Как узнать размер молекулы. Размеры атомов и молекул


Понятно, что мы не сможем непосредственно измери ть такую малую частичку вещества. Мы проведем опыт, из которого путем простых расчетов можно определить размер молекул. Вы, конечно, видели на поверхности воды тонкие цветные пленки, образуемые нефтепродуктами (смазочные масла, дизельное топливо и т. п.). Цвет тонких пленок возникает из-за наложения световых лучей, отраженных от верхней и нижней поверхностей пленки - такое явление называется интерференцией света. ПотоЙ же причине переливаются всеми цветами радуги мыльные пузыри.
Явление интерференции вы будете изучать на уроках физики. А сейчас нас интересует толщина пленки - !зы никогда не задумывались, насколько она ййїкіія? Определить толщину пленки очень просто: надо ее объем разделить на площадь поверхности. Еще древние мореплаватели заметили, что если на поверхность воды вылить растительное масло, то оно растечется очень большим пятном (тогда же появилось довольно странное мнение о том, что таким способом можно «утихомирить» море во время бури). Вероятно, впервые измерил площадь масляного пятна на воде выдающийся американский ученый и дипломат Бенджамин Франклин (1706- 1790), изображение которого красуется на стодолларовой купюре. Его самое знаменитое изобретение - громоотвод (вернее, молниеотвод). В 1774 году Франклин поехал в Европу, чтобы уладить очередной конфликт между Англией и США. В свободное от переговоров время он экспериментировал с масляными пленками на поверхности воды. К его удивлению, одна ложка растительного масла растеклась по всей поверхности небольшого пруда. Если же налить па воду не растительное, а невязкое машинное масло, пятно от него будет не таким большим: одна капля дает круг диаметром около 20 см. Площадь такой пленки равна примерно 300 см3, объем одной капли - около 0,03 см3. Следовательно, толщина пленки равна 0,03 см1 / 300 см3 = 0,0001 см = 0,001 мм - 1 мкм. Тысячная доля миллиметра - это очень малая величина, не во всякий микроскоп разглядишь час тичку такого размера.
Но есть ли у нас гарантия, что молекулы машинного масла растеклись по воде в один слой? Ведь только в этом случае толщина пленки будет соответствовать размеру молекул. Такой гарантии у нас нет, и вот почему. Молекулы, входящие в состав машинного масла, называют гидрофобными (в переводе с греческого «гидрофобные» - «боящиеся воды»). Они довольно хорошо «сцепляются» между собой, очень неохотно - с молекулами воды. Если вещество, подобное машинному маслу, налить на поверхность воды, оно образует на ней довольно толстую (по молекулярным меркам) пленку, состоящую из сотен и даже тысяч молекулярных слоев. Помимо того, что подобные расчеты любопытны и сами по себе, они имеют большое практическое значение. Например, по сей день не удается избежать аварий огромных танкеров, перевозящих нефть за тысячи километров от места ее добычи. В результате такой аварии в море может вылиться огромное количество нефти, что губительно скажется на живых организмах. Нефть более вязкая по сравнению с машинным маслом, поэтому ее пленка на водной поверхности может оказаться несколько толще. Так, в одной из аварий вылилось 120 000 тонн нефти, которая покрыла площадь 500 км3. Как показывает несложный расчет, средняя толщина такой пленки равна 200 мкм. Толщина пленки зависит как от сорта нефти, так и от температуры воды: в холодных морях, где нефть делается более густой, пленка толще, в теплых морях, где нефть становится менее вязкой, - тоньше. Но в любом случае авария большого танкера, когда в море попадают десятки тысяч тонн нефти, - это катастрофа. Ведь если вся пролитая нефть растечется тонким слоем, то образуется пятно огромной площади, и ликвидировать такую пленку чрезвычайно трудно.
А можно ли заставить вещество растекаться по воде так, чтобы образовался всего один слой молекул (такая пленка называется мономолекулярной)? Оказывается, это возможно, только вместо машинного масла или нефти надо взять другое вещество. Молекулы такого вещества должны на одном конце иметь гак называемую гидрофильную (т. е. «водолюбивую») группу атомов, а на другом конце - гидрофобную. Что будет, если вещество, состоящее из таких молекул, поместить на поверхность воды? Гидрофильная часть молекул, стремясь раствориться в воде, будет тянуть молекулу в воду, тогда как гидрофобная часть, которая воды «боится», будет упорно избегать контакта с водой. В результате такого взаимного «непонимания» молекулы (если их слегка «поджать» сбоку с помощью планочки) выстроятся па поверхности воды так, как показано нарис. 3.1: их гидрофильные концы утоплены в воду, а гидрофобные торчат наружу.
\6666666666Ы/
Рис. 3.1. Так ориентируются на границе вода-воздух молекулы поверхностно-активных веществ, образуя «частокол Ленгмюра» - по имени американского химика и физика Ирвинга Ленгмюра (1881-1957), который в 1916 году создал теорию строения таких слоев на поверхности жидкостей
Вещества, которые ведут себя таким образом, называют поверхностно-активными. К ним относятся, например, мыло и другие моющие средства; олеиновая кислота, входящая в состав подсолнечного масла; паль-митиновый спирт, который входит в состав пальмового масла и китового жира. Растекание таких веществ по поверхности воды дает значительно более тонкие пленки, чем машинное масло. Это явление было известно давно, подобные опыты проводили еще в XVIII веке. Нотолько в конце XIX - начале XX столетия в результате экспериментов, проведенных английским физиком Джоном Уильямом Рэлеем (1842-1919), немецким физиком Вильгельмом Конрадом Рент- геном (1845-1923) и рядом других ученых, было показано, что толщина пленки может достигать таких малых размеров, которые сопоставимы с размерами отдельных молекул.
В одном из таких опытов английский химик НеЙл Кенсингтон Адам Размеры порядка I нм имеют большинство молекул и ионов знакомых нам веществ. Так, диаметр молекул водорода равен примерно 0,2 нм, иода - 0,5 нм, этилового спирта - 0,4 нм; радиус ионов алюминия - 0,06 нм, натрия - 0,10 нм, к&чия - 0,13 нм, хлора - 0,18 нм, иода - 0,22 нм. Но есть среди молекул и гиганты, размеры которых, по молекулярным меркам, поистине астрономические. Так, в ядрах клеток высших животных и растений находятся молекулы наследственности - дезоксирибонуклеиновые кислоты (ДНК). Их длина может превышать 2 000 000 нм, т. е. 2 мм!
В заключение этого раздела - небольшой рассказ о том, какой остро- умный (хотя и не самый точный) метод использовал в 1908 году французский ученый Жан Перрен, чтобы «взвесить» молекулы. Как известно, плотность воздуха уменьшается с высотой. Еще в начале XIX века французский ученый Пьер Лаплас вывел формулу, позволяющую рассчитать давление на разных высотах. В соответствии с этой формулой атмосферное давление падает вдвое при подъеме на каждые 6 км. Это значение зависит, конечно, от силы земного притяжения, а также от массы молекул воздуха. Если бы воздух состоял не из азота и кислорода, а из очень легких молекул водорода (они в 16 раз легче молекул кислорода), то падение атмосферного давления вдвое наблюдалосьбы на высоте не 6 км, а примерно в 16 раз больше, т. е. около 100 км. И наоборот, если бы молекулы были очень тяжелые, атмосфера была бы «прижата» к поверхности Земли и давление быстро падало бы с высотой.
Рассуждая таким образом. Перрен решил вместо молекул использовать крошечные шарики краски гуммигута, взвешенные в воде. Он постарался приготовить взвесь (эмульсию) с одинаковыми по размеру шариками - около 1 мкм в диаметре. Затем он поместил капельку эмульсии под микроскоп и, перемещая винт микроскопа по вертикали, считал число шариков гуммигута на разных высотах. Оказалось, что формула Лапласа вполне применима и к эмульсиям: при подъеме на каждые 6 мкм число шариков в поле зрения уменьшалось в два раза. Поскольку 6 км ровно в миллиард раз больше 6 мкм, Перрен сделал вывод, что во столько же раз молекулы кислорода и азота легче шариков гуммигута (а их массу уже можно определить экспериментально).

