Мембранный транспорт. Транспорт веществ через мембрану

text_fields

text_fields

arrow_upward

У животных с замкнутой сосудистой системой внеклеточная жид­кость условно разделяется на два компонента:

1) Интерстициальная жидкость
2) Циркулирующая плазма крови.

Интерстициальная жид­кость представляет собой часть внеклеточной жидкости, которая рас­положена вне сосудистой системы и омывает клетки.

Около 1/3 общей воды тела составляет внеклеточная жидкость, остальные 2/3 - жидкость внутриклеточная.

Концентрации электролитов и коллоидных веществ существенно отличаются в плазме, интерстициальной и внутриклеточной жидкос­тях. Наиболее выраженные различия состоят в относительно низком содержании белков-анионов в интерстициальной жидкости, в срав­нении с внутриклеточной жидкостью и плазмой крови, и более высоких концентрациях натрия и хлора в интерстициальной, а ка­лия во внутриклеточной жидкости.

Неодинаковый состав различных жидких сред тела в значительной степени обусловлен природой разделяющих их барьеров. Клеточные мембраны отделяют внутриклеточную от внеклеточной жидкости, стенки капилляров - интерстициальную жидкость от плазмы. Пере­нос веществ через эти барьеры может происходить пассивно за счет диффузии, фильтрации и осмоса, а также посредством активного транспорта.

Пассивный транспорт

text_fields

text_fields

arrow_upward

Рис. 1.12 Виды пассивного и активного транспорта веществ через мембрану.

Схематически основные виды транспорта веществ через мембрану клеток представлены на рис.1.12

Рис.1.12 Виды пассивного и активного транспорта веществ через мембрану.

3 — облегченная диффузия,

Пассивный перенос веществ через клеточные мембраны не тре­бует затраты энергии метаболизма.

Виды пассивного транспорта

text_fields

text_fields

arrow_upward

Виды пассивного транспорта веществ:

  • Простая диффузия
  • Осмос
  • Диффузия ионов
  • Облегченная диффузия

Простая диффузия

text_fields

text_fields

arrow_upward

Диффузия представляет собой процесс, при помощи которого газ или растворенные вещества распространяются и заполняют весь доступный объем.

Молекулы и ионы, растворенные в жидкости, находятся в хаоти­ческом движении, сталкиваясь друг с другом, молекулами раствори­теля и клеточной мембраной. Столкновение молекулы или иона с мембраной может иметь двоякий исход: молекула либо «отскочит» от мембраны, либо пройдет через нее. Когда вероятность последнего события высока, то говорят, что мембрана проницаема для данного вещества.

Если концентрация вещества по обе стороны мембраны различна, возникает поток частиц, направленный из более концентрированно­го раствора в разбавленный. Диффузия происходит до тех пор, пока концентрация вещества по обе стороны мембраны не выравнивается. Через клеточную мембрану проходят как хорошо растворимые в воде (гидрофильные) вещества, так и гидрофобные, плохо или совсем в ней нерастворимые.

Гидрофобные, хорошо растворимые в жирах вещества, диффунди­руют благодаря растворению в липидах мембраны.

Вода и вещества хорошо в ней растворимые проникают через временные дефекты углеводородной области мембраны, т.н. кинки, а также через поры, постоянно существующие гидрофильные участки мембраны.

В случае, когда клеточная мембрана непроницаема или плохо про­ницаема для растворенного вещества, но проницаема для воды, она подвергается действию осмотических сил. При более низкой кон­центрации вещества в клетке, чем в окружающей среде, клетка сжи­мается; если концентрация растворенного вещества в клетке выше, вода устремляется внутрь клетки.

Осмос

text_fields

text_fields

arrow_upward

Осмос - движение молекул воды (растворителя) через мембрану из области меньшей в область большей концентрации растворенного вещества.

Осмотическим давлением называется то наименьшее давление, которое необходимо приложить к раствору для того, чтобы предотвратить перетекание растворителя через мембрану в раствор с большей концентрацией вещества.

Молекулы растворителя, как и молекулы любого другого вещества, приводятся в движение силой, возникающей вследствие разности химических потенциалов. Когда какое-либо вещество растворяется, химический потенциал растворителя уменьшается. Поэтому в облас­ти, где концентрация растворенного вещества выше, химический по­тенциал растворителя ниже. Таким образом, молекулы растворителя, перемещаясь из раствора с меньшей в раствор с большей концент­рацией, движутся в термодинамическом смысле «вниз», «по гради­енту».

Объем клеток в значительной степени регулируется количеством содержащейся в них воды. Клетка никогда не находится в состо­янии полного равновесия с окружающей средой. Непрерывное движение молекул и ионов через плазматическую мембрану изменяет концентрацию веществ в клетке и, соответственно, осмотическое давление ее содержимого. Если клетка секретирует какое-либо вещество, то для поддержания неизменной величины осмотического давления она должна либо выделять соответствующее количество воды, либо поглощать эквивалентное количество иного вещества. Поскольку среда, окружающая большинство клеток гипотонична, для клеток важно предотвратить поступление в них больших количеств воды. Поддержание же постоянства объема даже в изотонической среде требует расхода энергии, поэтому в клетке концентрация ве­ществ неспособных к диффузии (белков, нуклеиновых кислот и т.д.) выше, чем в околоклеточной среде. Кроме того, в клетке постоянно накапливаются метаболиты, что нарушает осмотическое равновесие. Необходимость расходования энергии для поддержания постоянства объема легко доказывается в экспериментах с охлаждением или ингибиторами метаболизма. В таких условиях клетки быстро набу­хают.

Для решения «осмотической проблемы» клетки используют два способа: они откачивают в интерстиций компоненты своего содер­жимого или поступающую в них воду. В большинстве случаев клет­ки используют первую возможность - откачку веществ, чаше ионов, используя для этого натриевый насос (см.ниже).

В целом объем клеток, не имеющих жестких стенок, определяется тремя факторами:

1) количеством содержащихся в них и неспособ­ных к проникновению через мембрану веществ;
2) концентрацией в интерстиций соединений, способных проходить через мембрану;
3) соотношением скоростей проникновения и откачки веществ из клетки.

Большую роль в регуляции водного баланса между клеткой и окружающей средой играет эластичность плазматической мембраны, создающей гидростатическое давление, препятствующее поступлению воды в клетку. При наличии разности гидростатических давлений в двух областях среды вода может фильтроваться через поры барьера, разделяющего эти области.

Явления фильтрации лежат в основе многих физиологических про­цессов, таких, например, как образование первичной мочи в нефроне, обмен воды между кровью и тканевой жидкостью в капиллярах.

Диффузия ионов

text_fields

text_fields

arrow_upward

Диффузия ионов происходит, в основном, через специализированные белковые структуры мембраны - ионные ка­ налы, когда они находятся в открытом состоянии. В зависимости от вида ткани клетки могут иметь различный набор ионных каналов.

Различают натриевые, калиевые, кальциевые, натрий-кальциевые и хлорные каналы . Перенос ионов по каналам имеет ряд особеннос­тей, отличающих его от простой диффузии. В наибольшей степени это касается кальциевых каналов.

Ионные каналы могут находиться в открытом, закрытом и инактивированном состояниях. Переход канала из одного состояния в другое управляется или изменением электрической разности потен­циалов на мембране, или взаимодействием физиологически активных веществ с рецепторами.

Соответственно, ионные каналы подразде­ляют на потенциал-зависимые и рецептор-управляемые. Избирательная проницаемость ионного канала для конкретного иона опре­деляется наличием специальных селективных фильтров в его устье.

Облегченная диффузия

text_fields

text_fields

arrow_upward

Через биологические мембраны кроме воды и ионов путем простой диффузии проникают многие вещества (от этанола до сложных лекарственных препаратов). В то же время даже сранительно небольшие полярные молекулы, например, гликоли, мо­носахариды и аминокислоты практически не проникают через мем­брану большинства клеток за счет простой диффузии. Их перенос осуществляется путем облегченной диффузии.

Облегченной называется диффузия вещества по градиенту его концентрации, которая осущест­вляется при участии особых белковых молекул-переносчиков.

Транспорт Na + , K + , Сl — , Li + , Ca 2+ , НСО 3 — и Н + могут также осуществлять специфические переносчики . Характерными чертами этого вида мембранного транспорта являются высокая по сравнению с простой диффузией скорость переноса вещества, зависимость от строения его молекул, насыщаемость, конкуренция и чувствитель­ность к специфическим ингибиторам - соединениям, угнетающим облегченную диффузию.

Все перечисленные черты облегченной диффузии являются резуль­татом специфичности белков-переносчиков и ограниченным их ко­личеством в мембране. При достижении определенной концентрации переносимого вещества, когда все переносчики заняты транспорти­руемыми молекулами или ионами, дальнейшее ее увеличение не при­ведет к возрастанию числа переносимых частиц - явление насыщения . Вещества, сходные по строению молекул и транспортируемые одним и тем же переносчиком, будут конкурировать за переносчик - явление конкуренции .

Различают несколько видов транспорта веществ посредством облегченной диффузии (рис. 1.13):

Рис. 1.13 Классификация способов переноса через мембрану.

Унипорт , когда молекулы или ионы переносятся через мебрану независимо от наличия или переноса других соединений (тран­спорт глюкозы, амино­кислот через базальную мембрану эпителиоцитов);

Симпорт , при котором их перенос осуществляется одновременно и однонаправленно с другими со­единениями (натрий- за­висимый транспорт Сахаров и аминокислот Na + K + , 2Cl — и котран-спорт);

Антипорт - (транспорт вещества обусловлен одновремен­ным и противоложно направленным транспортом другого соедине­ния или иона (Na + /Ca 2+ , Na + /H + Сl — /НСО 3 — - обмены).

Симпорт и антипорт - это виды котранспорта, при которых скорость пере­носа контролируется всеми участниками транспортного процесса.

Природа белков-переносчиков неизвестна. По принципу действия они делятся на два типа. Переносчики первого типа совершают челночные движения через мембрану, а второго - встраиваются в мембрану, образуя канал. Промоделировать их действие можно с помощью антибиотиков-ионофоров, переносчиком щелочных метал­лов. Так, один из них - (валиномицин) - действует как истинный переносчик, переправляющий калий через мембрану. Молекулы же грамицидина А, другого ионофора, встаиваются в мембрану друг за другом, формируя «канал» для ионов натрия.

Большинство клеток обладают системой облегченной диффузии. Однако перечень метаболитов, переносимых с помощью такого ме­ханизма, довольно ограничен. В основном, это сахара, аминокисло­ты и некоторые ионы. Соединения, являющиеся промежуточными продуктами обмена (фосфорилированные сахара, продукты метабо­лизма аминокислот, макроэрги), не транспортируются с помощью этой системы. Таким образом, облегченная диффузия служит для переноса тех молекул, которые клетка получает из окружающей среды. Исключением является транспорт органических молекул через эпителий, который будет рассмотрен отдельно.

Активный транспорт

text_fields

text_fields

arrow_upward

Активный транспорт осуществля­ется транспортными аденозинтрифосфатазами (АТФазами) и проис­ходит за счет энергии гидролиза АТФ.

На рис.1.12 представлены виды пассивного и активного транспорта веществ через мембрану.

1,2 — простая диффузия через бислой и ионный канал,
3 — облегченная диффузия,
4 — первично-активный транспорт,
5 — вторично-активный транспорт.

Виды активного транспорта

text_fields

text_fields

arrow_upward

Виды активного транспорта веществ:

Первично-активный транспорт,

Вторично-активный транспорт.

Первично-активный транспорт

text_fields

text_fields

arrow_upward

Транспорт веществ из среды с низкой кон­центрацией в среду с более высокой концентрацией не может быть объяснен движением по градиенту, т.е. диффузией. Этот процесс осуществляется за счет энергии гидролиза АТФ или энергии, обу­словленной градиентом концентрации каких-либо ионов, чаще все­го натрия. В случае, если источником энергии для активного транс­порта веществ является гидролиз АТФ, а не перемещение через мембрану каких-то других молекул или ионов, транспорт называ­ется первично активным .

Первично-активный перенос осуществляется транспортными АТФа-зами, которые получили название ионных насосов. В клетках животных наиболее распространена Na + ,K + - АТФаза (натриевый насос), пред­ставляющая собой интегральный белок плазматической мембраны и Са 2+ - АТФазы, содержащиеся в плазматической мембране сарко-(эндо)-плазматического ретикулума. Все три белка обладают общим свойством - способностью фосфорилироваться и образовывать про­межуточную фосфорилированную форму фермента. В фосфорилиро-ванном состоянии фермент может находиться в двух конформациях, которые принято обозначать Е 1 и Е 2 .

Конформация фермента - это способ пространственной ориентации (укладки) полипептидной цепи его молекулы. Две указанные конформации фермента характеризуются различным сродством к переносимым ионам, т.е. различной способ­ностью связывать транспортируемые ионы.

Na + /K + — АТФаза обеспечивает сопряженный активный транспорт Na + из клетки и К + в цитоплазму. В молекуле Na + /K + — АТФазы имеется особая область (участок), в которой происходит связывание ионов Na и К. При конформации фермента E 1 эта область обращена внутрь плазматического ретикулума. Для осуществления этой стадии пре­вращения Са 2+ -АТФазы необходимо присутствие в саркоплазмати-ческом ретикулуме ионов магния. В последующем цикл работы фермента повторяется.

Вторично-активный транспорт

text_fields

text_fields

arrow_upward

Вторичным активным транспортом называется перенос через мембрану вещества против гради­ента его концентрации за счет энергии градиента концентрации другого вещества, создаваемого в процессе активного транспорта. В клетках животных основным источником энергии для вторичного активного транспорта служит энергия градиента концентрации ионов натрия, который создается за счет работы Na + /K + — АТФазы. Напри­мер, мембрана клеток слизистой оболочки тонкого кишечника со­держит белок, осуществляющий перенос (симпорт) глюкозы и Na + в эпителиоциты. Транспорт глюкозы осуществляется лишь в том слу­чае, если Na + , одновременно с глюкозой связываясь с указанным белком, переносится по электрохимическому градиенту. Электрохи­мический градиент для Na + поддерживается активным транспортом этих катионов из клетки.

В головном мозге работа Na + -насоса сопряжена с обратным по­глощением (реабсорбцией) медиаторов - физиологически активных веществ, которые выделяются из нервных окончаний при действии возбуждающих факторов.

В кардиомиоцитах и гладкомышечных клетках с функционирова­нием Na + , K + -АТФазы связан транспорт Са 2+ через плазматическую мембрану, благодаря присутствию в мембране клеток белка, осу­ществляющего противотранспорт (антипорт) Na + и Са 2+ . Ионы каль­ция переносятся чере мембрану клеток в обмен на ионы натрия и за счет энергии концентрационного градиента ионов натрия.

В клетках обнаружен белок, обменивающий внеклеточные ионы натрия на внутриклеточные протоны - Na + /H + - обменник. Этот переносчик играет важную роль в поддержании постоянства внут­риклеточного рН. Скорость, с которой осуществляется Na + /Ca 2+ и Na + /H + - обмен, пропорциональна электрохимическому градиенту Na + через мембрану. При уменьшении внеклеточной концентрации Na + ингибировании Na + , K + -АТФазы сердечными гликозидами или в бескалиевой среде внутриклеточная концентрация кальция и про­тонов увеличена. Это увеличение внутриклеточной концентрации Са 2+ при ингибировании Na + , K + -АТФазы лежит в основе применения в клинической практике сердечных гликозидов для усиления сердеч­ных сокращений.

Большинство процессов жизнедеятельности, таких, как всасывание, выделение, проведение нервного импульса, мышечное сокращение, синтез АТФ, поддержание постоянства ионного состава и содержания воды связано с переносом веществ через мембраны. Этот процесс в биологических системах получил название транспорта . Обмен веществ между клеткой и окружающей её средой происходит постоянно. Механизмы транспорта веществ в клетку и из неё зависят от размеров транспортируемых частиц. Малые молекулы и ионы транспортируются клеткой непосредственно через мембрану в форме пассивного и активного транспорта.

Пассивный транспорт осуществляется без затрат энергии, по градиенту концентрации путем простой диффузии, фильтрации, осмоса или облегченной диффузии.

Диффузия – проникновение веществ через мембрану по градиенту концентрации (из области, где их концентрация выше, в область, где их концентрация ниже); этот процесс происходит без затрат энергии вследствие хаотического движения молекул. Диффузный транспорт веществ (вода, ионы) осуществляется при участии интегральных белков мембраны, в которых имеются молекулярные поры (каналы, через которые проходят растворенные молекулы и ионы), либо при участии липидной фазы (для жирорастворимых веществ). С помощью диффузии в клетку проникают растворенные молекулы кислорода и углекислого газа, а также яды и лекарственные препараты.

Рис. Виды транспорта через мембрану.1 – простая диффузия; 2 – диффузия через мембранные каналы; 3 – облегченная диффузия с помощью белков-переносчиков; 4 – активный транспорт.

Облегченная диффузия. Транспорт веществ через липидный бислой с помощью простой диффузии совершается с малой скоростью, особенно в случае заряженных частиц, и почти не контролируется. Поэтому в процессе эволюции для некоторых веществ появились специфические мембранные каналы и мембранные переносчики, которые способствуют повышению скорости переноса и, кроме того, осуществляют селективный транспорт. Пассивный транспорт веществ с помощью переносчиков называется облегченной диффузией . Специальные белки-переносчики (пермеаза) встроены в мембрану. Пермеазы избирательно связываются с тем или иным ионом или молекулой и переносят их через мембрану. При этом частицы перемещаются быстрее, чем при обычной диффузии.

Осмос – поступление в клетки воды из гипотонического раствора.

Фильтрация - просачивание веществ поры в сторону меньших значений давления. Примером фильтрации в организме является перенос воды через стенки кровеносных сосудов, выдавливание плазмы крови в почечные канальцы.

Рис. Движение катионов по электрохимическому градиенту.

Активный транспорт. Если бы в клетках существовал только пассивный транспорт, то концентрации, давления и др. величины вне и внутри клетки сравнялись бы. Поэтому существует другой механизм, работающий в направлении против электрохимического градиента и происходящий с затратой энергии клеткой. Перенос молекул и ионов против электрохимического градиента, осуществляемый клеткой за счет энергии метаболических процессов, называется активным транспортом.Он присущ только биологическим мембранам. Активный перенос вещества через мембрану происходит за счет свободной энергии, высвобождающейся в ходе химических реакций внутри клетки. Активный транспорт в организме создает градиенты концентраций, электректрических потенциалов, давлений, т.е. поддерживает жизнь в организме.

Активный транспорт заключается в перемещении веществ против градиента концентрации с помощью транспортных белков (порины, АТФ-азы и др.), образующих мембранные насосы, с затратой энергии АТФ (калий-натриевый насос, регуляция концентрации в клетках ионов кальция и магния, поступление моносахаридов, нуклеотидов, аминокислот). Изучены 3 основные системы активного транспорта, которые обеспечивают перенос ионов Na, K, Ca, H через мембрану.

Механизм. Ионы К + и Na + неравномерно распределены по разные стороны мембраны: концентрация Na + снаружи > ионов K + , а внутри клетки K + > Na + . Эти ионы диффундируют через мембрану по направлению электрохимического градиента, что приводит к его выравниванию. Na-K насосы входят в состав цитоплазматических мембран и работают за счет энергии гидролиза молекул АТФ с образованием молекул АДФ и неорганического фосфата Ф н : АТФ=АДФ+Ф н. Насос работает обратимо: градиенты концентраций ионов способствуют синтезу молекул АТФ из мол-л АДФ и Ф н: АДФ+Ф н =АТФ.

Na + /К + -насос представляет собой трансмембранный белок, способный к конформационным изменениям, вследствие чего он может присоединять как «K + », так и «Na + ». За один цикл работы насос выводит из клетки три «Na + » и заводит два «К + » за счет энергии молекулы АТФ. На работу натрий-калиевого насоса тратится почти треть всей энергии, необходимой для жизнедеятельности клетки.

Через мембрану могут переноситься не только отдельные молекулы, но и твердые тела (фагоцитоз ), растворы (пиноцитоз ). Фагоцитоз захват и поглощение крупных частиц (клеток, частей клеток, макромолекул) и пиноцитоз захват и поглощение жидкого материала (раствор, коллоидный раствор, суспензия). Образующиеся пиноцитозные вакуоли имеют размеры от 0,01 до 1-2 мкм. Затем вакуоль погружается в цитоплазму и отшнуровывается. При этом стенка пиноцитозной вакуоли полностью сохраняет структуру породившей ее плазматической мембраны.

Если вещество транспортируется внутрь клетки, то такой вид транспорта называется эндоцитозом (перенос в клетку путем прямого пино-или фагоцитоза), если наружу, то – экзоцитозом (перенос из клетки путем обратного пино - или фагоцитоза). В первом случае на наружной стороне мембраны образуется впячивание, которое постепенно превращается в пузырек. Пузырек отрывается от мембраны внутри клетки. Такой пузырек содержит в себе транспортируемое вещество, окруженное билипидной оболочкой (везикулой). В дальнейшем везикула сливается с какой-нибудь клеточной органеллой и выпускает в неё своё содержимое. В случае экзоцитоза процесс происходит в обратной последовательности: везикула подходит к мембране с внутренней стороны клетки, сливается с ней и выбрасывает своё содержимое в межклеточное пространство.

БИОФИЗИКА ТРАНСПОРТА ВЕЩЕСТВ ЧЕРЕЗ МЕМБРАНУ.

Вопросы для самопроверки

1. Какие объекты включает в себя инфраструктура автотранспортного комплекса?

2. Назовите основные компоненты загрязнения окружающей среды автотранспортным комплексом.

3. Назовите основные причины формирования загрязнения окружающей среды автотранспортным комплексом.

4. Назовите источники, опишите механизмы образования и дайте характеристику составу загрязнений атмосферы производственными зонами и участками предприятий автомобильного транспорта.

5. Приведите классификацию сточных вод предприятий автомобильного транспорта.

6. Назовите и дайте характеристику основным загрязнениям сточных вод предприятий автомобильного транспорта.

7. Охарактеризуйте проблему отходов производственной деятельности предприятий автомобильного транспорта.

8. Дайте характеристику распределению массы вредных выбросов и отходов АТК по их видам.

9. Проанализируйте вклад объектов инфраструктуры АТК в загрязнение окружающей среды.

10. Какие виды нормативов составляют систему природоохранных нормативов. Дайте характеристику каждому из этих видов нормативов.

1. Бондаренко Е.В. Экологическая безопасность автомобильного транспорта: учебное пособие для вузов / Е.В. Бондаренко, А.Н. Новиков, А.А. Филиппов, О.В. Чекмарёва, В.В. Васильева, М.В. Коротков // Орёл: ОрёлГТУ, 2010. – 254 с. 2. Бондаренко Е.В. Дорожно-транспортная экология: [Текст]: учеб. пособие / Е.В. Бондаренко, Г.П. Дворников Оренбург: РИК ГОУ ОГУ, 2004. – 113 с. 3. Каганов И.Л. Справочник по санитарии и гигиене на автотранспортных предприятиях. [Текст] / И.Л. Каганов, В.Д.Морошек Мн.: Беларусь, 1991. – 287 с. 4. Картошкин А.П. Концепция сбора и переработки отработанных смазочных масел / А.П. Картошкин // Химия и технология топлив и масел, 2003. - №4. – С. 3 – 5. 5. Луканин В.Н. Промышленно-транспортная экология [Текст] / В.Н. Луканин, Ю.В. Трофименко М.: Высш. шк., 2001. - 273 с. 6. Российская автотранспортная энциклопедия. Техническая эксплуатация, обслуживание и ремонт автотранспортных средств. – Т.3. – М.: РБООИП «Просвещение», 2001. – 456 с.

Клетка - открытая система, которая непрерывно обменивается с окружающей средой веществом и энергией. Транспорт веществ через биологические мембраны - необходимое условие жизни. С переносом веществ через мембраны связаны процессы метаболизма клетки, биоэнергетические процессы, образование биопотенциалов, генерация нервного импульса и др. Нарушение транспорта веществ через биомембраны приводит к различным патологиям. Лечение часто связано с проникновением лекарств через клеточные мембраны. Мембрана клетки является избирательным барьером для различных веществ, находящихся внутри и снаружи клетки. Существует два вида мембранного транспорта: пассивный и активный транспорт.



Все виды пассивного транспорта основаны на принципе диффузии. Диффузия является результатом хаотических независимых движений многих частиц. Диффузия постепенно уменьшает градиент концентрации до тех пор, пока не наступит состояние равновесия. При этом в каждой точке установится равная концентрация, и диффузия в обоих направлениях будет осуществляться в равной степени.Диффузия является пассивным транспортом, поскольку не требует затрат внешней энергии. Существует несколько видов диффузии в плазматической мембране:

1 ) Свободная диффузия.

Иногда необходимо, чтобы внутри клетки концентрация вещества была высокой даже при низкой концентрации его во внеклеточной жидкости (например, для ионов калия). И наоборот, концентрацию других ионов внутри клетки важно сохранять на низком уровне, несмотря на их высокие концентрации вне клетки (например, для ионов натрия). Ни в одном из этих двух случаев это не может обеспечиваться простой диффузией, итогом которой всегда является уравновешивание концентрации ионов по обе стороны мембраны. Для создания избыточного движения ионов калия внутрь клетки, а ионов натрия - наружу необходим некий источник энергии. Процесс перемещения молекул или ионов через клеточную мембрану против градиента концентрации (или против электрического градиента, а также градиента давления) называют активным транспортом.

