Linijos per tris taškus lygtis. Bendroji tiesės lygtis

Tiesios linijos savybės Euklido geometrijoje.

Per bet kurį tašką galima nubrėžti begalinį skaičių tiesių.

Per bet kuriuos du nesutampančius taškus galima nubrėžti vieną tiesią liniją.

Dvi besiskiriančios plokštumos tiesės arba susikerta viename taške, arba yra

lygiagretus (seka nuo ankstesnio).

Trimatėje erdvėje yra trys dviejų linijų santykinės padėties parinktys:

  • linijos susikerta;
  • linijos lygiagrečios;
  • susikerta tiesios linijos.

Tiesiai linija— pirmosios eilės algebrinė kreivė: tiesė Dekarto koordinačių sistemoje

plokštumoje pateikiama pirmojo laipsnio lygtimi (tiesine lygtimi).

Bendroji tiesės lygtis.

Apibrėžimas. Bet kuri tiesi linija plokštumoje gali būti nurodyta pirmosios eilės lygtimi

Ax + Wu + C = 0,

ir pastovus A, B tuo pačiu metu nėra lygūs nuliui. Ši pirmosios eilės lygtis vadinama bendras

tiesios linijos lygtis. Priklausomai nuo konstantų reikšmių A, B Ir SU Galimi šie ypatingi atvejai:

. C = 0, A ≠0, B ≠ 0- per pradžią eina tiesi linija

. A = 0, B ≠0, C ≠0 (pagal + C = 0)- tiesi linija, lygiagreti ašiai Oi

. B = 0, A ≠0, C ≠ 0 (Ax + C = 0)- tiesi linija, lygiagreti ašiai Oi

. B = C = 0, A ≠0- tiesi linija sutampa su ašimi Oi

. A = C = 0, B ≠0- tiesi linija sutampa su ašimi Oi

Tiesios linijos lygtis gali būti pavaizduota įvairiomis formomis priklausomai nuo bet kurio duoto

pradines sąlygas.

Tiesės iš taško ir normalaus vektoriaus lygtis.

Apibrėžimas. Dekarto stačiakampėje koordinačių sistemoje vektorius su komponentais (A, B)

statmena lygties nurodytai tiesei

Ax + Wu + C = 0.

Pavyzdys. Raskite tiesės, einančios per tašką, lygtį A(1, 2) statmenai vektoriui (3, -1).

Sprendimas. Kai A = 3 ir B = -1, sudarykime tiesės lygtį: 3x - y + C = 0. Norėdami rasti koeficientą C

Į gautą išraišką pakeisime duoto taško A koordinates Gauname: 3 - 2 + C = 0, todėl

C = -1. Iš viso: reikalinga lygtis: 3x - y - 1 = 0.

Tiesės, einančios per du taškus, lygtis.

Tegu erdvėje pateikti du taškai M 1 (x 1, y 1, z 1) Ir M2 (x 2, y 2, z 2), Tada tiesės lygtis,

eina per šiuos taškus:

Jei kuris nors iš vardiklių yra lygus nuliui, atitinkamas skaitiklis turi būti lygus nuliui. Įjungta

plokštumoje, aukščiau parašyta tiesės lygtis yra supaprastinta:

Jeigu x 1 ≠ x 2 Ir x = x 1, Jei x 1 = x 2 .

Frakcija = k paskambino nuolydis tiesioginis.

Pavyzdys. Raskite tiesės, einančios per taškus A(1, 2) ir B(3, 4), lygtį.

Sprendimas. Taikydami aukščiau parašytą formulę, gauname:

Tiesios linijos lygtis naudojant tašką ir nuolydį.

Jei bendroji tiesės lygtis Ax + Wu + C = 0 veda prie:

ir paskirti , tada gauta lygtis vadinama

tiesės su nuolydžiu k lygtis.

Tiesės iš taško ir krypties vektoriaus lygtis.

Pagal analogiją su tašku, kuriame atsižvelgiama į tiesės linijos per normalųjį vektorių lygtį, galite įvesti užduotį

tiesė per tašką ir tiesės krypties vektorius.

Apibrėžimas. Kiekvienas nulinis vektorius (α 1 , α 2), kurio komponentai atitinka sąlygą

Aα 1 + Bα 2 = 0 paskambino nukreipiantis tiesės vektorius.

Ax + Wu + C = 0.

Pavyzdys. Raskite tiesės su krypties vektoriumi (1, -1) ir einančios per tašką A(1, 2) lygtį.

Sprendimas. Ieškosime norimos eilutės lygties formoje: Ax + By + C = 0. Pagal apibrėžimą,

koeficientai turi atitikti šias sąlygas:

1 * A + (-1) * B = 0, t.y. A = B.

Tada tiesės lygtis turi tokią formą: Ax + Ay + C = 0, arba x + y + C / A = 0.

adresu x = 1, y = 2 gauname C/A = -3, t.y. reikalinga lygtis:

x + y - 3 = 0

Tiesios linijos atkarpose lygtis.

Jei bendrojoje tiesės lygtyje Ах + Ву + С = 0 С≠0, tada dalijant iš -С gauname:

arba kur

Geometrinė reikšmė koeficientai yra tai, kad koeficientas a yra susikirtimo taško koordinatė

tiesiai su ašimi O A b- tiesės susikirtimo su ašimi taško koordinatė Oi.

Pavyzdys. Pateikta bendroji tiesės lygtis x - y + 1 = 0. Raskite šios tiesės lygtį atkarpomis.

C = 1, , a = -1, b = 1.

Normalioji tiesės lygtis.

Jei abi lygties pusės Ax + Wu + C = 0 padalinti iš skaičiaus kuris vadinamas

normalizuojantis veiksnys, tada gauname

xcosφ + ysinφ - p = 0 -normalioji tiesės lygtis.

Normalizuojančio koeficiento ženklas ± turi būti parinktas taip μ*C< 0.

r- statmens ilgis, nukritęs nuo pradžios iki tiesės,

A φ - kampas, kurį sudaro šis statmenas su teigiama ašies kryptimi Oi.

Pavyzdys. Pateikiama bendroji linijos lygtis 12x - 5m - 65 = 0. Reikalinga parašyti įvairių tipų lygtis

ši tiesi linija.

Šios tiesės lygtis atkarpomis:

Šios tiesės lygtis su nuolydžiu: (padalinkite iš 5)

Linijos lygtis:

cos φ = 12/13; sin φ= -5/13; p = 5.

Reikėtų pažymėti, kad ne kiekviena tiesė gali būti pavaizduota lygtimi atkarpose, pavyzdžiui, tiesės,

lygiagrečios ašims arba einančios per pradžią.

Kampas tarp tiesių plokštumoje.

Apibrėžimas. Jei pateiktos dvi eilutės y = k 1 x + b 1, y = k 2 x + b 2, tada smailusis kampas tarp šių linijų

bus apibrėžtas kaip

Dvi tiesės lygiagrečios, jei k 1 = k 2. Du tiesios linijos yra statmenos,

Jeigu k 1 = -1/ k 2 .

Teorema.

Tiesioginis Ax + Wu + C = 0 Ir A 1 x + B 1 y + C 1 = 0 lygiagrečiai, kai koeficientai yra proporcingi

A 1 = λA, B 1 = λB. Jei taip pat С 1 = λС, tada linijos sutampa. Dviejų tiesių susikirtimo taško koordinatės

randami kaip šių tiesių lygčių sistemos sprendimas.

Tiesės, einančios per tam tikrą tašką statmenai nurodytai tiesei, lygtis.

Apibrėžimas. Tiesė, einanti per tašką M 1 (x 1, y 1) ir statmenai tiesei y = kx + b

pavaizduota lygtimi:

Atstumas nuo taško iki linijos.

Teorema. Jei skiriamas taškas M(x 0, y 0), tada atstumas iki tiesės Ax + Wu + C = 0 apibrėžiamas kaip:

Įrodymas. Tegul taškas M 1 (x 1, y 1)- iš taško nukritusio statmens pagrindas M už duotą

tiesioginis. Tada atstumas tarp taškų M Ir M 1:

(1)

Koordinatės x 1 Ir 1 val galima rasti kaip lygčių sistemos sprendimą:

Antroji sistemos lygtis yra tiesės, einančios per tam tikrą tašką M 0 statmenai lygtis

duota tiesi linija. Jei paversime pirmąją sistemos lygtį į formą:

A(x - x 0) + B(y - y 0) + Ax 0 + By 0 + C = 0,

tada išspręsdami gauname:

Pakeitę šias išraiškas į (1) lygtį, randame:

Teorema įrodyta.

Tiesės lygtis plokštumoje.

Kaip žinoma, bet kurį plokštumos tašką tam tikroje koordinačių sistemoje nustato dvi koordinatės. Koordinačių sistemos gali skirtis priklausomai nuo pagrindo ir kilmės pasirinkimo.

Apibrėžimas. Linijos lygtis vadinamas ryšį y = f(x) tarp taškų, sudarančių šią tiesę, koordinačių.

Atkreipkite dėmesį, kad linijos lygtis gali būti išreikšta parametriškai, tai yra, kiekviena kiekvieno taško koordinatė išreiškiama per tam tikrą nepriklausomą parametrą t.

Tipiškas pavyzdys yra judančio taško trajektorija. Šiuo atveju parametro vaidmenį atlieka laikas.

Tiesės lygtis plokštumoje.

Apibrėžimas. Bet kuri tiesi linija plokštumoje gali būti nurodyta pirmosios eilės lygtimi

Ax + Wu + C = 0,

Be to, konstantos A ir B vienu metu nėra lygios nuliui, t.y. A 2 + B 2  0. Ši pirmosios eilės lygtis vadinama bendroji tiesės lygtis.

Atsižvelgiant į konstantų A, B ir C vertes, galimi šie specialūs atvejai:

    C = 0, A  0, B  0 – tiesė eina per pradžios tašką

    A = 0, B  0, C  0 (by + C = 0) – tiesi linija, lygiagreti Ox ašiai

    B = 0, A  0, C  0 (Ax + C = 0) – tiesi linija, lygiagreti Oy ašiai

    B = C = 0, A  0 – tiesė sutampa su Oy ašimi

    A = C = 0, B  0 – tiesė sutampa su Ox ašimi

Tiesios linijos lygtis gali būti pateikta įvairiomis formomis, priklausomai nuo bet kokių pradinių sąlygų.

Tiesės iš taško ir normalaus vektoriaus lygtis.

Apibrėžimas. Dekarto stačiakampėje koordinačių sistemoje vektorius su komponentais (A, B) yra statmenas tiesei, kurią suteikia lygtis Ax + By + C = 0.

Pavyzdys. Raskite tiesės, einančios per tašką A(1, 2), statmeną vektoriui, lygtį (3, -1).

Kai A = 3 ir B = -1, sudarykime tiesės lygtį: 3x – y + C = 0. Norėdami rasti koeficientą C, gautoje išraiškoje pakeičiame duoto taško A koordinates.

Gauname: 3 – 2 + C = 0, todėl C = -1.

Iš viso: reikalinga lygtis: 3x – y – 1 = 0.

Tiesės, einančios per du taškus, lygtis.

Tegu erdvėje pateikti du taškai M 1 (x 1, y 1, z 1) ir M 2 (x 2, y 2, z 2), tada tiesės, einančios per šiuos taškus, lygtis:

Jei kuris nors iš vardiklių yra lygus nuliui, atitinkamas skaitiklis turi būti lygus nuliui.

Plokštumoje aukščiau parašyta tiesės lygtis yra supaprastinta:

jei x 1  x 2 ir x = x 1, jei x 1 = x 2.

Frakcija
=k vadinamas nuolydis tiesioginis.

Pavyzdys. Raskite tiesės, einančios per taškus A(1, 2) ir B(3, 4), lygtį.

Taikydami aukščiau parašytą formulę, gauname:

Tiesios linijos lygtis naudojant tašką ir nuolydį.

Jei bendroji tiesės Ax + By + C = 0 lygtis sumažinama į formą:

ir paskirti
, tada gauta lygtis vadinama tiesės su nuolydžiu lygtisk.

Tiesės iš taško ir krypties vektoriaus lygtis.

Analogiškai su tašku, kuriame atsižvelgiama į tiesės per normalųjį vektorių lygtį, galite įvesti tiesės apibrėžimą per tašką ir tiesės nukreipimo vektorių.

Apibrėžimas. Kiekvienas nulinis vektorius ( 1,  2), kurio komponentai tenkina sąlygą A 1 + B 2 = 0, vadinamas tiesės nukreipiamuoju vektoriumi.

Ax + Wu + C = 0.

Pavyzdys. Raskite tiesės su krypties vektoriumi lygtį (1, -1) ir einantis per tašką A(1, 2).

Ieškosime norimos tiesės lygties formoje: Ax + By + C = 0. Pagal apibrėžimą koeficientai turi atitikti sąlygas:

1A + (-1)B = 0, t.y. A = B.

Tada tiesės lygtis yra tokia: Ax + Ay + C = 0 arba x + y + C/A = 0.

esant x = 1, y = 2 gauname C/A = -3, t.y. reikalinga lygtis:

Tiesios linijos atkarpose lygtis.

Jei bendrojoje tiesės lygtyje Ах + Ву + С = 0 С 0, tai dalijant iš –С gauname:
arba

, Kur

Koeficientų geometrinė reikšmė yra ta, kad koeficientas A yra tiesės susikirtimo su Ox ašimi taško koordinatė ir b– tiesės susikirtimo su Oy ašimi taško koordinatė.

Pavyzdys. Pateikta bendroji tiesės x – y + 1 = 0 lygtis. Raskite šios tiesės lygtį atkarpomis.

C = 1,
, a = -1, b = 1.

Normalioji tiesės lygtis.

Jei abi lygties pusės Ax + By + C = 0 dalijamos iš skaičiaus
kuris vadinamas normalizuojantis veiksnys, tada gauname

xcos + ysin - p = 0 -

normalioji tiesės lygtis.

Normalizuojančio koeficiento ženklas  turi būti parinktas taip, kad С< 0.

p yra statmens, nuleistos nuo pradžios iki tiesės, ilgis, o  yra šio statmens suformuotas kampas su teigiama Ox ašies kryptimi.

Pavyzdys. Pateikiama bendroji eilutės 12x – 5y – 65 = 0 lygtis. Šiai eilutei reikia parašyti įvairių tipų lygtis.

šios linijos lygtis segmentais:

šios tiesės ir nuolydžio lygtis: (padalinkite iš 5)

normalioji linijos lygtis:

;

cos = 12/13; sin = -5/13; p = 5.

Pavyzdys. Reikėtų pažymėti, kad ne kiekviena tiesė gali būti pavaizduota lygtimi atkarpose, pavyzdžiui, tiesės, lygiagrečios ašims arba einančios per koordinačių pradžią.

Tiesi linija nupjauna lygias teigiamas atkarpas koordinačių ašyse. Parašykite tiesės lygtį, jei iš šių atkarpų sudaryto trikampio plotas yra 8 cm 2.
Tiesios linijos lygtis yra tokia:

, a = b = 1; ab/2 = 8; a = 4; -4.

a = -4 netinka pagal uždavinio sąlygas.
Iš viso:

Pavyzdys. arba x + y – 4 = 0.

Tiesi linija nupjauna lygias teigiamas atkarpas koordinačių ašyse. Parašykite tiesės lygtį, jei iš šių atkarpų sudaryto trikampio plotas yra 8 cm 2.
Parašykite tiesės, einančios per tašką A(-2, -3), ir pradžios lygtį.

, kur x 1 = y 1 = 0; x 2 = -2; y 2 = -3.

Apibrėžimas. Kampas tarp tiesių plokštumoje.

.

Jei dvi tiesės pateiktos y = k 1 x + b 1, y = k 2 x + b 2, tada smailusis kampas tarp šių linijų bus apibrėžtas kaip

Dvi tiesės yra lygiagrečios, jei k 1 = k 2.

Dvi tiesės yra statmenos, jei k 1 = -1/k 2 . Teorema. 1 Tiesioginės linijos Ax + Wu + C = 0 ir A 1 x + B 1 y + C 1 = = 0 yra lygiagrečios, kai koeficientai A yra proporcingi 1 = A, B 1 = B. Jei taip pat C

C, tada linijos sutampa.

Dviejų tiesių susikirtimo taško koordinatės randamos kaip šių tiesių lygčių sistemos sprendimas.

Tiesės, einančios per nurodytą tašką, lygtis

Apibrėžimas. statmenai šiai linijai.

Tiesi linija, einanti per tašką M 1 (x 1, y 1) ir statmena tiesei y = kx + b, pavaizduota lygtimi:

Dvi tiesės yra statmenos, jei k 1 = -1/k 2 . Atstumas nuo taško iki linijos. 0 Jeigu duotas taškas M(x). 0 , y

.

), tada atstumas iki tiesės Ах + Ву + С =0 apibrėžiamas kaip Įrodymas.

Tegul taškas M 1 (x 1, y 1) yra statmeno, nuleisto iš taško M į nurodytą tiesę, pagrindas. Tada atstumas tarp taškų M ir M 1:

Koordinates x 1 ir y 1 galima rasti išsprendus lygčių sistemą:

Antroji sistemos lygtis yra tiesės, einančios per tam tikrą tašką M 0, statmeną duotai tiesei, lygtis.

Jei paversime pirmąją sistemos lygtį į formą:

A(x – x 0) + B(y – y 0) + Ax 0 + Iš 0 + C = 0,

tada išspręsdami gauname:

.

Pakeitę šias išraiškas į (1) lygtį, randame:

Pavyzdys. Teorema įrodyta.

Nustatykite kampą tarp tiesių: y = -3x + 7; y = 2x + 1.
;

Pavyzdys. = /4.

Parodykite, kad tiesės 3x – 5y + 7 = 0 ir 10x + 6y – 3 = 0 yra statmenos.

Pavyzdys. Randame: k 1 = 3/5, k 2 = -5/3, k 1 k 2 = -1, todėl tiesės yra statmenos.

Duotos trikampio A(0; 1), B(6; 5), C(12; -1) viršūnės. Raskite aukščio lygtį, nubrėžtą iš viršūnės C.
Randame kraštinės AB lygtį:

;

4x = 6y – 6;

2x – 3m + 3 = 0; Reikalinga aukščio lygtis yra tokia: Ax + By + C = 0 arba y = kx + b.
k =
. Tada y =
.

. Nes aukštis eina per tašką C, tada jo koordinatės tenkina šią lygtį:

iš kur b = 17. Iš viso:

Atsakymas: 3x + 2m – 34 = 0.

Analitinė geometrija erdvėje.

Tiesės lygtis erdvėje.

Tiesės lygtis erdvėje, duotame taške ir krypties vektorius. Paimkime savavališką liniją ir vektorių (m, n, p), lygiagreti duotai tiesei. Vektorius tiesioginis.

paskambino

kreipiamasis vektorius

Tiesioje linijoje paimame du savavališkus taškus M 0 (x 0 , y 0 , z 0) ir M (x, y, z).

z M 1 Šių taškų spindulio vektorius pažymėkime kaip - =
.

Ir
M 1 , akivaizdu, kad
= Nes vektoriai

yra kolinearūs, tada ryšys yra teisingas = + t, kur t yra koks nors parametras.

Iš viso galime parašyti: t..

Nes šią lygtį tenkina bet kurio tiesės taško koordinatės, tada gauta lygtis yra

linijos parametrinė lygtis Ši vektorinė lygtis gali būti pavaizduota koordinačių forma: Transformuodami šią sistemą ir sulyginę parametro t reikšmes, gauname

.

Apibrėžimas. kanonines lygtis tiesi linija erdvėje: Krypties kosinusai

;

.

tiesioginiai yra vektoriaus krypties kosinusai

, kurį galima apskaičiuoti naudojant formules: Iš čia gauname: m: n: p = cos : cos : cos. Vadinami skaičiai m, n, p kampo koeficientai

tiesioginis. Nes

yra nulinis vektorius, tada m, n ir p vienu metu negali būti lygūs nuliui, bet vienas ar du iš šių skaičių gali būti lygūs nuliui. Šiuo atveju eilutės lygtyje atitinkami skaitikliai turi būti lygūs nuliui.

Praeinančios erdvės tiesės lygtis

.

per du taškus.

.

Jei tiesėje erdvėje pažymime du savavališkus taškus M 1 (x 1, y 1, z 1) ir M 2 (x 2, y 2, z 2), tai šių taškų koordinatės turi tenkinti tiesės lygtį. gautas aukščiau:

.

Be to, taške M 1 galime parašyti:

Išsprendę šias lygtis kartu, gauname:

Tai tiesės, einančios per du erdvės taškus, lygtis.

Bendrosios tiesės erdvėje lygtys.

Tiesės lygtis gali būti laikoma dviejų plokštumų susikirtimo linijos lygtimi.

Kaip aptarta aukščiau, vektorinės formos plokštumą galima nurodyti pagal lygtį: + D = 0, kur

Kanoninės tiesės erdvėje lygtys yra lygtys, apibrėžiančios tiesę, einančią per nurodytą tašką kolineariai krypties vektoriui.

Tegu duotas taškas ir krypties vektorius. Savavališkas taškas yra tiesėje l tik jei vektoriai ir yra kolineariniai, t.y., jiems tenkinama sąlyga:

.

Aukščiau pateiktos lygtys yra kanoninės tiesės lygtys.

Skaičiai m , n Ir p yra krypties vektoriaus projekcijos į koordinačių ašis. Kadangi vektorius yra ne nulis, tada visi skaičiai m , n Ir p vienu metu negali būti lygus nuliui. Tačiau vienas ar du iš jų gali pasirodyti lygus nuliui. Pavyzdžiui, analitinėje geometrijoje leidžiamas šis įrašas:

,

o tai reiškia, kad vektoriaus projekcijos ašyje Oy Ir Ozas yra lygūs nuliui. Todėl ir vektorius, ir tiesė, apibrėžta kanoninėmis lygtimis, yra statmenos ašims Oy Ir Ozas t.y. lėktuvai yOz .

1 pavyzdys. Parašykite lygtis tiesei, esančioje statmenai plokštumai ir einančios per šios plokštumos susikirtimo su ašimi tašką Ozas .

Sprendimas. Raskime šios plokštumos susikirtimo tašką su ašimi Ozas. Kadangi bet kuris taškas, esantis ant ašies Ozas, turi koordinates , tada, darant prielaidą, kad yra duota lygtis lėktuvas x = y = 0, gauname 4 z- 8 = 0 arba z= 2. Todėl šios plokštumos susikirtimo taškas su ašimi Ozas turi koordinates (0; 0; 2) . Kadangi norima tiesė yra statmena plokštumai, ji lygiagreti jos normaliajam vektoriui. Todėl tiesės krypties vektorius gali būti normalusis vektorius duotas lėktuvas.

Dabar užrašykite reikiamas tiesės, einančios per tašką, lygtis A= (0; 0; 2) vektoriaus kryptimi:

Tiesės, einančios per du duotus taškus, lygtys

Tiesią liniją galima apibrėžti dviem taškais, esančiais ant jos Ir Šiuo atveju tiesės nukreipiantis vektorius gali būti vektorius . Tada kanoninės linijos lygtys įgauna formą

.

Aukščiau pateiktos lygtys nustato liniją, einančią per du duotus taškus.

2 pavyzdys. Parašykite lygtį tiesės erdvėje, einančios per taškus ir .

Sprendimas. Užrašykime reikiamas tiesės lygtis tokia forma, kokia pateikta teorinėje nuorodoje:

.

Kadangi , Tada norima tiesi linija yra statmena ašiai Oy .

Tiesi kaip plokštumų susikirtimo linija

Tiesė erdvėje gali būti apibrėžta kaip dviejų nelygiagrečių plokštumų susikirtimo linija, t.y. kaip taškų rinkinys, atitinkantis dviejų tiesinių lygčių sistemą.

Sistemos lygtys dar vadinamos bendrosiomis tiesės erdvėje lygtimis.

3 pavyzdys. Sudarykite kanonines tiesės lygtis erdvėje, pateiktą bendromis lygtimis

Sprendimas. Norėdami parašyti kanonines tiesės lygtis arba, kas yra tas pats, tiesės, einančios per du duotus taškus, lygtis, turite rasti bet kurių dviejų tiesės taškų koordinates. Pavyzdžiui, jie gali būti tiesės susikirtimo taškai su bet kuriomis dviem koordinačių plokštumomis yOz Ir xOz .

Tiesės ir plokštumos susikirtimo taškas yOz turi abscisę x= 0. Todėl šioje lygčių sistemoje darant prielaidą x= 0, gauname sistemą su dviem kintamaisiais:

Jos sprendimas y = 2 , z= 6 kartu su x= 0 apibrėžia tašką A(0; 2; 6) norima eilutė. Tada darant prielaidą, kad pateiktoje lygčių sistemoje y= 0, gauname sistemą

Jos sprendimas x = -2 , z= 0 kartu su y= 0 apibrėžia tašką B(-2; 0; 0) tiesės susikirtimas su plokštuma xOz .

Dabar užrašykime tiesės, einančios per taškus, lygtis A(0; 2; 6) ir B (-2; 0; 0) :

,

arba padalijus vardiklius iš -2:

,

Tiesė, einanti per tašką K(x 0 ; y 0) ir lygiagreti tiesei y = kx + a, randama pagal formulę:

y - y 0 = k(x - x 0) (1)

Kur k yra linijos nuolydis.