Туннельные микроскопы обеспечивают увеличение в 100 млн раз. Это позволяет измерять размеры атомов с очень большой точностью. Так, диаметр атома углерода оказался равным 1,4·10 -8 см. Такой же порядок имеют и размеры других атомов.

Размеры атомов и молекул, найденные другими методами, оказываются примерно такими же.

Эти размеры так малы, что их невозможно себе представить. Что вам может сказать, например, число 2,3·10 -8 см - размер молекулы водорода? В таких случаях прибегают к помощи сравнений. Если, например, вашу голову увеличить до размеров средней звезды типа Солнца, то молекула при этом увеличится до размеров головы.

А вот еще сравнение. Если представить себе, что все размеры в мире возросли в 10 8 раз, то молекула водорода будет выглядеть как шарик диаметром всего в 2,3 см (средних размеров слива), а рост человека стал бы равным 170 000 км, размер мухи - 10 000 км, толщина волоса - 10км, размер красного кровяного тельца (эритроцита) - 700 м.

Число молекул

При столь малых размерах молекул число их в любом макроскопическом теле чрезвычайно велико. Подсчитаем приблизительное число молекул в капле воды массой 1 г и, следовательно, объемом 1 см 3 . Диаметр молекулы воды равен приблизительно 3·10 -8 см. Считая, что каждая молекула воды при плотной упаковке молекул занимает объем (3·10 -8 см) 3 , можно найти число молекул в капле, разделив объем капли (1 см 3) на объем, приходящийся на одну молекулу:

Представьте себе, что поверхность земного шара твердая и гладкая. На всей поверхности вплотную друг к другу стоят люди. Число людей при этом будет чуть меньше числа молекул в 1 см 3 воздуха при нормальном атмосферном давлении и температуре 0 °С.

Надо помнить основные положения молекулярно-кинетической теории. Атомы имеют размеры порядка 10 -8 см. Изображения атомов, полученные с помощью туннельного микроскопа, не оставляют никаких сомнений в их существовании,

§ 2.2. Масса молекул. Постоянная Авогадро

Массы молекул очень малы, если выражать их в граммах или килограммах, а число молекул в макроскопических телах огромно. С очень маленькими и очень большими числами иметь дело неудобно. Ученые нашли довольно простой способ избежать этого неудобства и характеризовать массы молекул и их число вполне обозримыми числами, не выходящими далеко за пределы сотни. Сейчас вы познакомитесь с тем, как это делается.

