <График> (рис. 1.12).

8.3. Щелкните левой кнопкой мыши на кнопке <Далее>.

8.4. В диалоговом окне Мастер диаграмм (шаг 2 из 4) установите параметры в соответствии с рис. 1.13.

8.5. Щелкните левой кнопкой мыши на кнопке <Далее>.

8.6. В диалоговом окне Мастер диаграмм (шаг 3 из 4) введите названия диаграммы и ос Y (рис. 1.14).

8.7. Щелкните левой кнопкой мыши на кнопке <Далее>.

8.8. В диалоговом окне Мастер диаграмм (шаг 4 из 4) установите параметры в соответствии с рис. 1.15.

8.9. Щелкните левой кнопкой мыши на кнопке <Готово>.

Результаты выводятся на экран дисплея в следующем виде (рис. 1.16).

9. Вставьте на графике подписи данных.

9.1. Щелкните правой кнопкой мыши на диаграмме и на появившейся вкладке нажмите кнопку <Исходные данные>.

9.2. В диалоговом окне Исходные данные измените подписи оси Х. Для этого выделите ячейки Е64:Е70 (рис. 1.17).

9.3. Нажмите клавишу .

Результаты выводятся на экран дисплея в следующем виде (рис. 1.18).

Кумулята распределения строится аналогично полигону распределения на основе накопленных частот.

Предмет математической статистики. Генеральная и выборочная совокупность.

— Математическая статистика – раздел математики, который изучает способы отбора, группировки, систематизации и анализа статистических данных, для получения научно обоснованных выводов.

— Статистические данные – числовые значения рассматриваемого признака изучаемых объектов, полученные как результат случайного эксперимента.

Математическая статистика тесно связана с теорией вероятностей, но в отличие от теории вероятностей, математическая модель эксперимента неизвестна. В математической статистике по статистическим данным необходимо установить неизвестное распределение вероятностей или объективно оценить параметры распределения.

Методы математической статистики позволяют строить оптимальные математические модели массовых, повторяющихся явлений. Связующим звеном между теорией вероятностей и математической статистикой являются предельные теоремы теории вероятностей.

В настоящее время статистические методы используются практически во всех отраслях народного хозяйства.

— Генеральная совокупность – статистические данные всех изучаемых объектов (иногда – сами объекты). Часто генеральную совокупность рассматривают как СВ Х.

— Выборка (выборочная совокупность) – статистические данные объектов, выбранных случайно из генеральной совокупности.

— Объём выборки n (объём генеральной совокупности N ) – количество объектов, выбранных для изучения из генеральной совокупности (количество объектов в генеральной совокупности).

Примеры .

а) Статистическими данными могут быть: рост студентов; количество глаголов (или других частей речи) в отрывке текста определённой длины; средний балл аттестата; уровень интеллекта; число ошибок, допущенных диспетчером и т. п.

б) Генеральной совокупностью может быть: рост всех людей, разряды всех рабочих завода, частота употребления определённой части речи во всех произведениях изучаемого автора, средний балл аттестата всех выпускников и т. п.



в)Выборкой может быть: – рост 20 студентов, количество глаголов в выбранных произвольно 50 однородных отрывках текста длиной 500 словоупотреблений, средний балл аттестата 100 выпускников, выбранных случайно из школ города и т.п.

Выборка называется репрезентативной, если она верно отражает свойство генеральной совокупности. Репрезентативность выборки достигается случайностью отбора, когда все объекты генеральной совокупности имеют одинаковую вероятность быть отобранными.

Для того чтобы выборка была репрезентативной применяют различные способы отбора объектов изучения.

Виды отбора : простой, механический, серийный, типический.

Простой . Произвольно отбираются элементы из всей генеральной совокупности.

Механический отбор . Выбирают каждый 10 (25, 30 и т.п.) объект из генеральной совокупности.

Серийный . Проводится исследование в каждой серии (например, из текста выбирают 10 отрывков по 500 словоупотреблений- 10 серий).

Типический . Генеральную совокупность по определённому признаку разделяют на типические группы. Количество серий, извлекаемых из каждой такой группы, определяется удельным весом этой группы в генеральной совокупности.

Статистическое распределение выборки и его графическое изображение.

Пусть изучается СВ Х (генеральная совокупность) относительно некоторого признака. Проводится ряд независимых испытаний. В результате опытов СВ Х принимает некоторые значения. Совокупность полученных значений представляет собой выборку, а сами значения являются статистическими данными.

Первоначально проводят ранжирование выборки - расположение статистических данных выборки по неубыванию. Получаем вариационный ряд.

Вариационный ряд - проранжированная выборка.

Дискретный статистический ряд

Если генеральная совокупность является дискретной СВ, строится дискретный статистический ряд (статистическое распределение).

Пусть значение появилось в выборке раз,

Разa , …, - раз.

I-тая варианта выборки; - частота i-той варианты Частота показывает, сколько раз данная варианта появилась в выборке.

- относительная частота i-той варианты

(показывает какую часть выборки составляет ).

Статистическое распределение – это соответствие между вариантами выборки и их частотами или относительными частотами.

Для ДСВ статистическое распределение можно представить в виде таблицы – статистического ряда частот или статистического ряда относительных частот.

Статистический ряд частот Статистический ряд

относительных частот

........
........
........
........

Для наглядности представления статистического распределения выборки строят «графики» статистического распределения: полигон и гистограмму.

Полигон частот (относительных частот) – графическое изображение дискретного статистического ряда - ломаная линия, последовательно соединяющая точки [ для полигона относительных частот].

Пример. Исследователя интересуют знания абитуриентов по математике. Выбирают 10 абитуриентов и записывают их школьные оценки по этому предмету. Получена следующая выборка: 5;4;4;3;2;5;4;3;4;5.

а) Представить выборку в виде вариационного ряда;

б) построить статистический ряд частот и относительных частот;

в) изобразить полигон относительных частот для полученного ряда.

а) Проведем ранжирование выборки, т.е. расположим члены выборки по неубыванию. Получаем вариационный ряд: 2; 3; 3; 4; 4; 4; 4; 5; 5;5.

б) Построим статистический ряд частот (соответствие между вариантами выборки и их частотами) и статистический ряд относительных частот (соответствие между вариантами выборки и их относительными частотами)

0,1 0,2 0,4 0,3

Статистический ряд частот статистический ряд отн. частот

1+2+4+3=10=n 0,1+0,2+0,4+0,3=1.

Полигон относительных частот.


Описание изменений варьирующего признака осуществляется с помощью рядов распределения.

Статистический ряд распределения - это упорядоченное распределение единиц статистической совокупности на отдельные группы по определенному варьирующему признаку.

Статистические ряды, построенные по качественному признаку называют атрибутивными . Если в основе ряда распределения лежит количественный признак, то ряд является вариационным .

В свою очередь вариационные ряды делят на дискретные и интервальные. В основе дискретного ряда распределения лежит дискретный (прерывный) признак, принимающий конкретные числовые значения (число правонарушений, число обращений граждан за юридической помощью). Интервальный ряд распределения строится на основе непрерывного признака, который может принимать любые значения из заданного диапазона (возраст осужденного, срок лишения свободы и т.д.)

Любой статистический ряд распределения содержит два обязательных элемента – варианты ряда и частоты. Варианты (x i ) – отдельные значения признака, которые он принимает в ряду распределения. Частоты (f i ) – это числовые значения, показывающие сколько раз встречаются те или иные варианты в ряду распределения. Сумма всех частот называется объемом совокупности.

Частоты, выраженные в относительных единицах (долях или процентах) называются частостями (w i ). Сумма частостей равна единице, если Частости выражены в долях единицы, или 100, если они выражаются в процентах. Использование частостей позволяет производить сравнение вариационных рядов с разным объемом совокупности. Частости определяются по следующей формуле:

Для построения дискретного ряда ранжируются все встречающиеся в ряду индивидуальные значения признака, а затем подсчитываются частоты повторений каждого значения. Оформляется ряд распределения в идее таблицы, состоящей из двух строк и столбцов, в одной из которых приводятся значения вариантов ряда x i , во второй – значения частот f i .

Рассмотрим пример построения дискретного вариационного ряда.

Пример 3.1 . По данным УМВД зарегистрировано преступлений, совершенных в городе N несовершеннолетними в возрасте.

17 13 15 16 17 15 15 14 16 13 14 17 14 15 15 16 16 15 14 15 15 14 16 16 14 17 16 15 16 15 13 15 15 13 15 14 15 13 17 14.

Построить дискретный ряд распределения.

Решение .

Сначала необходимо проранжировать данные о возрасте несовершеннолетних, т.е. записать их в порядке возрастания.

13 13 13 13 13 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 17 17 17 17 17



Таблица 3.1

Таким образом, частоты отображают количество человек данного возраста, например, 5 человек имеют возраст 13 лет, 8 человек – 14 лет, и т.д.

Построение интервальных рядов распределения осуществляют аналогично выполнению равноинтервальной группировки по количественному признаку, то есть вначале определяют оптимальное число групп, на которые будет разбита совокупность, устанавливаются границы интервалов по группам и подсчитываются частоты.

Проиллюстрируем построение интервального ряда распределения на следующем примере.

Пример 3.2 .

Построить интервальный ряд по следующей статистической совокупности – заработной плате юриста в конторе, тыс. руб.:

16,0 22,2 25,1 24,3 30,5 32,0 17,0 23,0 19,8 27,5 22,0 18,9 31,0 21,5 26,0 27,4

Решение.

Примем оптимальное количество групп равноинтервальной группировки для данной статистической совокупности, равное 4 (у нас 16 вариантов). Следовательно, численность каждой группы равна:

а величина каждого интервала будет равна:

Границы интервалов определяем по формулам:

,

где - соответственно нижняя и верхняя границы i-го интервала.

Опуская промежуточные вычисления границ интервалов, заносим их значения (варианты) и количество юристов (частоты), имеющих з/п в пределах каждого интервала, в таблицу 3.2, которая и иллюстрирует полученный интервальный ряд.