Alternatyvi formulė:
Tiesė, einanti per tašką M 1 (x 1 ; y 1) ir lygiagreti tiesei Ax+By+C=0, pavaizduota lygtimi

A(x-x 1)+B(y-y 1)=0 . (2)

Parašykite tiesės, einančios per tašką K() lygtį ;) lygiagreti tiesei y = x+ .
1 pavyzdys. Parašykite tiesės, einančios per tašką M 0 (-2,1), lygtį ir tuo pačiu metu:
a) lygiagreti tiesei 2x+3y -7 = 0;
b) statmenai tiesei 2x+3y -7 = 0.
Sprendimas . Pavaizduokime lygtį su nuolydžiu forma y = kx + a. Norėdami tai padaryti, visas reikšmes, išskyrus y, perkelkite į dešinę: 3y = -2x + 7 . Tada dešinę pusę padalinkite iš koeficiento 3. Gauname: y = -2/3x + 7/3
Raskime lygtį NK, einantį per tašką K(-2;1), lygiagrečią tiesei y = -2 / 3 x + 7 / 3
Pakeitę x 0 = -2, k = -2 / 3, y 0 = 1, gauname:
y-1 = -2 / 3 (x-(-2))
arba
y = -2 / 3 x - 1 / 3 arba 3 m + 2x +1 = 0

2 pavyzdys. Parašykite tiesės, lygiagrečios tiesei 2x + 5y = 0, lygtį ir kartu su koordinačių ašimis sudaro trikampį, kurio plotas lygus 5.
Sprendimas . Kadangi tiesės lygiagrečios, norimos tiesės lygtis yra 2x + 5y + C = 0. Plotas stačiakampis trikampis, kur a ir b yra jo kojos. Raskime norimos tiesės susikirtimo taškus su koordinačių ašimis:
;
.
Taigi, A(-C/2,0), B(0,-C/5). Pakeiskime jį į ploto formulę: . Gauname du sprendinius: 2x + 5y + 10 = 0 ir 2x + 5y – 10 = 0.

3 pavyzdys. Parašykite tiesės, einančios per tašką (-2; 5) ir lygiagrečios tiesei 5x-7y-4=0, lygtį.
Sprendimas. Šią tiesią liniją galima pavaizduoti lygtimi y = 5/7 x – 4/7 (čia a = 5/7). Norimos tiesės lygtis yra y – 5 = 5 / 7 (x – (-2)), t.y. 7(y-5)=5(x+2) arba 5x-7y+45=0 .

4 pavyzdys. Išsprendę 3 pavyzdį (A=5, B=-7) naudodami formulę (2), randame 5(x+2)-7(y-5)=0.

5 pavyzdys. Parašykite tiesės, einančios per tašką (-2;5) ir lygiagrečios tiesei 7x+10=0, lygtį.
Sprendimas. Čia A = 7, B = 0. (2) formulė duoda 7(x+2)=0, t.y. x+2=0. Formulė (1) netaikoma, nes šios lygties negalima išspręsti y atžvilgiu (ši tiesė lygiagreti ordinačių ašiai).

Pamoka iš serijos „Geometriniai algoritmai“

Sveiki, mielas skaitytojau!

Šiandien pradėsime mokytis su geometrija susijusių algoritmų. Faktas yra tas, kad kompiuterių moksle yra gana daug olimpiadų uždavinių, susijusių su skaičiavimo geometrija, ir tokių problemų sprendimas dažnai sukelia sunkumų.

Per kelias pamokas apsvarstysime keletą elementarių antrinių užduočių, kuriomis grindžiamas daugumos skaičiavimo geometrijos uždavinių sprendimas.

Šioje pamokoje mes sukursime programą, skirtą tiesės lygties radimas, einantis per duotą du taškai. Norint išspręsti geometrines problemas, mums reikia tam tikrų skaičiavimo geometrijos žinių. Dalį pamokos skirsime jų pažinimui.

Įžvalgos iš skaičiavimo geometrijos

Skaičiavimo geometrija – kompiuterių mokslo šaka, tirianti geometrinių uždavinių sprendimo algoritmus.

Pradiniai tokių problemų duomenys gali būti taškų rinkinys plokštumoje, atkarpų rinkinys, daugiakampis (nurodytas, pavyzdžiui, jo viršūnių sąrašu pagal laikrodžio rodyklę) ir kt.

Rezultatas gali būti atsakymas į kokį nors klausimą (pvz., ar taškas priklauso atkarpai, ar du atkarpos susikerta, ...), arba koks nors geometrinis objektas (pavyzdžiui, mažiausias išgaubtas daugiakampis, jungiantis duotus taškus, plotas daugiakampis ir pan.).

Skaičiavimo geometrijos uždavinius nagrinėsime tik plokštumoje ir tik Dekarto koordinačių sistemoje.

Vektoriai ir koordinatės

Norint taikyti skaičiavimo geometrijos metodus, reikia geometrinius vaizdus išversti į skaičių kalbą. Laikysime, kad lėktuvas duotas Dekarto sistema koordinates, kuriose sukimosi kryptis prieš laikrodžio rodyklę vadinama teigiama.