Масса молекулы воды

В предыдущем параграфе мы выяснили, что в 1 г воды содержится 3,7·10 22 молекул. Следовательно, масса одной молекулы равна:

Массы такого же порядка имеют и молекулы других веществ, исключая огромные молекулы органических соединений. Например, масса молекулы гемоглобина превышает массу молекулы воды в несколько десятков тысяч раз.

Относительная молекулярная масса

Так как массы молекул очень малы, удобно использовать не абсолютные значения масс, а относительные. По международному соглашению, принятому в 1961 г., массы всех молекул сравнивают с массы атома углерода* (так называемая углеродная шкала атомных масс). Главная причина выбора углеродной шкалы атомных масс состоит в том, что углерод входит в огромное число различных органических соединений. Этот выбор позволяет очень точно сравнивать массы атомов тяжелых элементов с массой атома углерода. Множительвведен для того, чтобы относительные массы атомов были близки к целым числам. Относительная масса атома углерода точно равна 12, а атома водорода примерно равна единице.

* Точнее, с массы атома наиболее распространенного изотопа углерода-12.

Относительной молекулярной (или атомной) массой вещества М r называют отношение массы молекулы (или атома) данного вещества к массы атома углерода т :

(2.2.1)

Относительные атомные массы всех химических элементов точно измерены. Складывая относительные атомные массы, можно вычислить относительную молекулярную массу. Например, относительная молекулярная масса воды Н 2 О приближенно равна 18, так как относительные атомные массы водорода и кислорода примерно равны 1 и 16:2-1 + 16=18.

Диаметр молекулы воды равен примерно 0 0000000 Зсм.
Диаметр молекулы воды, вычисленный с помощью числа Аво-гадро, равен трем ангстремам. Подобная определенность объективно присуща молекуле любого вещества. Значит, структура выступает как пространственное расположение частиц в молекуле.
Диаметр молекулы воды составляет 0 29нм (2 9 А), что сопоставимо с размерами пор и дефектов большинства неметаллических материалов. Это обусловливает ее достаточно высокую проникающую способность, особенно в пористые силикатные материалы и композиты.
Диаметр молекулы воды равен всего 2 5 10 - 10 м, и водяной пар проходит сквозь мельчайшие поры. Плотные, непористые материалы не пропускают водяные пары и негигроскопичны. К ним относятся ситаллы, малощелочное стекло, вакуумно-плотная керамика, эпоксидные пластмассы и неполярные полимеры.
Стеклопластик на эпоксиполиэфирном связующем после 9 ч кипячения в дистиллированной воде.| Структура химически стойкого стеклопластика на основе смолы ПН-16 после экспонирования в течение 1000 ч I в кипящей воде (7500 х. Если диаметр молекулы воды равен 0 276 нм, то диаметр ионной атмосферы, определяющий эффективный размер ионов в растворе 0 6 % - ного NaCl, составляет примерно 1 нм. Увеличение концентрации раствора электролита вызывает рост толщины ионной атмосферы.
Поперечник их в местах расширения превышает диаметр молекул воды. Плавление льда сопровождается разрывом связей между некоторыми молекулами и провалом их в каналы структуры льда. Повышение температуры сопровождается дальнейшим разрушением структуры.
На поверхности последних образуется тонкая пленка толщиной в два-три диаметра молекул воды. При своем возникновении выделяет теплоту смачивания.
При толщине слоя адсорбированной влаги, равной 10 - 30 диаметрам молекул воды, по Б. В. Дерягину, образуется сольватный слой практически без выделения тепла. Этот слой, как указывает Ф. Е. Колясев, также имеет аномальные физико-химические свойства по сравнению с жидкостью в объеме.
Это объясняется тем, что материалы обладают пористой структурой и размеры пор превышают диаметр молекул воды. Кроме того, вдоль выводов элементов на границе соприкосновения материалов с различными коэффициентами линейного расширения образуются капилляры.
Физически связанная вода удерживается на поверхности минеральных частиц силами молекулярного сцепления и имеет форму тончайших пленок толщиной до нескольких сотен диаметров молекулы воды.
Толшина пленки воды на поверхности колеблется в пределах 0 5 - 3 0 - Ю 6 см. Если учесть, что диаметр молекулы воды равняется ЗА, то, следовательно, на поверхности в среднем образуется слой воды, равный 100 молекулам. Для создания водоотталкивающего слоя на поверхности керамики необходимо образовавшийся слой воды выдержать при относительной влажности 60 - 90 % в течении 4 час.
Воды в породах. Связанные воды удерживаются на поверхности минеральных частиц породы силами молекулярного сцепления, образуя слой, толщина которого может достигать нескольких сот диаметров молекулы воды. Внешняя, большая, часть этого слоя представлена рыхло связанной (лиосорбиро-ванной) водой.

Как видно из таблицы, отношение R - г, т, е, расстояния между двумя сферами гидратного комплекса к диаметру молекулы воды 2га, во многих случаях равно единице, или R - r - 2ra; иными словами, в таких комплексах молекулы воды окружают центральный ион, будучи расположены вокруг оболочкой, толщиной в молекулу, в один слой.
Толщина пленки воды на поверхности колеблется в пределах 0 5 - 3 0 - 10 - 6 см. Если учесть, что диаметр молекулы воды равняется ЗА, то, следовательно, на поверхности в среднем образуется слой воды, равный 100 молекулам. Для создания водоотталкивающего слоя на поверхности керамики необходимо образовавшийся слой воды выдержать при относительной влажности 60 - 90 % в течении 4 час.
Кроме того, для экстраполяции к гг оо не может быть использована обратная функция только гг из-за влияния члена, определяемого радиусом или диаметром молекулы воды. Более полный расчет энтальпии гидратации, подобный предложенному Букингемом , в котором учтены члены, связанные с ион-дипольными, диполь-дипольными и ди-поль-квадрупольными взаимодействиями, и влияние индуцированных дипольных моментов, приводит к еще более сложному показателю степени функции обратной величины ионного радиуса. Холливел и Найбург провели также несколько более изящный расчет, основанный на учете возможности координационных чисел 6 или 4 в основной гидратной оболочке и моделях твердой сферы и мягкой сферы для контакта ион - растворитель.
Влагопоглощение таких гетерогенных систем, как стеклопластики, можно рассматривать как две стороны одного процесса - проникновение подвижной среды с малым диаметром молекул (диаметр молекул воды равен 2 7 А) внутрь органического материала вследствие существования в нем молекулярных дырок, а также микропор на поверхности раздела волокно - смола и других дефектов структуры. Если микроскопические и субмикроскопические поры, трещины и капилляры в основном зависят от технологических причин и носят случайный характер, то межмолекулярные дырки всегда присущи органическим материалам. Поэтому для полимеров с большим диаметром молекулярных образований проницаемость для водяных паров является по существу неизбежной. У полимеров с кристаллической структурой, у кристаллических предельных углеводородов и жестких малополярных полимеров количество поглощаемой влаги будет ничтожно.
Для многоатомных ионов (например, для МпО) ионный радиус полагается равным кристаллографическому радиусу, а для одноатомных ионов к кристаллографическому радиусу добавляется диаметр молекулы воды.
Толщина пленки связанной воды при максимальной молекулярной влагоемкости составляет не менее 0 005 - 0 01 мкм, что соответствует примерно 20 - 40 диаметрам молекул воды.
Гельмгольцем в 1853 г. Он полагал, что двойной электрический слой состоит из двух слоев зарядов противоположного знака, находящихся друг от друга на расстоянии порядка диаметра молекулы воды: слоя зарядов на металле и слоя притянутых к нему ионов. Одновременно предполагалось, что заряды в обоих этих слоях равномерно размазаны вдоль поверхности, так что можно провести полную аналогию между двойным слоем и обычным плоским конденсатором.
Если предположить, что диаметр иона гидроксония равен диаметру молекулы воды, то расстояние между двумя ионами нептуния получится равным 10 3 А при использовании для радиуса ионов нептуния и диаметра молекулы воды величин, приведенных в работе Коена, Сулливана, Амиса и Хиндмана.
Первая простейшая модель двойного электрического слоя была предложена Гельмгольцем в 1853 г. Согласно Гельмголь-цу, двойной слой на границе металлический электрод - раствор представляет собой два слоя зарядов, расположенных на расстоянии порядка диаметра молекулы воды. Один слой зарядов находится на металле, другой - в растворе и состоит из притянутых к электроду противоположно заряженных ионов. Следует сразу оговорить, что предположение о размазанном заряде справедливо только для металлической обкладки. Для ионной обкладки оно выполняется тем лучше, чем более концентрированным является раствор и чем больше плотность зарядов на обкладках.
Таким образом, теория Борна является хорошим первым приближением, конечно, если не считать, что в качестве эффективных радиусов ионов принимаются величины, которые, как указали Или и Эванс , превышают радиусы в кристалле на половину диаметра молекул воды или атома кислорода. Улучшение простой электростатической теории может заключаться в рассмотрении кварцеподобной структуры воды вместо однородного диэлектрика. При этом необходимо ввести дополнительные энергетические члены, учитывающие взаимодействие иона с диполями растворителя, и межмолекулярное отталкивание, возрастающее при изменении ориентации диполей растворителя вблизи иона.
В работах 82, 83 ] было показано, что основной вклад в свободную энергию системы полипептид - растворитель вносят взаимодействия с ближайшими молекулами растворителя. Грубо говоря, если d - диаметр молекулы воды, то при расстояниях между рассматриваемой парой атомов rd / o (/ о - сумма их ван-дер-ваальсовых радиусов) молекулы воды вытесняются и вклад в свободную энергию становится равным нулю. С другой стороны, если мы будем сближать один атом с другим, то он вытеснит определенное количество молекул растворителя, пропорциональное объему этого атома U, но если расстояние станет меньше d r0, то количество вытесняемого растворителя практически не увеличится. Такого рода рассуждения привели Гибсона и Шерага к поиску аналитических выражений для энергии гидратации.
Исходя из предположения, что частички твердой фазы покрываются мономолекулярным слоем воды, определяют количество адсорб-ционно связанной воды. Толщина мономолекулярного слоя должна быть равна диаметру молекулы воды (h 2 76 10 - 8 см), так как каждый атом кислорода окружен тетраэдрически четырьмя другими атомами кислорода на расстоянии 2 76 А.
У металлов с диаметром атомов 2 76 А водородное перенапряжение оказывается наименьшим, а кислородное перенапряжение - наибольшим. Величина 2 76 А совпадает с диаметром молекулы воды. Плотнейшее заполнение поверхности электрода диполями воды повышает градиент потенциала в приэлектродном слое.
Наиболее прочно с твердой фазой почвы связан молекулярный слой воды. Толщина слоя полимолекулярной адсорбции может достигать нескольких сотен диаметров молекул воды. По мере удаления от твердой фазы связь воды становится менее прочной. Первые ряды молекул образуют прочно связанную или гигроскопическую воду. Чем дисперснее почва, тем больше будет сорбирована вода. Гигроскопическая вода достигает плотности 1 4 г / см3, не содержит растворенных веществ, не способна проводить электрический ток и передвигаться в почве. Количество воды, которое почва или грунт могут удержать при данной температуре и влажности воздуха, определяет гигроскопическую влажность почвы.

Данные о зависимости интенсивности рассеяния [ рентгеновских лучей в воде от угла между рассеянным излучением и падающим пучком лучей позволили показать, что в ближайшем окружении каждой молекулы воды в жидкости находится в среднем 4 4 - 4 8 молекул воды, что в общем согласуется с высказанным еще Берналом и Фаулером представлением о тетраэдрической структуре воды на очень близких расстояниях, правда, несколько искаженной по сравнению с кристаллической структурой льда. Эта структура существует еще на расстоянии примерно 1 6 диаметра молекулы воды от молекулы, рассматриваемой в качестве центральной, но уже на расстоянии 0 8 нм упорядоченность структуры жидкости практически исчезает. Прочность водородных связей в жидкой воде меньше, чем в кристалле льда, и связи эти могут довольно значительно изгибаться и растягиваться без разрыва при вращении одной молекулы относительно другой, уч аст-вующей в водородной связи.
Данные о зависимости интенсивности рассеяния рентгеновских лучей в воде от угла между рассеянным излучением и падающим пучком лучей позволили показать, что в ближайшем окружении каждой молекулы воды в жидкости находится в среднем 4 4 - 4 8 молекул воды, что в общем согласуется с высказанным еще Берналом и Фаулером представлением о тетраэдрической структуре воды на очень близких расстояниях, правда, несколько искаженной по сравнению с кристаллической структурой льда. Эта структура существует еще на расстоянии примерно 1 6 диаметра молекулы воды от молекулы, рассматриваемой в качестве центральной, но уже на расстоянии 0 8 нм упорядоченность структуры жидкости практически исчезает. Прочность водородных связей в жидкой воде меньше, чем в кристалле льда, и связи эти могут довольно значительно изгибаться и растягиваться без разрыва при вращении одной молекулы относительно другой, участвующей в водородной связи.
Уравнение Борна (IV.25), не учитывающее донорно-акцепторного взаимодействия иона с растворителем, дает неточный результат при расчете полной энергии гидратации, но оно вполне пригодно для вычисления энергии вторичной гидратации. Для расчета ДО в уравнение (IV.25) следует подставить радиус гидратного комплекса, который сложится из радиуса иона и диаметра молекулы воды, Най.
Толщина слоя гигроскопической воды строго не установлена. Большинство исследователей считают этот слой полимолекулярным, так, по Б. В. Деряги-ну, толщина его составляет 23 - 27 диаметров молекул воды.
А; при его увеличении или уменьшении перенапряжение закономерно возрастает. Хомутов в своих последующих работах обратил внимание на то, что межатомное расстояние, при котором перенапряжение оказывается минимальным, близко к диаметру молекулы воды, и предложил модельный метод расчета коэффициента b в формуле Гафеля.
Изотерма адсорбции тетра - МИ9ПВОД9Ь С энергией, близкой метплоктаыбензолсульфоната натрия к кДж / моль. Величина из водных растворов при температу - последней превышает уменьше-ре 25е С на аэросиле. ние мольной свободной энергии. Длина углеводородного радикала этого иона равна 18 1 А, диаметр ополярной группы в водном растворе при С9 ККМХ - 8 88 А, а диаметр молекулы воды - 3 1 А.
Строение двойного электрического слоя на границе металл - раствор впервые было описано русским ученым Р. А. Колли в 1878 г. По его представлениям, двойной слой подобен плоскому конденсатору, обкладки которого расположены на расстоянии диаметра молекулы воды. Наружная обкладка образована слоем адсорбированных ионов. Они показали, что тепловое движение приводит к десорбции части ионов с поверхности металла (рис. 49) 1, которые образуют диффузный (рассеянный) слой. Последний сжат до определенной толщины электрическим полем заряженного металла. Его толщина уменьшается с повышением заряда металла и концентрации ионов в растворе и увеличивается с повышением температуры. Толщина адсорбционного слоя равна радиусу гидратированного иона. Диффузный слой отсутствует, если металл не несет избыточного электрического заряда, а также в концентрированных растворах электролитов.
Физические свойства гидрофильных волокон, таких как шерсть, волосы, найлон, искусственный шелк, сильно зависят от количества адсорбированной воды. Эти изменения свойств волокон обусловлены большой поляризуемостью воды (и, следовательно, большими значениями индуцированного дипольного момента), способностью молекулы воды образовывать относительно сильные водородные связи и ее сравнительно небольшим размером - диаметр молекулы воды составляет примерно 2 7 А.
Пластмассовый корпус. Кроме того, вода - химически активное вещество, которое способствует образованию растворов солей, кислот, щелочей, коллоидных растворов. Поскольку диаметр молекул воды равен 3 А, влага способна проникать через микропоры и микротрещины защитных материалов и пленок.
График функции распределения. Успехи современной науки в этой области позволяют утверждать, что как размеры, так и массы отдельных молекул твердо установлены. Если условно представлять себе молекулы в виде шариков, то их диаметры в большинстве случаев составят несколько ангстрем. Например, диаметр молекулы воды (Н2О) равен 2 6 - 10 - 10 м 2 6 А.
Главнейшими из сил, определяющих энергию адсорбции цемента, являются электростатические силы взаимодействия между ионами поверхности частиц и диполями воды. Эти силы имеют незначительный ра-диус действия, не превышающий нескольких ангстремов. На расстояниях от поверхности частиц более диаметра молекул воды силы взаимодействия дополняются поляризационными или дисперсионными ван-дер-ваальсо-выми силами, обусловленными мгновенными диполями, возникающими благодаря движению электронов в молекуле.
Если силы взаимодействия молекул воды с материалом больше сил взаимодействия молекул воды друг с другом, то вода будет хорошо смачивать такой материал. Если на поверхности материала имеются дефекты структуры, соизмеримые с диаметром молекулы воды (0 29 нм), то молекулы воды могут внедриться в объем материала и при наличии такой же по размеру пористости (дефектности) в объеме материала будут диффундировать по механизму активированной диффузии, аналогично диффузии газов. Силикатные стекла способны вполне свободно поглощать пары воды, так как размер дефектов в них находится в пределах от 0 7 до 1 7 нм.

Уравнение Борна (IV.25), не учитывающее донорно-акцепторного взаимодействия иона с растворителем, дает неточный результат при расчете полной энергии гидратации, но оно вполне пригодно для вычисления энергии вторичной гидратации. Для расчета ДО в уравнение (IV.25) следует подставить радиус гидратного комплекса, который сложится из радиуса иона и диаметра молекулы воды.
Схема относительного расположения плоскостей, соответствующих разрывам диэлектрической проницаемости (г 0 и г Aj, адсорбции ионов (г г0 и наибольшему приближению неадсорбированных ионов (г h. Вследствие этого центры всех адсорбированных ионов должны лежать в одной плоскости (часто именуемой внутренней плоскостью Гельмгольца) на расстоянии z0 от поверхности электрода. С другой стороны, ионы, которые не могут адсорбироваться или еще не адсорбировались, прочно удерживают по меньшей мере одну оболочку из молекул воды. Расстояние их наибольшего приближения к поверхности, которое обозначается hQ, должно приблизительно равняться сумме ионного радиуса и диаметра молекулы воды.
Кобозев (1947), а также Бокрис (1951) установили зависимость между работой выхода электрона и перенапряжением водорода. Хомутов (1950), сопоставляя величину перенапряжения водорода с минимальным расстоянием между атомами в металлах, нашел, что наименьшее перенапряжение наблюдается на металлах с межатомным расстоянием; около 2 7 А; при его увеличении или уменьшении перенапряжение закономерно возрастает. Хомутов в своих последующих работах обратил внимание на то, что межатомное расстояние, при котором перенапряжение оказывается минимальным, близко к диаметру молекулы воды, и предложил модельный метод расчета коэффициента Ь в формуле Тафеля.
Хомутов (1950), сопоставляя величину перенапряжения водорода с минимальным расстоянием между атомами в металлах, нашел, что наименьшее перенапряжение наблюдается на металлах с межатомным расстоянием, близким к 2 7 А; при его увеличении или уменьшении перенапряжение закономерно возрастает. В своих последующих работах он обратил внимание на то, что межатомное расстояние, при котором перенапряжение оказывается минимальным, близко к диаметру молекулы воды, и предложил модельный метод расчета коэффициента b в формуле Тафеля.
Окончательное выражение для функции / (t) не приводится из-за его громоздкого вида. Задавая различные значения ij, по уравнениям (23.14) и (23.15) можно определить соответствующие друг другу величины С и ф0 и, таким образом, построить С, ф0 - кривую. При расчете предполагалось, что КГ 20 мкф / см2, Кт 38 мкф / см., а средняя толщина плотного слоя d была принята равной диаметру молекулы воды.
Окончательное выражение для функции / (tyi) не приводится из-за его громоздкого вида. Задавая различные значения г, по уравнениям (23.14) и (23.15) можно определить соответствующие друг другу величины С и ф0 и, таким образом, построить С, ф0 - кривую. При расчете предполагалось, что Ki0 2Q Ф / м2, / Сг0 38 ф / м2, а средняя толщина плотного слоя d была принята равной диаметру молекулы воды.

Молярная масса воды:

Если молекулы в жидкости упакованы плотно и каждая из них вписывается в куб объемом V 1 с ребром d , то .

Объем одной молекулы: ,где: V m одного моля, N A - число Авогадро.

Объем одного моля жидкости: , где: М- ее молярная масса, - плотность.

Диаметр молекулы:

Вычисляя, имеем:


Относительная молекулярная масса алюминия Mr=27. Определить его основные молекулярные характеристики.

1.Молярная масса алюминия: M=Mr . 10 -3 M = 27 . 10 -3

Найти концентрацию молекул, гелия (М=4 . 10 -3 кг/моль) при нормальных условиях (р=10 5 Па, Т=273К), их среднеквадратичную скорость и плотность газа. С какой глубины в водоеме всплывает пузырек воздуха, если при этом его объем увеличивается в 2 раза?

Мы не знаем, одинаковой ли остается температура воздуха в пузырьке. Если она одинакова, то процесс всплытия описывается уравнением pV=const . Если изменяется, то уравнением pV/T=const .