Таблица 3.2

Анализ статистических рядов распределения может производиться с использованием графического метода. Графическое представление рядов распределения позволяет наглядно проиллюстрировать закономерности распределения исследуемой совокупности путем ее изображения в виде полигона, гистограммы и кумуляты. Остановимся на каждом из перечисленных графиков.

Полигон – ломаная, отрезки которой соединяют точки с координатами (x i ;f i ). Обычно полигон используют для изображения дискретных рядов распределения. Для его построения на оси абсцисс откладывают ранжированные индивидуальные значения признака x i , на оси ординат – соответствующие этим значениям частоты. В результате, соединив отрезками точки, соответствующие данным, отмеченным по осям абсцисс и ординат, получают ломаную, называемую полигоном. Приведем пример построения полигона частот.

Для иллюстрации построения полигона возьмем результат решения примера 3.1 на построение дискретного ряда – рисунок 1. По оси абсцисс отложен возраст осужденных, по оси ординат – количество несовершеннолетних осужденных, имеющих данный возраст. Анализируя данный полигон, можно сказать, что наибольшее количество осужденных – 14 человек, имеют возраст 15 лет.

Рисунок 3.1 – Полигон частот дискретного ряда.

Полигон можно построить и для интервального ряда, в этом случае по оси абсцисс откладывают середины интервалов, а по оси ординат – соответствующие им частоты.

Гистограмма – ступенчатая фигура, состоящая из прямоугольников, основаниями которых служат интервалы значения признака, а высоты равны соответствующим частотам. Гистограмма применяется только для изображения интервальных рядов распределения. Если интервалы являются неравными, то для построения гистограммы на оси ординат откладывают не частоты, а отношение частоты к ширине соответствующего интервала. Гистограмму можно преобразовать в полигон распределения, если середины ее столбиков соединить между собой отрезками.

Для иллюстрации построения гистограммы возьмем результаты построения интервального ряда из примера 3.2– рисунок 3.2.

Рисунок 3.2 – Гистограмма распределения заработной платы юристов.

Для графического изображения вариационных рядов также используют кумуляту. Кумулята – кривая, изображающая ряд накопленных частот и соединяющая точки с координатами (x i ;f i нак ). Накопленные частоты вычисляются последовательным суммированием всех частот ряда распределения и показывают число единиц совокупности, имеющих значение признака не больше, чем указанное. Проиллюстрируем вычисление накопленных частот для вариационного интервального ряда, представленного в примере 3.2 – таблица 3.3.

Таблица 3.3

Для построения кумуляты дискретного ряда распределения по оси абсцисс откладывают ранжированные индивидуальные значения признака, а по оси ординат – соответствующие им накопленные частоты. При построении кумулятивной кривой интервального ряда первая точка будет иметь абсциссу, равную нижней границе первого интервала, а ординату, равную 0. Все последующие точки должны соответствовать верхним граница интервалов. Построим кумуляту, используя данные таблицы 3.3 – рисунок 3.3.

Рисунок 3.3 – Кумулятивная кривая распределения заработной платы юристов.

Контрольные вопросы

1. Понятие статистического ряда распределения, его основные элементы.

2. Виды статистических рядов распределения. Их краткая характеристика.

3. Дискретные и интервальные ряды распределения.

4. Методика построения дискретных рядов распределения.

5. Методика построения интервальных рядов распределения.

6. Графическое изображение дискретных рядов распределения.

7. Графическое изображение интервальных рядов распределения.

Задачи

Задача 1 . Имеются следующие данные об успеваемости 25 студен­тов группы по ТГП в сессию: 5, 4, 4, 4, 3, 2, 5, 3, 4, 4, 4, 3, 2, 5, 2, 5, 5, 2, 3, 3, 5, 4, 2, 3, 3. Постройте дискретный вариационный ряд распределения студентов по баллам оценок, получен­ных в сессию. Для полученного ряда рассчитайте Частости, накопленные Частости, накопленные частоты. Сделайте выводы.

Задача 2 . В колонии содержатся 1000 осужденных, их распределение по возрасту представлено в таблице:

Изобразите данный ряд графически. Сделайте выводы.

Задача 3 . Имеются следующие данные о сроках лишения свободы заключенных:

5; 4; 2; 1; 6; 3; 4; 3; 2; 2; 3; 1; 17; 6; 2; 8; 5; 11; 9; 3; 5; 6; 4; 3; 10; 5; 25; 1; 12; 3; 3; 4; 9; 6; 5; 3; 4; 3; 5; 12; 4; 13; 2; 4; 6; 4; 14; 3; 11; 5; 4; 13; 2; 4; 6; 4; 14; 3; 11; 5; 4; 3; 12; 6.

Постройте интервальный ряд распределения заключенных по срокам лишения свободы. Сделайте выводы.

Задача 4 . Имеются следующие данные о распределении осужденных в области за изучаемый период по возрастным группам:

Изобразите данный ряд графически, сделайте выводы.