Определение скоростей точек плоской фигуры. Определение скоростей точек тела плоской фигуры

ПЛОСКОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА

Учебные вопросы:

1.Уравнения плоского движения твердого тела.

2. Скорость точек плоской фигуры

3. Мгновенный центр скоростей

4. Ускорения точек плоской фигуры

1.Уравнения плоского движения твердого тела

Плоским движением твёрдого тела называют такое движение, при котором все точки сечения тела движутся в своей плоскости.

Пусть твёрдое тело 1 совершает плоское движение.

Секущая плоскость в теле 1 образует сечение П, которое перемещается в секущей плоскости .

Если параллельно плоскости выполнить другие сечения тела, например через точки
и т.д., лежащие на одном перпендикуляре к сечениям, то все эти точки и все сечения тела будут перемещаться одинаково.

Следовательно, движение тела в этом случае полностью определяется движением одного из его сечений в какой-либо из параллельных плоскостей, а положение сечения – положением двух точек этого сечения, например А и В .

Положение сечения П в плоскости Оху определяют положением отрезка АВ, проведённого в этом сечении. Положение двух точек на плоскости А(
) и В(
) характеризуется четырьмя параметрами (координатами), на которые накладывают одно ограничение - уравнение связи в виде длины отрезка АВ:

Поэтому положение сечения П в плоскости можно задать тремя независимыми параметрами - координатами
точки А и углом , который образует отрезок АВ с осью Ох. Точку А, выбранную для определения положения сечения П, называют ПОЛЮСОМ.

При движении сечения тела его кинематические параметры являются функциями времени

Уравнения являются кинематическими уравнениями плоского (плоскопараллельного) движения твёрдого тела. Теперь покажем, что в соответствии с полученными уравнениями тело при плоском движении совершает поступательное и вращательное движения. Пусть на рис. сечение тела, заданное отрезком
в системе координат Оху, переместилось из начального положения 1 в конечное положение 2.

Покажем два способа возможного перемещения тела из положения 1 в положение 2.

Первый способ. За полюс примем точку .Перемещаем отрезок
параллельно самому себе, т.е. поступательно, по траектории , до совмещения точек и . Получаем положение отрезка . на угол и получаем конечное положение плоской фигуры, заданное отрезком
.

Второй способ. За полюс примем точку . Перемещаем отрезок
параллельно самому себе, т.е. поступательно по траектории
до совмещения точек и.Получаем положение отрезка
. Далее поворачиваем этот отрезок вокруг полюса на угол и получаем конечное положение плоской фигуры, заданное отрезком
.

Сделаем следующие выводы.

1. Плоское движение в полном соответствии с уравнениями представляет собой совокупность поступательного и вращательного движений, причем модель плоского движения тела можно рассматривать как поступательное движение всех точек тела вместе с полюсом и вращение тела относительно полюса.

2. Траектории поступательного движения тела зависят от выбора полюса . На рис. 13.3 в рассмотренном случае видим, что в первом способе движения, когда за полюс принимали точку,траектория поступательного движения значительно отличается от траектории
для другого полюса В.

3. Вращение тела от выбора полюса не зависит. Угол вращения тела остается постоянным по модулю и направлению вращения . В обоих случаях, рассмотренных на рис. 13.3, вращение произошло против вращения часовой стрелки.

Основными характеристиками тела при плоском движении являются: траектория движения полюса, угол вращения тела вокруг полюса, скорость и ускорения полюса, угловая скорость и угловое ускорение тела . Дополнительные оси
при поступательном движении перемещаются вместе с полюсом А параллельно основным осям Оху по траектории движения полюса.

Скорость полюса плоской фигуры можно определить с помощью производных по времени от уравнений:

Аналогично определяют угловые характеристики тела: угловую скорость
;

угловое ускорение

.

На рис. в полюсе А показаны проекции вектора скорости на оси Ох,Оу. Угол вращения тела , угловая скоростьи угловое ускорениепоказаны дуговыми стрелками вокруг точки А. В связи с независимостью вращательных характеристик движения от выбора полюса угловые характеристики ,, можно показывать в любой точке плоской фигуры дуговыми стрелками, например в точке В.

Лекция 3. Плоскопараллельное движение твердого тела. Определение скоростей и ускорений.

В данной лекции рассматриваются следующие вопросы:

1. Плоскопараллельное движение твердого тела.

2. Уравнения плоскопараллельного движения.

3. Разложение движения на поступательное и вращательное.

4. Определение скоростей точек плоской фигуры.

5. Теорема о проекциях скоростей двух точек тела.

6. Определение скоростей точек плоской фигуры с помощью мгновенного центра скоростей.

7. Решение задач на определение скорости.

8. План скоростей.

9. Определение ускорений точек плоской фигуры.

10. Решение задач на ускорения.

11. Мгновенный центр ускорений.

Изучение данных вопросов необходимо в дальнейшем для динамики плоского движения твердого тела, динамики относительного движения материальной точки, для решения задач в дисциплинах «Теория машин и механизмов» и «Детали машин».

Плоскопараллельное движение твердого тела. Уравнения плоскопараллельного движения.

Разложение движения на поступательное и вращательное

Плоскопараллельным (или плоским) называется такое движение твердого тела, при, котором все его точки перемещаются параллельно некоторой фиксированной плоскости П (рис. 28). Плоское движение совершают многие части механизмов и машин, например катящееся колесо на прямолинейном участке пути, шатун в кривошипно-ползунном механизме и др. Частным случаем плоскопараллельного движения является вращательное движение твердого тела вокруг неподвижной оси.

Рис.28 Рис.29

Рассмотрим сечение S тела какой-нибудь плоскости Оxy , параллельной плоскости П (рис.29). При плоскопараллельном движе­нии все точки тела, лежащие на прямой ММ ’, перпендикулярной течению S , т. е. плоскости П , движутся тождественно.

Отсюда заключаем, что для изучения движения всего тела дос­таточно изучить, как движется в плоскости Оху сечение S этого тела или некоторая плоская фигура S . Поэтому в дальнейшем вместо плоского движения тела будем рассматривать движение плоской фигуры S в ее плоскости, т.е. в плоскости Оху .

Положение фигуры S в плоскости Оху определяется положением какого-нибудь проведенного на этой фигуре отрезка АВ (рис. 28). В свою очередь положение отрезка АВ можно определить, зная координаты x A и y A точки А и угол , который отрезок АВ образует с осью х . Точку А , выбранную для определения положения фигуры S , будем в дальнейшем называть полюсом.

При движении фигуры величины x A и y A и будут изменяться. Чтобы знать закон движения, т. е. положение фигуры в плоскости Оху в любой момент времени, надо знать зависимости

Уравнения, определяющие закон происходящего движения, называются уравнениями движения плоской фигуры в ее плоскости. Они же являются уравнениями плоскопараллельного движения твер­дого тела.

Первые два из уравнений движения определяют то движение, которое фигура совершала бы при =const; это, очевидно, будет поступательное движение, при котором все точки фигуры движутся так же, как полюс А . Третье уравнение определяет движе­ние, которое фигура совершала бы при и , т.е. когда полюс А неподвижен; это будет вращение фи­гуры вокруг полюса А . Отсюда можно заключить, что в общем случае движение плоской фигуры в ее плоскости может рассматриваться как слагающееся из по­ступательного движения, при котором все точки фигуры движутся так же, как полюс А , и из вращательного движения вокруг этого полюса.

Основными кинематическими характеристиками рассматривае­мого движения являются скорость и ускорение поступательного движения, равные скорости и ускорению полюса , а также угловая скорость и угловое ускорение враща­тельного движения вокруг полюса.


Определение скоростей точек плоской фигуры

Было отмечено, что движение плоской фигуры можно рассматривать как слагающееся из поступательного движения, при котором все точки фигуры движутся со скоростью полюса А , и из вращательного движения вокруг этого полюса. Покажем, что скорость любой точки М фигуры складывается геометрически из скоростей, которые точка получает в каждом из этих движений.

В самом деле, положение любой точки М фигуры определяется по отношению к осям Оху радиусом-вектором (рис.30), где - радиус-вектор полюса А , - вектор, определяю­щий положение точки М относительно осей , перемещающих­ся вместе с полюсом А поступательно (движение фигуры по отноше­нию к этим осям представляет собой вращение вокруг полюса А ). Тогда

Движение плоской фигуры слагается из поступательного движения, когда все точки фигуры движутся со скоростью полюсаА , и из вращательного движения вокруг этого полюса (рис. 3.4). Скорость любой точкиМ фигуры складывается геометрически из скоростей, которые точка получает в каждом из этих движений.

Рисунок 3.4

Действительно, положение точки М по отношению к осямОх y определяется радиусом – вектором
, где- радиус-вектор полюсаА ,=
- радиус-вектор, определяющий положение точкиМ относительно
, перемещающихся вместе с полюсомА поступательно. Тогда

.

есть скорость полюсаА ,равна скорости
, которую точкаМ получает при
, т.е. относительно осей
, или, иначе, при вращении фигуры вокруг полюсаА . Таким образом следует, что

где ω – угловая скорость фигуры.

Рисунок 3.5

Таким образом, скорость любой точки М плоской фигуры геометрически складывается из скорости какой-нибудь другой точки А, принятой за полюс, и скорости, которую точка М получает при вращении фигуры вокруг этого полюса. Модуль и направление скоростинаходятся построением соответствующего параллелограмма (рис. 3.5).

10.3. Теорема о проекциях скоростей двух точек тела

Одним из простых способов определения скоростей точек плоской фигуры (или тела движущегося плоскопараллельно) является теорема: проекции скоростей двух точек твердого тела на ось, проходящую через эти точки, равны друг другу.

Рисунок 3.6

Рассмотрим какие-нибудь две точки А иВ плоской фигуры (или тела) (рис.3.6). Принимая точкуА за полюс получаем, что
. Отсюда, проектируя обе части равенства на ось, направленную поАВ , и учитывая, что вектор
перпендикуляренАВ , находим

,

и теорема доказана. Заметим, что этот результат ясен и из чисто физических соображений: если равенство
не будет выполняться, то при движении расстояние между точкамиА иВ должно изменяться, что невозможно – тело абсолютно твердое. Поэтому это равенство выполняется не только при плоскопараллельном, но и при любом движении твердого тела.

10.4. Определение скоростей точек плоской фигуры с помощью мгновенного центра скоростей

Другой простой и наглядный метод определения скоростей точек плоской фигуры (или тела при плоском движении) основан на понятии о мгновенном центре скоростей.

Мгновенным центром скоростей (МЦС) называется точка плоской фигуры, скорость которой в данный момент времени равна нулю.

Если фигура движется непоступательно, то такая точка в каждый момент времени t существует и притом единственная. Пусть в момент времениt точкиА иВ плоскости фигуры имеют скоростии, непараллельные друг другу (рис. 3.7.). Тогда точкаР , лежащая на пересечении перпендикуляровАа к векторуиВ b к вектору, и будет мгновенным центром скоростей, так как
.

Рисунок 3.7

В самом деле, если
, то по теореме о проекциях скоростей вектордолжен быть одновременно перпендикулярен иАР (так как
), иВР (так как
), что невозможно. Из этой же теоремы видно, что никакая другая точка фигуры в этот момент времени не может иметь скорость, равную нулю.

Если теперь в момент времени t взять точкуР за полюс. То скорость точкиА будет

,

так как =0. Такой же результат получается для любой другой точки фигуры. Тогда,скорости точек плоской фигуры определяются в данный момент времени так, как если бы движение фигуры было вращением вокруг мгновенного центра скоростей. При этом

(
);
(
)

и так для любой точки фигуры.

Из этого следует еще, что
и
, тогда

=,

т.е. что скорости точек плоской фигуры пропорциональны их расстоянию от мгновенного центра скоростей.

Полученные результаты приводят к следующим выводам:

1. Для определения мгновенного центра скоростей надо знать только направления скоростей, например, и каких-нибудь двух точек А и В плоской фигуры.

2. Для определения скорости любой точки плоской фигуры надо знать модуль и направление скорости какой-нибудь одной точки А фигуры и направление скорости другой её точки В.

3. Угловая скорость плоской фигуры равна в каждой момент времени отношению скорости какой-нибудь точки фигуры к её расстоянию от мгновенного центра скоростей Р:

.

Найдем, еще другое выражение для ω из равенств
и

следует, что
и
, откуда

.

Рассмотрим некоторые частные случаи определения МЦС, которые помогут решать теоретической механики.

1. Если плоскопараллельное движение осуществляется путем качения без скольжения одного цилиндрического тела по поверхности другого неподвижного, то точка Р катящегося тела, касающаяся неподвижной поверхности (рис. 3.8), имеет в данный момент времени вследствие отсутствия скольжения скорость, равную нулю (
), и следовательно, является мгновенным центром скоростей.

Рисунок 3.8

2. Если скорости точек А иВ плоской фигуры параллельны друг другу, причем линияАВ не перпендикулярна(рис.3.9,а), то мгновенный центр скоростей лежит в бесконечности и скорости всех точек //. При этом из теоремы о проекциях скоростей следует, что
, т.е.
, в этом случае фигура имеет мгновенное поступательное движение.

3. Если скорости точек А иВ плоской фигуры // друг другу и при этом линияАВ перпендикулярна, то мгновенный центр скоростейР определяется построением (рис. 3.9,б).

Рисунок 3.9

Справедливость построений следует из
. В этом случае, в отличие от предыдущих, для нахождения центраР надо кроме направлений знать еще и модули скоростейи.

4. Если известны вектор скорости какой-нибудь точкиВ фигуры и её угловая скоростьω , то положение мгновенного центра скоростейР , лежащего на перпендикуляре к(см. рис. ?), можно найти из равенства
, которое дает
.

Другой простой и наглядный метод определения скоростей точек плоской фигуры (или тела при плоском движении) основан на понятии о мгновенном центре скоростей.

Мгновенным центром скоростей (МЦС) называется точка плоской фигуры, скорость которой в данный момент времени равна нулю.

Если фигура движется непоступательно, то такая точка в каждый момент времени t существует и притом единственная. Пусть в момент времени t точки А и В плоскости фигуры имеют скорости и , непараллельные друг другу (рис. 2.21.). Тогда точка Р , лежащая на пересечении перпендикуляров Аа к вектору и Вb к вектору , и будет мгновенным центром скоростей, так как .

Рисунок 2.21

В самом деле, если , то по теореме о проекциях скоростей вектор должен быть одновременно перпендикулярен и АР (так как ), и ВР (так как ), что невозможно. Из этой же теоремы видно, что никакая другая точка фигуры в этот момент времени не может иметь скорость, равную нулю.

Если теперь в момент времени t взять точку Р за полюс. То скорость точки А будет

и так для любой точки фигуры.

Из этого следует еще, что и , тогда

= , (2.54)

т.е. что скорости точек плоской фигуры пропорциональны их расстоянию от мгновенного центра скоростей.

Полученные результаты приводят к следующим выводам:

1. Для определения мгновенного центра скоростей надо знать только направления скоростей, например, и каких-нибудь двух точек А и В плоской фигуры.

2. Для определения скорости любой точки плоской фигуры надо знать модуль и направление скорости какой-нибудь одной точки А фигуры и направление скорости другой её точки В.

3. Угловая скорость плоской фигуры равна в каждой момент времени отношению скорости какой-нибудь точки фигуры к её расстоянию от мгновенного центра скоростей Р:

Рассмотрим некоторые частные случаи определения МЦС, которые помогут решать теоретической механики.

1. Если плоскопараллельное движение осуществляется путем качения без скольжения одного цилиндрического тела по поверхности другого неподвижного, то точка Р катящегося тела, касающаяся неподвижной поверхности (рис. 2.22), имеет в данный момент времени вследствие отсутствия скольжения скорость, равную нулю (), и следовательно, является мгновенным центром скоростей.



Рисунок 2.22

2. Если скорости точек А и В плоской фигуры параллельны друг другу, причем линия АВ не перпендикулярна (рис.2.23,а), то мгновенный центр скоростей лежит в бесконечности и скорости всех точек // . При этом из теоремы о проекциях скоростей следует, что , т.е. , в этом случае фигура имеет мгновенное поступательное движение. , которое дает .

5)Поступательное движение. Примеры.

Определение вращательного движения тела вокруг неподвижной оси.

Уравнение вращательного движения.

– такое движение, при котором все его точки движутся в плоскостях, перпендикулярных некоторой неподвижной прямой, и описывают окружности с центрами, лежащими на этой прямой, называемой осью вращения.

Движение задается законом изменения двугранного угла φ (угла поворота), образованного неподвижной плоскостью P, проходящей через ось вращения, и плоскостью Q, жестко связанной с телом:



Угловая скорость – величина, характеризующая быстроту изменения угла поворота.

Угловое ускорение – величина, характеризующая быстроту изменения угловой скорости.

Определение скорости любой точки плоской фигуры.

1 способ определения скоростей – через векторы. Скорость любой точки плоской фигуры равна геометрической сумме скоростей полюса и вращательной скорости этой точки вокруг полюса. Таким образом, скорость точки B равна геометрической сумме скорости полюса A и вращательной скорости точки B вокруг полюса:

2 способ определения скоростей – через проекции. (теорема о проекциях скоростей) Проекции скоростей точек плоской фигуры на ось, проходящую через эти точки равны.

3)Формулы вычисления скорости и ускорения точки при естественном способе задания её движения.

Вектор скорости; - Проекция скорости на касательную;

Составляющие вектора ускорения; -проекции ускорения на оси t и n;

Таким образом полное ускорение точки есть векторная сумма двух ускорений:

касательного, направленного по касательной к траектории в сторону увеличения дуговой координаты, если (в противном случае – в противоположную) и

нормального ускорения, направленного по нормали к касательной в сторону центра кривизны (вогнутости траектории): Модуль полного ускорения:

4) Формулы вычисления скорости и ускорения точки при координатном способе задания её движения в декартовых координатах.

Составляющие вектора скорости: -Проекции скорости на оси координат:

-составляющие вектора ускорения; -проекции ускорения на оси коодинат;

5)Поступательное движение. Примеры.

(ползун, поршень насоса, спарник колес паровоза, движущегося по прямолинейному пути, кабина лифта, дверь купе, кабина колеса обозрения).- это такое движение, при котором любая прямая, жестко связанная с телом, остается параллельной самой себе. Обычно поступательное движение отождествляется с прямолинейным движением его точек, однако это не так. Точки и само тело (центр масс тела) могут двигаться по криволинейным траекториям, см. например, движение кабины колеса обозрения. Другими словами - это движение без поворотов.