Dabar geometriniai objektai gauna analitinę išraišką. Taigi, norint nurodyti tašką, pakanka nurodyti jo koordinates: skaičių porą (x; y). Atkarpą galima nurodyti nurodant jo galų koordinates. Tiesė gali būti nurodyta nurodant jos taškų poros koordinates.

Tačiau pagrindinis mūsų įrankis problemoms spręsti bus vektoriai. Todėl leiskite man priminti šiek tiek informacijos apie juos.

Segmentas AB, kuris turi prasmę A yra laikoma pradžia (taikymo tašku) ir tašku IN– galas, vadinamas vektoriumi AB ir žymimas, pavyzdžiui, arba paryškinta mažąja raide A .

Norėdami pažymėti vektoriaus ilgį (tai yra atitinkamo segmento ilgį), naudosime modulio simbolį (pavyzdžiui, ).

Savavališkas vektorius turės koordinates, lygias skirtumui tarp atitinkamų jo pabaigos ir pradžios koordinačių:

,

štai taškai A Ir B turėti koordinates atitinkamai.

Skaičiavimams naudosime sąvoką orientuotas kampas, tai yra, atsižvelgiant į kampą santykinė padėtis vektoriai.

Orientuotas kampas tarp vektorių a Ir b teigiamas, jei sukimas vyksta iš vektoriaus a į vektorių b atliekama teigiama kryptimi (prieš laikrodžio rodyklę), o kitu atveju – neigiama. Žr. 1a pav., 1b pav. Taip pat sakoma, kad vektorių pora a Ir b teigiamai (neigiamai) orientuotas.

Taigi, orientuoto kampo reikšmė priklauso nuo vektorių sąrašo eilės ir gali įgauti vertes intervale .

Daugelis skaičiavimo geometrijos problemų naudoja vektorinių (kreipinių arba pseudoskaliarinių) vektorių sandaugų sąvoką.

Vektorių a ir b vektorinė sandauga yra šių vektorių ilgių ir kampo tarp jų sinuso sandauga:

.

Kryžminė vektorių sandauga koordinatėse:

Dešinėje esanti išraiška yra antros eilės determinantas:

Skirtingai nuo apibrėžimo, pateikto analitinėje geometrijoje, tai yra skaliarinis.

Pasirašyti vektorinis produktas nustato vektorių padėtį vienas kito atžvilgiu:

a Ir b pozityviai orientuotas.

Jei reikšmė yra , tada vektorių pora a Ir b neigiamai orientuotas.

Nulinių vektorių kryžminė sandauga yra lygi nuliui tada ir tik tada, kai jie yra kolineariniai ( ). Tai reiškia, kad jie yra toje pačioje linijoje arba lygiagrečiose linijose.

Pažvelkime į keletą paprastų problemų, kurios būtinos sprendžiant sudėtingesnes.

Iš dviejų taškų koordinačių nustatykime tiesės lygtį.

Tiesės, einančios per du skirtingus taškus, apibrėžtus jų koordinatėmis, lygtis.

Tiesėje pateiksime du nesutampančius taškus: su koordinatėmis (x1; y1) ir su koordinatėmis (x2; y2). Atitinkamai vektorius, kurio pradžia taške ir pabaiga taške, turi koordinates (x2-x1, y2-y1). Jei P(x, y) yra savavališkas taškas mūsų tiesėje, tai vektoriaus koordinatės lygios (x-x1, y – y1).

Naudojant vektorių sandaugą, vektorių kolineariškumo sąlygą galima parašyti taip:

Tie. (x-x1)(y2-y1)-(y-y1)(x2-x1) = 0

(y2-y1)x + (x1-x2)y + x1 (y1-y2) + y1 (x2-x1) = 0

Paskutinę lygtį perrašome taip:

ax + by + c = 0, (1)

c = x1(y1-y2) + y1(x2-x1)

Taigi, tiesią liniją galima nurodyti (1) formos lygtimi.

1 uždavinys. Pateikiamos dviejų taškų koordinatės. Raskite jo atvaizdavimą forma ax + by + c = 0.

Šioje pamokoje sužinojome šiek tiek informacijos apie skaičiavimo geometriją. Išsprendėme tiesės lygties iš dviejų taškų koordinačių radimo uždavinį.

Įjungta kita pamoka Parašykime programą, kuri rastų dviejų tiesių, pateiktų mūsų lygtimis, susikirtimo tašką.