Как найти несобственный интеграл. Метод решения несобственного интеграла с бесконечным нижним пределом

Несобственные интегралы первого рода. По сути это тот же определённый интеграл, но в случаях, когда интегралы имеют бесконечный верхний или нижний пределы интегрирования, или оба предела интегрирования бесконечны.

Несобственные интегралы второго рода. По сути это тот же определённый интеграл, но в случаях, когда интеграл берётся от неограниченных функций, подынтегральная функция в конечном числе точек конечного отрезка интегрирования не имеет, обращаясь в бесконечность.

Для сравнения. При введении понятия определённого интеграла предполагалось, что функция f (x ) непрерывна на отрезке [a , b ], а отрезок интегрирования является конечным, то есть ограничен числами, а не бесконечностью. Некоторые задачи приводят к необходимости отказаться от этих ограничений. Так появляются несобственные интегралы.

Геометрический смысл несобственного интеграла выясняется довольно просто. В случае, когда график функции y = f (x ) находится выше оси Ox , определённый интеграл выражает площадь криволинейной трапеции, ограниченной кривой y = f (x ) , осью абсцисс и ординатами x = a , x = b . В свою очередь несобственный интеграл выражает площадь неограниченной (бесконечной) криволинейной трапеции, заключённой между линиями y = f (x ) (на рисунке ниже - красного цвета), x = a и осью абсцисс.

Аналогичным образом определяются несобственные интегралы и для других бесконечных интервалов:

Площадь бесконечной криволинейной трапеции может быть конечным числом и в этом случае несобственный интеграл называется сходящимся. Площадь может быть и бесконечностью и в этом случае несобственный интеграл называется расходящимся.

Использование предела интеграла вместо самого несобственного интеграла. Для того, чтобы вычислить несобственный интеграл, нужно использовать предел определённого интеграла. Если этот предел существует и конечен (не равен бесконечности), то несобственный интеграл называется сходящимся, а в противном случае - расходящимся. К чему стремится переменная под знаком предела, зависит от того, имеем мы дело с несобственным интегралом первого рода или второго рода. Узнаем об этом сейчас же.

Несобственные интегралы первого рода - с бесконечными пределами и их сходимость

Несобственные интегралы с бесконечным верхним пределом

Итак, запись несобственного интеграла как отличается от обычного определённого интеграла тем, что верхний предел интегрирования бесконечен.

Определение. Несобственным интегралом с бесконечным верхним пределом интегрирования от непрерывной функции f (x ) на промежутке от a до называется предел интеграла этой функции с верхним пределом интегрирования b и нижним пределом интегрирования a при условии, что верхний предел интегрирования неограниченно растёт , т.е.

.

Если этот предел существует и равен некоторому числу, а не бесконечности, то несобственный интеграл называется сходящимся , а число, которому равен предел, принимается за его значение. В противном случае несобственный интеграл называется расходящимся и ему не приписывается никакого значения.

Пример 1. Вычислить несобственный интеграл (если он сходится).

Решение. На основании определения несобственного интеграла находим

Так как предел существует и равен 1, то и данный несобственный интеграл сходится и равен 1.

В следующем примере подынтегральная функция почти как в примере 1, только степень икса - не двойка, а буква альфа, а задача состоит в исследовании несобственного интеграла на сходимость. То есть предстоит ответить на вопрос: при каких значениях альфы данный несобственный интеграл сходится, а при каких расходится?

Пример 2. Исследовать на сходимость несобственный интеграл (нижний предел интегрирования больше нуля).

Решение. Предположим сначала, что , тогда

В полученном выражении перейдём к пределу при :

Нетрудно видеть, что предел в правой части существует и равен нулю, когда , то есть , и не существует, когда , то есть .

В первом случае, то есть при имеет место . Если , то и не существует.

Вывод нашего исследования следующий: данный несобственный интеграл сходится при и расходится при .

Применяя к изучаемому виду несобственного интеграла формулу Ньютона-Лейбница , можно вывести следующую очень похожую на неё формулу:

.

Это обобщённая формула Ньютона-Лейбница.

Пример 3. Вычислить несобственный интеграл (если он сходится).

Предел этого интеграла существует:

Второй интеграл, составляющий сумму, выражающую исходный интеграл:

Предел этого интеграла также существует:

.

Находим сумму двух интегралов, являющуюся и значением исходного несобственного интеграла с двумя бесконечными пределами:

Несобственные интегралы второго рода - от неограниченных функций и их сходимость

Пусть функция f (x ) задана на отрезке от a до b и неограниченна на нём. Предположим, что функция обращается в бесконечность в точке b , в то время как во всех остальных точках отрезка она непрерывна.

Определение. Несобственным интегралом функции f (x ) на отрезке от a до b называется предел интеграла этой функции с верхним пределом интегрирования c , если при стремлении c к b функция неограниченно возрастает, а в точке x = b функция не определена , т.е.

.

Если этот предел существует, то несобственный интеграл второго рода называется сходящимся, в противном случае - расходящимся.

Используя формулу Ньютона-Лейбница, выводим.

Несобственный интеграл с бесконечным пределом интегрирования

Иногда такой несобственный интеграл еще называют несобственным интегралом первого рода..gif" width="49" height="19 src=">.

Реже встречаются интегралы с бесконечным нижним пределом или с двумя бесконечными пределами: .

Мы рассмотрим самый популярный случай https://pandia.ru/text/80/057/images/image005_1.gif" width="63" height="51">? Нет, не всегда. Подынтегральная функция https://pandia.ru/text/80/057/images/image007_0.gif" width="47" height="23 src=">

Изобразим на чертеже график подынтегральной функции . Типовой график и криволинейная трапеция для данного случая выглядит так:

Несобственный интеграл https://pandia.ru/text/80/057/images/image009_0.gif" width="100" height="51">», иными словами, площадь тоже бесконечна. Так быть может. В этом случае говорят, что, что несобственный интеграл расходится .

2) Но . Как это ни парадоксально прозвучит, площадь бесконечной фигуры может равняться… конечному числу! Например: .. Во втором случае несобственный интеграл сходится .

А что будет, если бесконечная криволинейная трапеция расположена ниже оси?.gif" width="217" height="51 src=">.


: .

Пример 1

Подынтегральная функция https://pandia.ru/text/80/057/images/image017_0.gif" width="43" height="23">, значит, всё нормально и несобственный интеграл можно вычислить «штатным» методом.

Применение нашей формулы https://pandia.ru/text/80/057/images/image018_0.gif" width="356" height="49">

То есть, несобственный интеграл расходится, и площадь заштрихованной криволинейной трапеции равна бесконечности.

При решении несобственных интегралов очень важно знать, как выглядят графики основных элементарных функций!

Пример 2

Вычислить несобственный интеграл или установить его расходимость.

Выполним чертеж:

Во-первых, замечаем следующее: подынтегральная функция непрерывна на полуинтервале . Гуд..gif" width="327" height="53">

(1) Берем простейший интеграл от степенной функции (этот частный случай есть во многих таблицах). Минус лучше сразу вынести за знак предела, чтобы он не путался под ногами в дальнейших вычислениях.

(2) Подставляем верхний и нижний пределы по формуле Ньютона-Лейбница.

(3) Указываем, что https://pandia.ru/text/80/057/images/image024.gif" width="56" height="19 src="> (Господа, это уже давно нужно понимать) и упрощаем ответ.

Вот здесь площадь бесконечной криволинейной трапеции равна конечному числу! Невероятно, но факт.

Пример 3

Вычислить несобственный интеграл или установить его расходимость.

Подынтегральная функция непрерывна на .

Сначала попытаемся найти первообразную функцию (неопределенный интеграл).

На какой из табличных интегралов похожа подынтегральная функция? Напоминает она арктангенс: . Из этих соображений напрашивается мысль, что неплохо бы в знаменателе получить квадрат. Делается это путем замены.

Проведем замену:

Всегда полезно выполнить проверку, то есть продифференцировать полученный результат:

Теперь находим несобственный интеграл:

(1) Записываем решение в соответствии с формулой . Константу лучше сразу вынести за знак предела, чтобы она не мешалась в дальнейших вычислениях.

(2) Подставляем верхний и нижний пределы в соответствии с формулой Ньютона-Лейбница..gif" width="56" height="19 src=">? Смотрите график арктангенса в уже неоднократно рекомендованной статье.

(3) Получаем окончательный ответ. Тот факт, что полезно знать наизусть.

Продвинутые студенты могут не находить отдельно неопределенный интеграл, и не использовать метод замены, а использовать метод подведения функции под знак дифференциала и решать несобственный интеграл «сразу». В этом случае решение должно выглядеть примерно так:



Подынтегральная функция непрерывна на https://pandia.ru/text/80/057/images/image041.gif" width="337" height="104">

Пример 4

Вычислить несобственный интеграл или установить его расходимость.

! Это типовой пример, и похожие интегралы встречаются очень часто. Хорошо его проработайте! Первообразная функция здесь находится методом выделения полного квадрата.

Пример 5

Вычислить несобственный интеграл или установить его расходимость.

Этот интеграл можно решить подробно, то есть сначала найти неопределенный интеграл, проведя замену переменной. А можно решить «сразу» – подведением функции под знак дифференциала..

Несобственные интегралы от неограниченных функций

Иногда такие несобственные интегралы называют несобственными интегралами второго рода. Несобственные интегралы второго рода коварно «шифруются» под обычный определенный интеграл и выглядят точно так же: ..gif" width="39" height="15 src=">, 2) или в точке , 3) или в обеих точках сразу, 4) или даже на отрезке интегрирования. Мы рассмотрим первые два случая, для случаев 3-4 в конце статьи есть ссылка на дополнительный урок.


Сразу пример, чтобы было понятно: https://pandia.ru/text/80/057/images/image048.gif" width="65 height=41" height="41">, то знаменатель у нас обращается в ноль, то есть подынтегральной функции просто не существует в этой точке!

Вообще при анализе несобственного интеграла всегда нужно подставлять в подынтегральную функцию оба предела интегрирования ..jpg" alt="Несобственный интеграл, точка разрыва в нижнем пределе интегрирования" width="323" height="380">

Здесь почти всё так же, как в интеграле первого рода.
Наш интеграл численно равен площади заштрихованной криволинейной трапеции, которая не ограничена сверху. При этом могут быть два варианта: несобственный интеграл расходится (площадь бесконечна) либо несобственный интеграл равен конечному числу (то есть, площадь бесконечной фигуры – конечна!).

Осталось только модифицировать формулу Ньютона-Лейбница. Она тоже модифицируется с помощью предела, но предел стремится уже не к бесконечности, а к значению https://pandia.ru/text/80/057/images/image052.gif" width="28" height="19"> справа .

Пример 6

Вычислить несобственный интеграл или установить его расходимость.

Подынтегральная функция терпит бесконечный разрыв в точке (не забываем устно или на черновике проверить, всё ли нормально с верхним пределом!)

Сначала вычислим неопределенный интеграл:

Замена:

Вычислим несобственный интеграл:

(1) Что здесь нового? По технике решения практически ничего. Единственное, что поменялось, это запись под значком предела: . Добавка обозначает, что мы стремимся к значению справа (что логично – см. график). Такой предел в теории пределов называют односторонним пределом. В данном случае у нас правосторонний предел.

(2) Подставляем верхний и нижний предел по формуле Ньютона Лейбница.

(3) Разбираемся с https://pandia.ru/text/80/057/images/image058.gif" width="69" height="41 src=">. Как определить, куда стремиться выражение? Грубо говоря, в него нужно просто подставить значение , подставляем три четверти и указываем, что . Причесываем ответ.

В данном случае несобственный интеграл равен отрицательному числу.

Пример 7

Вычислить несобственный интеграл или установить его расходимость.

Пример 8

Вычислить несобственный интеграл или установить его расходимость.

Если подынтегральной функции не существует в точке

Бесконечная криволинейная трапеция для такого несобственного интеграла принципиально выглядит следующим образом:

Здесь всё абсолютно так же, за исключением того, что предел у нас стремится к значению https://pandia.ru/text/80/057/images/image052.gif" width="28" height="19"> мы должны бесконечно близко приблизиться к точке разрыва слева .

2 Несобственными интегралами первого рода называются интегралы вида Подынтегральная функция предполагается непрерывной на всем участке интегрирования.

2 Если существует и конечен предел , то говорят, что несобственный интеграл сходится и равен

Аналогично определяются интегралы и :

(8.21)
где а – любое действительное число. Причем про последний интеграл говорят, что он сходится тогда и только тогда, когда сходятся оба составляющих его интеграла.

Задача 8.10.

Решение.

Следовательно, интеграл расходится.

Задача 8.11. Вычислить несобственный интеграл .

Решение.

Данный интеграл сходится.

2 Несобственными интегралами второго рода называются интегралы вида: , где подынтегральная функция f (x ) имеет бесконечные разрывы на конечном отрезке [a ; b ]. Определяются несобственные интегралы второго рода по-разному, в зависимости от расположения точек разрыва на промежутке [a ; b ].

1) Предположим, что функция f (x ) имеет бесконечный разрыв в некоторой внутренней точке области интегрирования (c Î(a ; b )) В остальных точках отрезка [a ; b ] функция предполагается непрерывной.

Тогда, если существуют и конечны пределы и , то говорят, что интеграл сходится и равен

. (8.22)
2) Пусть единственная точка разрыва функции f (x ) совпадает с точкой а

. (8.23)
3) Пусть единственная точка разрыва функции f (x ) совпадает с точкой b . Тогда, если существует и конечен предел , то говорят, что интеграл сходится, и равен

. (8.24)
Всюду предполагается, что e > 0 и d > 0.

Задача 8.12. Вычислить несобственный интеграл .

Решение. x = 2. Следовательно,

Задача 8.13. Вычислить несобственный интеграл .

Решение. Подынтегральная функция имеет разрыв второго рода в точке x = 0 (внутри области интегрирования). Следовательно,

Первый предел существует и конечен, но второй предел равен бесконечности ( при ). Следовательно, данный интеграл расходится.

Глава 9. Функции нескольких переменных

§9.1. Определение n -мерного евклидова пространства R n .

Прежде чем перейти к изучению функций многих переменных полезно ввести понятие n -мерного пространства для любого n = 1, 2, 3,… .

2 Точкой x n -мерного пространства (вектором) называется упорядоченная совокупность n действительных чисел .

Число называется i -ой координатой вектора .

2 Расстояние между двумя точками n -мерного пространства и определяется по формуле:


Расстояние от точки до точки x называется модулем вектора x и обозначается . Из формулы (9.1) следует, что .

В n -мерном пространстве естественным образом вводится понятие скалярного произведения:

Угол между векторами x и y можно определить по формуле:

По прежнему, векторы x и y перпендикулярны тогда и только тогда, когда их скалярное произведение равно нулю.

2Совокупность всех точек n -мерного пространства, в котором определено расстояние согласно формуле (9.1) и скалярное произведение, называется n -мерным евклидовым векторным пространством и обозначается через .

В случае n = 1 пространство совпадает с прямой, в случае n = 2 – с плоскостью, а в случае n = 3 – с пространством.

2 Пусть и . Совокупность всех точек таких, что , называется n -мерным шаром с центром в точке x или e -окрестностью точки x в пространстве и обозначается .

В координатной форме это определение выглядит так:

В случае прямой, т.е. при n = 1, окрестность точки представляет из себя интервал с центром в точке радиуса e . В случае плоскости, т.е. при n = 2, окрестность точки представляет из себя открытый круг с центром в точке радиуса e . В случае пространства, т.е. при n = 3 окрестность точки представляет из себя открытый шар с центром в точке радиуса e .

§9.2. Область определения функции нескольких переменных. Непрерывность

2 Функцией n переменных называется такое правило (закон), по которому каждому набору, состоящему из n переменных , взятому из некоторой области D n -мерного пространства , ставится в соответствие единственное число z . В наиболее простом случае .

2 Функцией 2-х переменных называется такое правило (закон), по которому каждой точке M (x ; y ), принадлежащей некоторой области D плоскости xOy , ставится в соответствие единственное число z .

Множество точек в пространстве с координатами образуют некоторую поверхность (рис. 9.1), возвышающуюся над областью D (геометрический смысл функции двух переменных).

2 Область D , для которой построено указанное выше соответствие, называется областью определения функции .

Задача 9.1. Найти область определения функции

Решение. Искомая область определения является множеством точек на плоскости xOy , удовлетворяющих системе неравенств . Неравенства и меняют свой знак на противоположный (соответственно) при пересечении следующих линий: x = y и x = 0, y = 0. Эти линии разбивают плоскость xOy на 6 областей. Последовательно, подставляя произвольные точки, из каждой области в систему , убеждаемся в том, что объединение областей (1) и (3) является областью определения исходной функции. Причем прямая x = y , за исключением точки (0; 0), входит в область определения, а прямые x = 0, и y = 0 – не входят (рис. 9.2).

2 Замыканием области называется множество точек пространства , в любой окрестности каждой из которых содержатся точки области D .

Пусть, например, D – некоторая открытая (граница не включается) область на плоскости xOy . Тогда замыкание области получится, если к области D присоединить ее границу Г .

2 Пусть в некоторой области D плоскости xOy задана функция , и пусть – некоторая точка замыкания области D (). Число А называется пределом функции в точке М 0 , если для любого числа e > 0 найдется такое число δ > 0, что для всех точек , отличных от точки М 0 и удаленных от нее меньше, чем на δ , выполнено неравенство .

2 Функция называется непрерывной в точке если она определена в этой точке () и имеет место равенство .

§9.3. Линии уровня функции двух переменных

2 Линии на плоскости xOy , заданные уравнениями , где С – произвольная константа, называются линиями уровня функции .

Линии уровня являются линиями пересечения поверхности, заданной функцией и плоскости z = C , параллельной плоскости xOy . С помощью линий уровня можно изучать форму поверхности, заданной функцией .

Пример 9.2. Найти линии уровня и определить форму поверхности, заданной уравнением .

Уравнения линий уровня в данном случае имеют вид . При C < 0 уравнение дает пустое множество решений (следовательно, вся поверхность расположена выше плоскости xOy ). При C = 0 уравнению линии уровня удовлетворяет только одна точка x = 0, y = 0 (с плоскостью xOy поверхность пересекается только вначале координат). При C > 0 линии уровня являются эллипсами , с полуосями и . Линии уровня, соответствующие различным значениям С , изображены на рис. 9.3. Поверхность, заданная уравнением , называется эллиптическим параболоидом (рис. 9.4).

§9.4. Частные производные первого порядка

Пусть в некоторой области D плоскости xOy задана функция , и – некоторая точка области D .

x

, (9.2)

2 Частной производной функции в точке по переменной y (обозначается или ) называется

, (9.3)
если данный предел существует и конечен.

2 Частной производной функции n переменных в точке по переменной x i называется

, (9.4)
если данный предел существует и конечен.

Как видно из формул (9.2) – (9.4), частные производные определяются аналогично тому, как определялась производная функции одной переменной. При вычислении предела приращение получает только одна из переменных, остальные переменные приращения не получают и остаются постоянными. Следовательно, частные производные можно вычислять по тем же правилам, что и обычные производные, обращаясь со всеми свободными переменными (кроме той, по которой производится дифференцирование) как с константами.

Задача 9.3. Найти частные производные функции

Решение. .

Задача 9.4. Найти частные производные функции .

Решение. При дифференцировании данной функции по переменной x мы пользуемся правилом дифференцирования степенной функции, а при нахождении частной производной по переменной y – правилом дифференцирования показательной функции:

Задача 9.5. Вычислить частные производные функции в точке .

Решение. