Метод начертательной геометрии. Виды проецирования













Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели:

  • дать учащимся понятие о проекции, о видах проецирования;
  • познакомить с элементами прямоугольного проецирования;
  • научить проецировать предмет на плоскость проекций;
  • развивать пространственное представление и пространственное мышление;
  • воспитывать аккуратность в графических представлениях.

Методы: беседа, объяснение, упражнения.

Оборудование: учебник, учебная презентация «Проецирование», чертежные инструменты, рабочая тетрадь на печатной основе к учебнику «Черчение» А.Д. Ботвинников, автор В.И. Вышнепольский.

Тип урока: изучение нового материала.

Структура урока:

1. Оргмомент: сообщение темы /запись ее в тетрадь чертежным шрифтом/, цели, задач урока и мотивация учебной деятельности, сбор выполненного домашнего задания в рабочих тетрадях на печатной основе – 3-5 минут.
2. Повторение пройденного: выполнение теста на печатной основе (Задание 2, 10 вариантов, «Карточки-задания по черчению» под редакцией В.В. Степаковой. Просвещение) – 5-7 минут.
3. Новый материал – 20 минут.
4. Закрепление: выполнение устного упражнения – 10 минут.
5. Заключительная часть: подведение итогов, оценивание тех, кто хорошо работал, выдача домашнего задания – 3-5 мин.

ХОД УРОКА

1. Оргмомент

Сообщение темы, цели, задач урока, сбор выполненного домашнего задания в рабочих тетрадях на печатной основе.

2. Повторение пройденного

Учитель: у вас на столах карточки с тестом. (Задание 2, 10 вариантов, «Карточки-задания по черчению» под редакцией В.В. Степаковой, изд. Просвещение – распечатать карточки по количеству учащихся).
Попрошу в течение 5 минут ответить на вопросы. И передайте карточки на первую парту.
Тема сегодняшнего урока – «Проецирование. Проецирование на одну плоскость проекций» . Запишите её в тетрадь чертёжным шрифтом (тема отображается на доске, записанная в презентации чертежным шрифтом). (Слайд 1 )

3. Новый материал

Изображение предметов на чертежах получают проецированием. (Слайд 2) Проецирование – это процесс построения изображения предмета на плоскости. Получившиеся при этом изображение называют проекцией предмета. Слово проекция возникло от латинского projection – бросание вперед. В данном случае мы смотрим (бросаем взгляд) и отображаем то, что видим, на плоскости листа.
Как получаются проекции? Рассмотрите такой пример. Возьмем в пространстве произвольную точку А и какую-нибудь плоскость Н (Слайд 3) . Проведем через точку А прямую так, чтобы она пересекала плоскость Н в некоторой точке а. Тогда точка а будет проекцией точки А. Плоскость, на которой получается проекция, называется плоскостью проекций. Прямую Аа называют проецирующим лучом. С его помощью точка А проецируется на плоскость H. Указанным способом могут быть построены проекции всех точек любой пространственной фигуры.
Следовательно, чтобы построить проекцию какой-либо фигуры на плоскости, необходимо через точки этой фигуры провести воображаемые проецирующие лучи до их пересечения с плоскостью. Проекции всех точек фигуры образуют проекцию заданной фигуры. Будем в дальнейшем обозначать точки, взятые на предмете, прописными буквами, а их проекции - строчными.
А теперь запишем, что же мы называем проецирования. (Слайд 4)

  • Проецирование – это процесс построения проекции предмета.
  • Плоскость проекции – плоскость на которой получается проекция.
  • Проецирующий луч – прямая с помощью которой строится проекция вершин, граней, ребер.

В зависимости от взаимного размещения проецирующих лучей в пространстве различают центральное и параллельное проецирования (Слайд 5 ). Параллельное проецирование подразделяется на два вида: прямоугольное и косоугольное.

Рассмотрим центральное проецирование (Слайд 6). Запишем определение:

  • Если проецирующие лучи исходят из одной точки, то такое проецирование называется центральным.
  • Точка из которой выходит проекция – центр проецирования.

Учитель: (Ответы учащихся)

Пример: фотоснимки и кинокадры, тени, отброшенные от предмета лучами электрической лампочки.
Особенность: проекция больше чем исходная фигура.

Учитель: Познакомимся с параллельным проецированием (Слайд 7).
Запишем определение:

  • Если проецирующие лучи параллельны друг другу, то такое проецирование называется параллельным.