К веществам, активно транспортируемым , по крайней мере, через некоторые клеточные мембраны, относят ионы натрия, калия, кальция, железа, водорода, хлора, йода, мочевой кислоты, некоторые сахара и большинство аминокислот.

Первично активный и вторично активный транспорт . В зависимости от источника используемой энергии активный транспорт подразделяется на два типа: первично активный и вторично активный. Для первично активного транспорта энергия извлекается непосредственно при расщеплении аденозинтрифосфата или некоторых других высокоэнергетических фосфатных соединений. Вторично активный транспорт обеспечивается вторичной энергией, накопленной в форме разности концентраций побочных веществ, молекул или ионов, по обе стороны клеточной мембраны, созданной первоначально первично активным транспортом. В обоих случаях, как и при облегченной диффузии, транспорт зависит от белков-переносчиков, пронизывающих клеточную мембрану. Однако функции белков-переносчиков при активном транспорте отличаются от переноса облегченной диффузией, поскольку в первом случае белки способны передавать энергию транспортируемому веществу для его перемещения против электрохимического градиента. Далее приведены примеры первично активного и вторично активного транспорта с более детальными объяснениями принципов их функционирования.

Натрий-калиевый насос

К веществам , которые транспортируются посредством первично активного транспорта, относят натрий, калий, кальций, водород, хлор и некоторые другие ионы.
Механизм активного транспорта лучше всего изучен для натрий-калиевого насоса (Na+/K+-нaсоса) - транспортного процесса, который выкачивает ионы натрия через мембрану клетки наружу и в то же время закачивает в клетку ионы калия. Этот насос отвечает за поддержание различной концентрации ионов натрия и калия по обе стороны мембраны, а также за наличие отрицательного электрического потенциала внутри клеток. (В главе 5 будет показано, что он является также основой процесса передачи импульсов в нервной системе.)

Белок-переносчик представлен комплексом из двух раздельных глобулярных белков: более крупного, называемого альфа-субъединицей, с молекулярной массой около 100000, и меньшего, называемого бета-субъединицей, с молекулярной массой около 55000. Хотя функция меньшего белка неизвестна (за исключением того, что он, возможно, закрепляет белковый комплекс в липидной мембране), крупный белок имеет три специфических характеристики, важные для функционирования насоса.

1. На выступающей внутрь клетки части белка имеются три рецепторных участка для связывания ионов натрия.
2. На наружной части белка располагаются два рецепторных участка для связывания ионов калия.
3. Внутренняя часть белка, расположенная вблизи участков связывания ионов натрия, обладает АТФ-азной активностью.

Рассмотрим работу насоса . Когда 2 иона калия связываются с белком-переносчиком снаружи и 3 иона натрия связываются с ним внутри, активируется АТФ-азная функция белка. Это ведет к расщеплению 1 молекулы АТФ до АДФ с выделением энергии высокоэнергетической фосфатной связи. Полагают, что эта освобожденная энергия вызывает химическое и конформационное изменение молекулы белка-переносчика, в результате 3 иона натрия перемещаются наружу, а 2 иона калия - внутрь клетки.

Как и другие ферменты, Na-K+-ATФ-aзa может работать и в обратном направлении. При экспериментальном увеличении электрохимических градиентов для Na+ и К+ до таких значений, что накопленная в них энергия станет выше химической энергии гидролиза АТФ, эти ионы будут двигаться по своим градиентам концентрации, а Na+/K+-Hacoc будет синтезировать АТФ из АДФ и фосфата. Следовательно, фосфорилированная форма Nа+/К+-насоса может быть или донором фосфатов для синтеза АТФ из АДФ, или использовать энергию для изменения своей конформации и качать натрий из клетки, а калий - в клетку. Относительные концентрации АТФ, АДФ и фосфатов, как и электрохимические градиенты для натрия и калия, определяют направление ферментативной реакции. Для некоторых клеток, например электрически активных нервных клеток, от 60 до 70% всей потребляемой клеткой энергии тратится на перемещение натрия наружу и калия внутрь.

Пассивный транспорт включает простую и облегченную диффузию - процессы, которые не требуют затраты энергии. Диффузия – транспорт молекул и ионов через мембрану из области с высокой в область с низкой их концентрацией, те. вещества поступают по градиенту концентрации. Диффузия воды через полупроницаемые мембраны называется осмосом. Вода способна проходить также через мембранные поры, образованные белками, и переносить молекулы и ионы растворенных в ней веществ. Механизмом простой диффузии осуществляется перенос мелких молекул (например, О2, Н2О, СО2); этот процесс малоспецифичен и протекает со скоростью, пропорциональной градиенту концентрации транспортируемых молекул по обеим сторонам мембраны.

Облегченная диффузия осуществляется через каналы и (или) белки-переносчики, которые обладают специфичностью в отношении транспортируемых молекул. В качестве ионных каналов выступают трансмембранные белки, образующие мелкие водные поры, через которые по электрохимическому градиенту транспортируются мелкие водорастворимые молекулы и ионы. Белки-переносчики также являются трансмембранными белками, которые претерпевают обратимые изменения конформации, обеспечивающие транспорт специфических молекул через плазмолемму. Они функционируют в механизмах как пассивного, так и активного транспорта.

Активный транспорт является энергоемким процессом, благодаря которому перенос молекул осуществляется с помощью белков-пере­носчиков против электрохимического градиента. Примером механизма, обеспечивающего противоположно направленный активный транспорт ионов, служит натриево-калиевый насос (представленный белком-пере­носчиком Nа + -К + -АТФазой), благодаря которому ионы Na + выводятся из цитоплазмы, а ионы К + одновременно переносятся в нее. Концентрация К + внутри клетки в 10-20 раз выше, чем снаружи, а концентрация Na наоборот. Такая разница в концентрациях ионов обеспечивается работой (Na*-K*> насоса. Для поддержания данной концентрации происходит перенос трех ионов Na из клетки на каждые два иона К* в клетку. В этом процессе принимает участие белок в мембране, выполняющий функцию фермента, расщепляющего АТФ, с высвобождением энергии, необходимой для работы насоса.
Участие специфических мембранных белков в пассивном и активном транспорте свидетельствует о высокой специфичности этого процесса. Этот механизм обеспечивает поддержание постоянства объема клетки (путем регуляции осмотического давления), а также мембранного потенциала. Активный транспорт глюкозы в клетку осуществляется белком-переносчиком и сочетается с однонаправленным переносом иона Nа + .

Облегченный транспорт ионов опосредуется особыми трансмем­бранными белками - ионными каналами, обеспечивающими избиратель­ный перенос определенных ионов. Эти каналы состоят из собственно транспортной системы и воротного механизма, который открывает канал на некоторое время в ответ на изменение мембранного потенциала, (б) механическое воздействие (например, в волосковых клетках внутреннего уха), связывание лиганда (сигнальной молекулы или иона).

Мембранный транспорт веществ различается также по направлению их перемещения и количеству переносимых данным переносчиком веществ :

  • Унипорт - транспорт одного вещества в одном направлении в зависимости от градиента
  • Симпорт - транспорт двух веществ в одном направлении через один переносчик.
  • Антипорт - перемещение двух веществ в разных направлениях через один переносчик.

Унипорт осуществляет, например, потенциал-зависимый натриевый канал, через который в клетку во время генерации потенциала действия перемещаются ионы натрия.

Симпорт осуществляет переносчик глюкозы, расположенный на внешней (обращенной в просвет кишечника) стороне клеток кишечного эпителия. Этот белок захватывает одновременно молекулу глюкозы и ион натрия и, меняя конформацию, переносит оба вещества внутрь клетки. При этом используется энергия электрохимического градиента, который, в свою очередью создается за счет гидролиза АТФ натрий-калиевой АТФ-азой.

Антипорт осуществляет, например, натрий–калиевая АТФаза (или натрий–зависимая АТФаза). Она переносит в клетку ионы калия. а из клетки - ионы натрия. Первоначально этот переносчик присоединяет с внутренней стороны мембраны три иона Na + . Эти ионы изменяют конформацию активного центра АТФазы. После такой активации АТФаза способна гидролизовать одну молекулу АТФ, причем фосфат-ион фиксируется на поверхности переносчика с внутренней стороны мембраны.

Выделившаяся энергия расходуется на изменение конформации АТФазы, после чего три иона Na + и ион (фосфат) оказываются на внешней стороне мембраны. Здесь ионы Na + отщепляются, а замещается на два иона K + . Затем конформация переносчика изменяется на первоначальную, и ионы K + оказываются на внутренней стороне мембраны. Здесь ионы K + отщепляются, и переносчик вновь готов к работ