Оценим, большую ли ошибку мы допускаем, если пренебрегаем изменением температуры.

Предположим, что мы имеем максимально неблагоприятный результат.Пусть стоит очень жаркая погода и температура воды на поверхности водоема достигает +25 0 С(298 К). На дне температура не может быть ниже +4 0 С (277К), так как этой температуре соответствует максимальная плотность воды. Таким образом, разность температур составляет 21К. По отношению к начальной температуре, эта величина составляет %%.Вряд ли мы встретим такой водоем, перепад температур между поверхностью и дном которого равен названной величине. К тому же, пузырек всплывает достаточно быстро и вряд ли за время всплытия он успеет полностью прогреться. Таким образом, реальная ошибка будет существенно меньшей и мы вполне можем пренебречь изменением температуры воздуха в пузырьке и воспользоваться для описания процесса законом Бойля-Мариотта: p 1 V 1 =p 2 V 2 , где: p 1 - давление воздуха в пузырьке на глубине h (p 1 = p атм. + rgh), p 2 - давление воздуха в пузырьке вблизи поверхности. p 2 = p атм.

(p атм + rgh)V =p атм 2V; ;

Стакан
Перевернутый вверх дном стакан погружают в водоем. На какой глубине стакан начнет тонуть?

В перевернутом вверх дном стакане закупорен воздух. В задаче утверждается, что стакан начинает тонуть только на некоторой глубине. По всей видимости, если его отпустить на глубине меньшей некоторой критической глубины, он всплывет (предполагается, что стакан расположен строго вертикально и не опрокидывается).

Уровень, находясь выше которого стакан всплывает, а ниже которого тонет, характеризуется равенством сил, приложенных к стакану с разных сторон.

Силами, действующими на стакан в вертикальном направлении, являются сила тяжести, направленная вниз, и выталкивающая сила, направленная вверх.

Выталкивающая сила связана с плотностью жидкости, в которую помещен стакан, и объемом вытесненной им жидкости.

Сила тяжести, действующая на стакан, прямо пропорциональна его массе.

Из контекста задачи вытекает, что по мере погружения стакана, сила, направленная вверх, уменьшается. Уменьшение выталкивающей силы может происходить только за счет уменьшения объема вытесненной жидкости, так как жидкости практически несжимаемы и плотность воды у поверхности и на некоторой глубине одинакова.

Уменьшение объема вытесненной жидкости может происходить за счет сжатия воздуха в стакане, которое, в свою очередь, может идти за счет увеличения давления. Изменение температуры, по мере погружения стакана, можно не учитывать, если нас не интересует слишком высокая точность результата. Соответствующее обоснование приведено в предыдущем примере.

Связь давления газа и его объема при постоянной температуре выражается законом Бойля-Мариотта.

Давление жидкости действительно увеличивается с глубиной и передается во все стороны, в том числе и вверх, одинаково.

Гидростатическое давление прямо пропорционально плотности жидкости и ее высоте (глубине погружения).

Записав в качестве исходного уравнения уравнение, характеризующее состояние равновесия стакана, последовательно подставив в него найденные в ходе анализа задачи выражения и решив полученное уравнение относительно искомой глубины, приходим к тому, что для получения численного ответа нам необходимо знать значения плотности воды, атмосферного давления, массы стакана, его объема и ускорения свободного падения.

Все проведенные рассуждения можно отобразить следующим образом:

Поскольку в тексте задачи нет никаких данных, зададим их самостоятельно.

Дано:

Плотность воды r=10 3 кг/м 3 .

Атмосферное давление 10 5 Па.

Объем стакана 200 мл = 2 00 . 10 -3 л = 2 . 10 -4 м 3 .

Масса стакана 50 г = 5 . 10 -2 кг.

Ускорение свободного падения g = 10 м/с 2 .

Численное решение:

Подъем воздушного шара
На сколько градусов необходимо нагреть воздух внутри воздушного шара, чтобы он начал подниматься вверх?

Задача о подъеме воздушного шара так же, как и задача о тонущем стакане, может быть отнесена к классу статических задач.

Шар начнет подниматься так же, как и стакан тонуть, как только нарушится равенство сил, приложенных к этим телам и направленных вверх и вниз. На шар, так же, как и на стакан, действуют сила тяжести, направленная вниз и выталкивающая сила, направленная вверх.

Выталкивающая сила связана с плотностью холодного воздуха, окружающего шар. Эта плотность может быть найдена из уравнения Менделеева-Клапейрона.

Сила тяжести прямо пропорциональна массе шара. Масса шара, в свою очередь, складывается из массы оболочки и массы горячего воздуха, находящегося внутри него. Масса горячего воздуха также может быть найдена из уравнения Менделеева-Клапейрона.

Схематически рассуждения могут быть отображены следующим образом:

Из уравнения можно выразить искомую величину, оценить возможные значения необходимых для получения численного решения задачи величин, подставить эти величины в полученное уравнение и найти ответ в численном виде.

В замкнутом сосуде находится 200 г гелия. Газ совершает сложный процесс. Изменение его параметров отражено на графике зависимости объема от абсолютной температуры.

1. Выразите массу газа в СИ.

2. Чему равна относительная молекулярная масса данного газа?

3. Чему равна молярная масса данного газа (в СИ)?

4. Чему равно количество вещества, содержащегося в сосуде?

5. Сколько молекул газа находится в сосуде?

6. Чему равна масса одной молекулы данного газа?

7. Назовите процессы на участках 1-2, 2-3, 3-1.

8. Определите объем газа в точках 1,2, 3, 4 в мл, л, м 3 .

9. Определите температуру газа в точках 1,2, 3, 4 в 0 С, К.

10. Определите давление газа в точках 1, 2, 3, 4 в мм. рт. ст. , атм, Па.

11. Изобразите данный процесс на графике зависимости давления от абсолютной температуры.

12. Изобразите данный процесс на графике зависимости давления от объема.

Указания к решению:

1. См. условие.

2. Относительная молекулярная масса элемента определяется с помощью таблицы Менделеева.

3. M=M r ·10 -3 кг/моль.

7. p =const - изобарический; V =const-изохорический; T =const - изотермический.

8. 1 м 3 = 10 3 л; 1 л = 10 3 мл. 9.T = t + 273. 10. 1 атм. = 10 5 Па = 760 мм.рт. ст.

8-10. Можно воспользоваться уравнением Менделеева-Клапейрона, либо газовыми законами Бойля-Мариотта, Гей-Люссака, Шарля.

Ответы к задаче

m = 0,2 кг
M r = 4
M = 4 · 10 -3 кг/моль
n = 50 моль
N = 3 · 10 25
m =6,7 · 10 -27 кг
1 - 2 - изобарический
2 - 3 - изохорический
3 - 1 - изотермический
мл л м 3
2 · 10 5 0,2
7 · 10 5 0,7
7 · 10 5 0,7
4 · 10 5 0,4
0 С К
мм.рт.ст. атм Па
7,6 · 10 3 10 6
7,6 · 10 3 10 6
2,28 · 10 3 0,3 · 10 6
3,8 · 10 3 0,5 · 10 6
Относительная влажность воздуха, находящегося в герметично закрытом сосуде при температуре t 1 =10 0 C, равна j 1 = 80%.

>>Физика: Основные положения молекулярно-кинетической теории. Размеры молекул


Молекулы очень малы, но посмотрите, как просто оценить их размеры и массу. Достаточно одного наблюдения и пары несложных расчетов. Правда, надо еще додуматься до того, как это сделать.
В основе молекулярно-кинетической теории строения вещества лежат три утверждения: вещество состоит из частиц; эти частицы беспорядочно движутся; частицы взаимодействуют друг с другом . Каждое утверждение строго доказано с помощью опытов.
Свойства и поведение всех без исключения тел от инфузории до звезды определяются движением взаимодействующих друг с другом частиц: молекул, атомов или еще более малых образований - элементарных частиц.
Оценка размеров молекул. Для полной уверенности в существовании молекул надо определить их размеры.
Проще всего это сделать, наблюдая расплывание капельки масла, например оливкового, по поверхности воды. Масло никогда не займет всю поверхность, если сосуд велик (рис.8.1 ). Нельзя заставить капельку объемом 1 мм 3 расплыться так, чтобы она заняла площадь поверхности более 0,6 м 2 . Можно предположить, что при растекании масла по максимальной площади оно образует слой толщиной всего лишь в одну молекулу - «мономолекулярный слой». Толщину этого слоя нетрудно определить и тем самым оценить размеры молекулы оливкового масла.

Объем V слоя масла равен произведению его площади поверхности S на толщину d слоя, т. е. V=Sd . Следовательно, размер молекулы оливкового масла равен:

Перечислять сейчас всевозможные способы доказательства существования атомов и молекул нет необходимости. Современные приборы позволяют видеть изображения отдельных атомов и молекул. На рисунке 8.2 показана микрофотография поверхности кремниевой пластины, где бугорки - это отдельные атомы кремния. Подобные изображения впервые научились получать в 1981 г. с помощью не обычных оптических, а сложных туннельных микроскопов .

Размеры молекул, в том числе и оливкового масла, больше размеров атомов. Диаметр любого атома примерно равен 10 -8 см. Эти размеры так малы, что их трудно себе представить. В таких случаях прибегают к помощи сравнений.
Вот одно из них. Если пальцы сжать в кулак и увеличить его до размеров земного шара, то атом при том же увеличении станет размером с кулак.
Число молекул. При очень малых размерах молекул число их в любом макроскопическом теле огромно. Подсчитаем примерное число молекул в капле воды массой 1 г и, следовательно, объемом 1 см 3 .
Диаметр молекулы воды равен примерно 3 10 -8 см. Считая, что каждая молекула воды при плотной упаковке молекул занимает объем (3 10 -8 см) 3 , можно найти число молекул в капле, разделив объем капли (1 см 3) на объем, приходящийся на одну молекулу:

При каждом вдохе вы захватываете столько молекул, что если бы все они после выдоха равномерно распределились в атмосфере Земли, то каждый житель планеты при вдохе получил бы две-три молекулы, побывавшие в ваших легких.
Размеры атома малы: .
О трех основных положениях молекулярно-кинетической теории речь будет идти неоднократно.

???
1. Какие измерения надо произвести, чтобы оценить размеры молекулы оливкового масла?
2. Если бы атом увеличился до размеров макового зернышка (0,1 мм), то размеров какого тела при том же увеличении достигло бы зернышко?
3. Перечислите известные вам доказательства существования мо¬лекул, не упомянутые в тексте.

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,