Учитель: Попробуйте сами привести примеры такого вида проецирования. (Ответы учащихся)

Учитель: Примером параллельной проекции можно условно считать солнечные тени предметов, а также струи дождя.
Параллельное проецирование, как мы уже говорили, бывает прямоугольным и косоугольным (Слайд 8).
Рассмотрим как получаются при таких видах проецирования проекции на плоскости и запишем определение:

  • Косоугольное проецирование – проецирующие лучи параллельны и падают на плоскость проекций под острым углом.
  • Прямоугольное проецирование – проецирующие лучи параллельны и падают на плоскость проекций под углом 90 градусов.

Вывод: В науке, технике, производстве применяют параллельные проекции, так как они достаточно наглядны.
Теоретические основы метода прямоугольного проецирования были разработаны в конце XVIII века французским ученым Гаспаром Монжем.

Проецирование на одну плоскость проекций

Рассмотрим вопрос о получении прямоугольной проекции предмета, т.е. проецирование предмета на одну плоскость проекций (Слайд 9).
Выберем вертикальную плоскость проекций и обозначим ее буквой V. Такую плоскость, расположенную перед зрителями называют фронтальной (от французского слова фронталь , что означает лицом к зрителю). Расположим предмет перед плоскостью так, чтобы его грань оказалась параллельной фронтальной плоскости проекций, т.к. тогда при прямоугольном проецировании не изменятся размеры ширины и высоты предмета, не будут искажаться углы между прямыми линиями. В результате на фронтальной плоскости проекций мы получили фронтальную проекцию предмета.
Запишем определение:

  • Плоскость, расположенную перед зрителем, называют фронтальной, и обозначают буквой V.
  • Предмет располагают перед плоскостью так, что две его поверхности оказались параллельными этой плоскости и спроецировались без искажения.

Обобщение: По полученной проекции мы сможем судить лишь о двух измерениях предмета – высоте и длине, о диаметре отверстия.
А какова толщина предмета? (Вопрос к ученикам).
Пользуясь полученной проекцией, мы этого сказать не можем. Что бы по такому чертежу судить о форме детали, его иногда дополняют указанием толщины (S). (Слайд 10).

4. Закрепление материала

Рассмотрим изображения на слайде. (Слайд 11).
Скажите, какое «проецирование» дали струи воды в каждом случае?

  • Центральное
  • Параллельное прямоугольное

Учитель: Весь материал урока мы прошли, давайте проверим себя, как мы его усвоили.
(Слайд 12). На слайде вы видите таблицу, в которой даны новые понятия. Ваша задача правильно распределить понятия и определения их.
Проверим ваши ответы (по щелчку мыши на слайде в ячейках появляются правильные ответы).

№ п/п Новые понятия Определение
1 Проекция. Изображение на плоскости.
2 Плоскость проекций. Плоскость, на которой получается проекция.
3 Проецирующий луч. Прямая, с помощью которой объект проецируется на плоскость.
4 Центральное проецирование. Проецирование, при котором проецирующие лучи выходят из одной точки.
5 Параллельное проецирование. Проецирование, при котором проецирующие лучи параллельны друг другу.
6 Прямоугольное проецирование. Проецирование, при котором проецирующие лучи падают на плоскость проекций под прямым углом.
7 Косоугольное проецирование. Проецирование, при котором проецирующие лучи падают на плоскость проекций не под прямым углом.
Проецирующий луч, центральное проецирование, проекция, косоугольное проецирование, плоскость проекций, параллельное проецирование, прямоугольное проецирование.

5. Заключительная часть (1 мин.)

Учитель: С поставленными целями и задачами мы справились. (Оценивание тех, кто хорошо работал) Запишите домашнее задание.(Слайд 13)

6. Домашнее задание: учебник страницы 32-37.

Учитель: Урок окончен, спасибо, до свидания.

На какой-либо поверхности (плоской, цилиндрической, сфериче­ской, конической) с помощью проецирующих лучей.

Проецирование может осуществляться различными методами.

Методом проецирования называется способ получения изо­бражений с помощью определенной, присущей только ему сово­купности средств проецирования (центра проецирования, на­правления проецирования, проецирующих лучей, плоскостей (по­верхностей) проекций), которые определяют результат - соот­ветствующие проекционные изображения и их свойства.

Для того чтобы получить любое изображение предмета на плоскости, необходимо расположить его перед плоскостью про­екций и из центра проецирования провести воображаемые про­ецирующие лучи, пронизывающие каждую точку поверхности предмета. Пересечение этих лучей с плоскостью проекций дает множество точек, совокупность которых создает изображение предмета, называемое его проекцией. Это общее определение рассмотрим на примере проецирования точки, прямой, треуголь­ника и треугольной призмы на плоскость проекций H.

Проецирование точки (рис. 52, а). Возьмем в пространстве произвольную точку А и расположим ее над плоскостью проек­ций H. Проведем через точку А проецирующий луч так, чтобы он пересек плоскость H в некоторой точке а, которая будет являться проекцией точки А. (Здесь и в дальнейшем будем обозначать точки, взятые на предмете, прописными буквами чертежного шрифта, а их проекции - строчными.) Как видим, методом проецирования можно получить проекцию нульмерного объекта- точки.

Проецирование прямой (рис. 52, б). Представим себе прямую как совокупность точек. Используя метод проецирования, прове­дем множество параллельных проецирующих лучей через точки, из которых состоит прямая, до пересечения их с плоскостью про­екций. Полученные проекции точек составят проекцию заданной прямой - одномерного объекта.

Проецирование треугольника (рис. 52, в). Расположим тре­угольник ABC перед плоскостью H. Приняв вершины треуголь­ника за отдельные точки А, В, С, спроецируем каждую из них на плоскость проекций. Получим проекции вершин треугольника - a, b, с. Последовательно соединив проекции вершин (а и b; b и с; с и а), получим проекции сторон треугольника (ab, bc, ca). Часть плоскости, ограниченная изображением сторон треугольника abc, будет являться проекцией треугольника ABC на плоскости H Следовательно, методом проецирования можно получить проек­цию плоской фигуры - двухмерного объекта.

Проецирование призмы (рис. 52, г). Для примера возьмем наклонную треугольную призму и спроецируем ее на плоскость проекций H. В результате проецирования призмы на плоскость H получают изображения (проекции) ее оснований - треуголь­ников - abc и a 1 b 1 c 1 и боковых граней - прямоугольников abb 1 a 1 и bcc 1 b 1 . Так в результате проецирования на плоскости H получают проекцию треугольной призмы. Следовательно, с помощью метода проецирования можно отобразить любой трех­мерный объект.

Рис. 52. Проецирование нуль-, одно-, двух- и трехмерных объектов: а - точка;
б - прямая; в - треугольник; г - призма

Таким образом, методом проецирования можно отобразить на плоскости любой объект (нуль-, одно-, двух- и трехмерный). В этом отношении метод проецирования является универсальным.

Сущность проецирования легче понять, если вспомнить получение изображения в кинотеатре: световой поток лампы кинопроектора проходит через пленку и отбрасывает изображение на полотно. При этом изображение на киноэкране будет в несколько раз больше изображения на кинопленке.

Существует центральное (или перспективное) и параллельное проецирование. Параллельное проецирование бывает прямо­угольным (ортогональным) или косоугольным (табл. 5).

5. Методы проецирования


Центральное проецирование (перспектива) характеризуется тем, что проецирующие лучи исходят из одной точки (S), назы­ваемой центром проецирования . Полученное изображение назы­вается центральной проекцией .

Перспектива передает внешнюю форму предмета так, как воспринимает его наше зрение.

При центральном проецировании, если предмет находит­ся между центром проецирования и плоскостью проекций, размеры проекции будут больше оригинала; если предмет расположен за плоскостью проекций, то размеры проекции станут меньше действи­тельных размеров изображаемого предмета.

Параллельное проецирование характеризуется тем, что про­ецирующие лучи параллельны между собой. В этом случае предполагается, что центр проецирования (S) удален в бесконеч­ность.

Изображения, полученные в результате параллельного про­ецирования, называются параллельными проекциями.

Если проецирующие лучи параллельны между собой и пада­ют на плоскость проекций под прямым углом, то проецирование называется прямоугольным (ортогональным), а полученные проекции - прямоугольными (ортогональными). Если проеци­рующие лучи параллельны между собой, но падают на плоскость Проекций под углом, отличным от прямого, то проецирование на­зывается косоугольным, а полученная проекция - косоугольной. При проецировании объект располагают перед плоскостью про­екций таким образом, чтобы на ней получилось изображение, несущее наибольшую информацию о форме.

2) *если проецирующие лучи перпендикулярны плоскости проекции

3) если проецирующие лучи исходят из одной точки

4) если проецирующие лучи направлены в разные стороны

Как иногда называют центральную проекцию?

1) косоугольной

2) *перспективой

3) прямоугольной

4) параллельной

10. Плоскость, расположенную перед зрителем называют:

1) горизонтальной

2) профильной

3) *фронтальной

4) центральной

Какое проецирование называется центральным?

1) если проецирующие лучи параллельны друг другу

2) *если проецирующие лучи исходят из одной точки

3) если проецирующие лучи перпендикулярны

4) если проецирующие лучи расходятся

Что называют сечением?

1) проецирование фигуры, полученной пересечением предмета плоскостью

2) *изображение фигуры, полученной пересечением предмета плоскостью

3) отображение фигуры, полученной пересечением предмета плоскостью

4) геометрическая фигура, полученная соединением

13. Какое изображение называют разрезом:

1) *изображение предмета, мысленно рассеченного плоскостью

2) отображение фигуры

3) проецирование предмета, мысленно рассеченного плоскостью

4) изображение фигуры, соединенной с плоскостью

Какой разрез называется местным?

1) *разрез, позволяющий показать внутреннее строение нужной нам части детали

2) разрез, позволяющий показать внешнее строение детали

3) разрез, позволяющий показать половину детали

4) разрез, выполненный по плоскости симметрии детали

Какой линией на чертежах разделяют часть вида и часть разреза?

1) штриховой линией

2) толстой линией

3) тонкой линией

4) *штрихпунктирной линией

16. Прямоугольная изометрическая проекция выполняется в осях, расположенных под углами друг к другу:

1) *120, 120, 120 градусов

2) 135, 135, 90 градусов

3) 180, 90, 90 градусов

4) 130, 130, 100 градусов

17. Какую линейку используют для вычерчивания эллипса:

1) рейсшина

2) *лекала

3) угольник

4) транспортир

18. В результате пересечения конуса плоскостью, параллельной его основанию, получается:

1) усеченная пирамида

2) усеченный треугольник

3) *усеченный конус

4) усеченный круг

19. Тело, образованное при вращении круга вокруг одного из его диаметров, называют:

1) треугольником

2) конусом

4) эллипсом

20. Согласно ГОСТ 2.312-72 условный знак обозначает:

1) шов по замкнутому контуру

2) *шов со снятым усилением

3) прерывистый шов с шахматным расположением участков



4) шов, имеющий плавный переход к основному металлу

Б5. Электротехника с основами промышленной электроники

На каком законе базируется принцип работы сварочных трансформаторов?

1) *на законе электромагнитной индукции

2) на законе Ома, где I=U/R

3) на законе магнитной цепи

4) на законе Кирхгофа

Какие трансформаторы позволяют плавно изменять напряжение на выходных зажимах?

1) силовые трансформаторы

2) измерительные трансформаторы

3) автотрансформаторы

4) *сварочные трансформаторы

3. Электронные устройства, преобразующие постоянное напряжение в переменное, называются:

1) выпрямителями

2) *инверторами

3) конверторами

4) трансформаторы

Какой ток называют постоянным?

1) ток изменяющийся по величине и направлению

2) *ток не изменяющийся по величине и направлению

3) ток изменяющийся по величине

4) ток изменяющийся по направлению

Проецирование (лат. Projicio – бросаю вперёд) – процесс получения изображения предмета (пространственного объекта) на какой-либо поверхности с помощью световых или зрительных лучей (лучей, условно соединяющих глаз наблюдателя с какой-либо точкой пространственного объекта), которые называются проецирующими.

Известны два метода проецирования: центральное и параллельное .

Центральное проецирование заключается в проведении через каждую точку (А, В, С ,…) изображаемого объекта и определённым образом выбранный центр проецирования (S ) прямой линии (SA , SB , >… — проецирующего луча ).

Рисунок 1.1 – Центральное проецирование

Введём следующие обозначения (Рисунок 1.1):

S – центр проецирования (глаз наблюдателя);

π 1 – плоскость проекций;

A, B, C

SA , SB – проецирующие прямые (проецирующие лучи).

Примечание : левой клавишей мыши можно переместить точку в горизонтальной плоскости, при щелчке на точке левой клавишей мыши, изменится направление перемещения и можно будет ее переместить по вертикали.

Центральной проекцией точки называется точка пересечения проецирующей прямой, проходящей через центр проецирования и объект проецирования (точку), с плоскостью проекций.

Свойство 1 . Каждой точке пространства соответствует единственная проекция, но каждой точке плоскости проекций соответствует множество точек пространства, лежащих на проецирующей прямой.

Докажем это утверждение.

На рисунке 1.1: точка А 1 – центральная проекция точки А на плоскости проекций π 1 . Но эту же проекцию могут иметь все точки, лежащие на проецирующей прямой. Возьмём на проецирующей прямой SA точку С . Центральная проекция точки С (С 1) на плоскости проекций π 1 совпадает с проекцией точки А (А 1):

  1. С SA ;
  2. SC ∩ π 1 =C 1 → C 1 ≡ A 1 .

Следует вывод, что по проекции точки нельзя судить однозначно о её положении в пространстве.

Чтобы устранить эту неопределенность, т.е. сделать чертеж обратимым , введём еще одну плоскость проекций (π 2) и ещё один центр проецирования (S 2) (Рисунок 1.2).

Рисунок 1.2 – Иллюстрация 1-го и 2-го свойств

Построим проекции точки А на плоскости проекций π 2 . Из всех точек пространства только точка А имеет своими проекциями А 1 на плоскость π 1 и А 2 на π 2 одновременно. Все другие точки лежащие на проецирующих лучах будут иметь хотя бы одну отличную проекцию от проекций точки А (например, точка В ).

Свойство 2 . Проекция прямой есть прямая.

Докажем данное свойство.

Соединим точки А и В между собой (Рисунок 1.2). Получим отрезок АВ , задающий прямую. Треугольник ΔSAB задает плоскость, обозначенную через σ. Известно, что две плоскости пересекаются по прямой: σ∩π 1 =А 1 В 1 , где А 1 В 1 – центральная проекция прямой, заданной отрезком АВ .

Метод центрального проецирования – это модель восприятия изображения глазом, применяется главным образом при выполнении перспективных изображений строительных объектов, интерьеров, а также в кинотехнике и оптике. Метод центрального проецирования не решает основной задачи, стоящей перед инженером – точно отразить форму, размеры предмета, соотношение размеров различных элементов.

1.2. Параллельное проецирование

Рассмотрим метод параллельного проецирования. Наложим три ограничения, которые позволят нам, пусть и в ущерб наглядности изображения, получить чертёж более удобным для использования его на практике:

  1. Удалим оба центра проекции в бесконечность. Таким образом, добьемся того, что проецирующие лучи из каждого центра станут параллельными, а, следовательно, соотношение истинной длины любого отрезка прямой и длины его проекции будут зависеть только от угла наклона этого отрезка к плоскостям проекций и не зависят от положения центра проекций;
  2. Зафиксируем направление проецирования относительно плоскостей проекций;
  3. Расположим плоскости проекций перпендикулярно друг другу, что позволит легко переходить от изображения на плоскостях проекций к реальному объекту в пространстве.

Таким образом, наложив эти ограничения на метод центрального проецирования, мы пришли к его частному случаю – методу параллельного проецирования (Рисунок 1.3).Проецирование, при котором проецирующие лучи, проходящие через каждую точку объекта, параллельно выбранному направлению проецирования P , называется параллельным.

Рисунок 1.3 – Метод параллельного проецирования

Введём обозначения:

Р – направление проецирования;

π 1 – горизонтальная плоскость проекций;

A, B – объекты проецирования – точки;

А 1 и В 1 – проекции точек А и В на плоскость проекций π 1 .

Параллельной проекцией точки называется точка пересечения проецирующей прямой, параллельной заданному направлению проецирования Р , с плоскостью проекций π 1 .

Проведём через точки А и В проецирующие лучи, параллельные заданному направлению проецирования Р . Проецирующий луч проведённый через точку А пересечёт плоскость проекций π 1 в точке А 1 . Аналогично проецирующий луч, проведённый через точку В пересечет плоскость проекций в точке В 1 . Соединив точки А 1 и В 1 , получим отрезок А 1 В 1 – проекция отрезка АВ на плоскость π 1 .

1.3. Ортогональное проецирование. Метод Монжа

Если направление проецирования Р перпендикулярно плоскости проекций p 1 , то проецирование называется прямоугольным (Рисунок 1.4),или ортогональным (греч. ortos – прямой, gonia – угол), если Р не перпендикулярно π 1 , то проецирование называется косоугольным .

Четырехугольник АА 1 В 1 В задаёт плоскость γ, которая называется проецирующей, поскольку она перпендикулярна к плоскости π 1 (γ⊥π 1). В дальнейшем будем использовать только прямоугольное проецирование.

Рисунок 1.4 – Ортогональное проецирование Рисунок 1.5- Монж, Гаспар (1746-1818)

Основоположником ортогонального проецирования считается французский учёный Гаспар Монж (Рисунок 1.5).

До Монжа строители, художники и учёные обладали довольно значительными сведениями о проекционных способах, и, всё же, только Гаспар Монж является творцом начертательной геометрии как науки.

Гаспар Монж родился 9 мая 1746 года в небольшом городке Боне (Бургундия) на востоке Франции в семье местного торговца. Он был старшим из пяти детей, которым отец, несмотря на низкое происхождение и относительную бедность семьи, постарался обеспечить самое лучшее образование из доступного в то время для выходцев из незнатного сословия. Его второй сын, Луи, стал профессором математики и астрономии, младший — Жан также профессором математики, гидрографии и навигации. Гаспар Монж получил первоначальное образование в городской школе ордена ораторианцев. Окончив её в 1762 году лучшим учеником, он поступил в колледж г. Лиона, также принадлежавший ораторианцам. Вскоре Гаспару доверяют там преподавание физики. Летом 1764 года Монж составил замечательный по точности план родного города Бона. Необходимые при этом способы и приборы для измерения углов и вычерчивания линий были изобретены самим составителем.

Во время обучения в Лионе получил предложение вступить в орден и остаться преподавателем колледжа, однако, вместо этого, проявив большие способности к математике, черчению и рисованию, сумел поступить в Мезьерскую школу военных инженеров, но (из-за происхождения) только на вспомогательное унтер-офицерское отделение и без денежного содержания. Тем не менее, успехи в точных науках и оригинальное решение одной из важных задач фортификации (о размещении укреплений в зависимости от расположения артиллерии противника) позволили ему в 1769 году стать ассистентом (помощником преподавателя) математики, а затем и физики, причём уже с приличным жалованием в 1800 ливров в год.

В 1770 году в возрасте 24-х лет Монж занимает должность профессора одновременно по двум кафедрам — математики и физики, и, кроме того, ведёт занятия по резанию камней. Начав с задачи точной резки камней по заданным эскизам применительно к архитектуре и фортификации, Монж пришёл к созданию методов, обобщённых им впоследствии в новой науке – начертательной геометрии, творцом которой он по праву считается. Учитывая возможность применения методов начертательной геометрии в военных целях при строительстве укреплений, руководство Мезьерской школы не допускало открытой публикации вплоть до 1799 года, книга вышла под названием Начертательная геометрия (Géométrie descriptive ) (стенографическая запись этих лекций была сделана в 1795 году). Изложенный в ней подход к чтению лекций по этой науке и выполнению упражнений сохранился до наших дней. Еще один значительный труд Монжа – Приложение анализа к геометрии (L’application de l’analyse à la géometrie , 1795) – представляет собой учебник аналитической геометрии, в котором особый акцент делается на дифференциальных соотношениях.

В 1780 был избран членом Парижской академии наук, в 1794 стал директором Политехнической школы. В течение восьми месяцев занимал пост морского министра в правительстве Наполеона, заведовал пороховыми и пушечными заводами республики, сопровождал Наполеона в его экспедиции в Египет (1798–1801). Наполеон пожаловал ему титул графа, удостоил многих других отличий.

Метод изображения объектов по Монжу заключается в двух основных моментах:

1. Положение геометрического объекта в пространстве, в данном примере точки А , рассматривается относительно двух взаимно перпендикулярных плоскостей π 1 и π 2 (Рисунок 1.6).

Они условно разделяют пространство на четыре квадранта. Точка А расположена в первом квадранте. Декартова система координат послужила основой для проекций Монжа. Монж заменил понятие осей проекций на линию пересечения плоскостей проекций (координатные оси) и предложил совместить координатные плоскости в одну путем поворота их вокруг координатных осей.

Рисунок 1.6 – Модель построения проекций точки

π 1 – горизонтальная (первая) плоскость проекций

π 2 – фронтальная (вторая) плоскость проекций

π 1 ∩π 2 — ось проекций (обозначим π 2 /π 1)

Рассмотрим пример проецирования точки А на две взаимно перпендикулярные плоскости проекций π 1 и π 2 .

Опустим из точки А перпендикуляры (проецирующие лучи) на плоскости π 1 и π 2 и отметим их основания, то есть точки пересечения этих перпендикуляров (проецирующих лучей) с плоскостями проекций. А 1 – горизонтальная (первая) проекция точки А; А 2 – фронтальная (вторая) проекция точки А; АА 1 и АА 2 – проецирующие прямые. Стрелки показывают направление проецирования на плоскости проекций π 1 и π 2 . Такая система позволяет однозначно определить положение точки относительно плоскостей проекций π 1 и π 2:

АА 1 ⊥π 1

А 2 А 0 ⊥π 2 /π 1 АА 1 = А 2 А 0 — расстояние от точки А до плоскости π 1

АА 2 ⊥π 2

А 1 А 0 ⊥π 2 /π 1 АА 2 = А 1 А 0 — расстояние от точки А до плоскости π 2

2. Совместим поворотом вокруг оси проекций π 2 /π 1 плоскости проекций в одну плоскость (π 1 с π 2), но так, чтобы изображения не накладывались друг на друга, (в направлении α, Рисунок 1.6), получим изображение, называемое прямоугольным чертежом (Рисунок 1.7):

Рисунок 1.7 – Ортогональный чертеж

Прямоугольный или ортогональный носит название эпюр Монжа .

Прямая А 2 А 1 называется линией проекционной связи , которая соединяет разноимённые проекции точки (А 2 — фронтальную и А 1 — горизонтальную) всегда перпендикулярна оси проекций (оси координат) А 2 А 1 ⊥π 2 /π 1 . На эпюре отрезки, обозначенные фигурными скобками, представляют собой:

  • А 0 А 1 – расстояние от точки А до плоскости π 2 , соответствующее координате y А;
  • А 0 А 2 – расстояние от точки А до плоскости π 1 , соответствующее координате z А.

1.4. Прямоугольные проекции точки. Свойства ортогонального чертежа

1. Две прямоугольные проекции точки лежат на одной линии проекционной связи, перпендикулярной к оси проекций.

2. Две прямоугольные проекции точки однозначно определяют её положение в пространстве относительно плоскостей проекций.

Убедимся в справедливости последнего утверждения, для чего повернём плоскость π 1 в исходное положение (когда π 1 ⊥π 2). Для того, чтобы построить точку А необходимо из точек А 1 и А 2 восстановить проецирующие лучи, а фактически – перпендикуляры к плоскостям π 1 и π 2 , соответственно. Точка пересечения этих перпендикуляров фиксирует в пространстве искомую точку А . Рассмотрим ортогональный чертеж точки А (Рисунок 1.8).

Рисунок 1.8 – Построение эпюра точки

Введём третью (профильную) плоскость проекций π 3 перпендикулярную π 1 и π 2 (задана осью проекций π 2 /π 3).

Расстояние от профильной проекции точки до вертикальной оси проекций А ‘ 0 A 3 позволяет определить расстояние от точки А до фронтальной плоскости проекций π 2 . Известно, что положение точки в пространстве можно зафиксировать относительно декартовой системы координат с помощью трёх чисел (координат) A (X A ; Y A ; Z A) или относительно плоскостей проекций с помощью её двух ортогональных проекций (A 1 =(X A ; Y A); A 2 =(X A ; Z A)). На ортогональном чертеже по двум проекциям точки можно определить три её координаты и, наоборот, по трём координатам точки, построить её проекции (Рисунок 1.9, а и б).

Рисунок 1.9 – Построение эпюра точки по её координатам

По расположению на эпюре проекций точки можно судить о её расположении в пространстве:

  • А А 1 лежит под осью координат X , а фронтальная — А 2 – над осью X , то можно говорить, что точка А принадлежит 1-му квадранту;
  • если на эпюре горизонтальная проекция точки А А 1 лежит над осью координат X , а фронтальная — А 2 – под осью X , то точка А принадлежит 3-му квадранту;
  • А А 1 и А 2 лежат над осью X , то точка А принадлежит 2-му квадранту;
  • если на эпюре горизонтальная и фронтальная проекции точки А А 1 и А 2 лежат под осью X , то точка А принадлежит 4-му квадранту;
  • если на эпюре проекция точки совпадает с самой точкой, то значит – точка принадлежит плоскости проекций;
  • точка, принадлежащая плоскости проекций или оси проекций (оси координат), называется точкой частного положения .

Для определения в каком квадранте пространства расположена точка, достаточно определить знак координат точки.

Зависимости квадранта положения точки и знаков координат
X Y Z
I + + +
II + +
III +
IV + +

Упражнение

Построить ортогональные проекции точки с координатами А (60, 20, 40) и определить в каком квадранте расположена точка.

Решение задачи: по оси OX отложить значение координаты X A =60 , затем через эту точку на оси OX восстановить линию проекционной связи, перпендикулярную к OX , по которой вверх отложить значение координаты Z A =40 , а вниз – значение координаты Y A =20 (Рисунок 1.10). Все координаты положительные, значит точка расположена в I квадранте.

Рисунок 1.10 – Решение задачи

1.5. Задачи для самостоятельного решения

1. По эпюру определите положение точки относительно плоскостей проекций (Рисунок 1.11).

Рисунок 1.11

2. Достройте недостающие ортогональные проекции точек А , В , С на плоскости проекций π 1 , π 2 , π 3 (Рисунок 1.12).

Рисунок 1.12

3. Постройте проекции точки:

  • Е , симметричной точке А относительно плоскости проекций π 1 ;
  • F , симметричной точке В относительно плоскости проекций π 2 ;
  • G , симметричной точке С относительно оси проекций π 2 /π 1 ;
  • H , симметричной точке D относительно биссекторной плоскости второго и четвертого квадрантов.

4. Постройте ортогональные проекции точки К , расположенной во втором квадранте и удаленной от плоскостей проекций π 1 на 40 мм, от π 2 — на 15 мм.

1. Центральное проецирование (рис. 1.1). Считается, что проецирование производится с помощью прямолинейных лучей, исходящих из одной точки пространства - центра проецирования.

Такое проецирование является необратимым: точка пространства определяет положение её проекции, в то время как проекция точки не определяет положение этой точки в пространстве, так как проекция может принадлежать одновременно множеству точек, расположенных на проецирующем луче.

2. Параллельное проецирование. Проецирование производится с помощью параллельных лучей. При этом подразумевается, что плоскость проекций может составлять с проецирующими лучами любой угол. Этот вид проецирования является также необратимым.

3. Прямоугольное проецирование . Этот способ является частным случаем параллельного проецирования, когда проецирующие лучи перпендикулярны плоскости проекций. Этот вид проецирования принят в машиностроении для построения изображений на чертеже. Однако необратимость проецирования сохраняется.

1.5. Свойства ортогонального проецирования

1. Любая точка пространства имеет на заданной плоскости единственную проекцию.

2. Проекция прямой линии на плоскость есть прямая линия.

3. Если некоторая точка принадлежит некоторой прямой, то и проекция заданной точки принадлежит проекции заданной прямой.

4. Если точка в пространстве делит отрезок в данном отношении, то проекция этой точки делит проекцию заданного отрезка в том же отношении.

5. Проекции параллельных прямых линий – параллельны.

6. При параллельном переносе плоскостей проекций (или фигуры) проекция фигуры не изменяется.

7. Точка пересечения проекций пересекающихся прямых является проекцией точки пересечения этих прямых.

8. Если хотя бы одна из сторон прямого угла параллельна данной плоскости проекций, то он проецируется на эту плоскость без искажения.

9. Длина отрезка, в общем случае, больше длины его проекции.

10.Если плоскость окружности не параллельна плоскости проекций, то проекция этой окружности есть эллипс.

11.Геометрическую фигуру называют проецирующей, если одна из её проекций имеет на единицу меньшее измерение. Например, прямая линия, перпендикулярная плоскости проекций, проецируется на неё в виде точки (рис. 1.2).

1.6. Разновидности графических задач

Все графические задачи, встречающиеся при построении и чтении изображений, условно можно разделить на следующие группы.

ПЗ - позиционные задачи, которые связаны с определением по чертежу взаимного расположения геометрических фигур и их элементов (точек и линий):

ПЗ.1 - разновидность позиционных задач, связанных с определением по чертежу порядка взаимного расположения объектов проецирования:левее, правее, дальше, ближе, выше, ниже.

ПЗ.2 - задачи, связанные с определением по чертежу принадлежности геометрическим фигурам их элементов: точек или линий.

ПЗ.3 - задачи, связанные с определением по чертежу результатов взаимного пересечения геометрических фигур. Эти задачи получили название: главные позиционные задачи (ГПЗ ).

МЗ - метрические задачи, которые связаны с определением по чертежу мерных характеристик проецируемых объектов (длин, расстояний, величин углов, площадей).

Всё многообразие МЗ решается с использованием двух базовых задач, получивших название основных метрических задач (ОМЗ ):

ОМЗ.1 -задачи на определение по чертежу длины отрезка.

ОМЗ.2 -задачи на определение по чертежу перпендикулярности прямых линий между собой.

КомЗ - комплексные задачи, содержащие в себе несколько задач, как позиционных, так и метрических.

КонЗ - конструктивные задачи, которые связаны с построением чертежа геометрических фигур и их элементов, отвечающих определённым заданным конструктивным условиям (например, построить чертёж поверхности, все точки которой равноотстояли бы от заданной прямой линии).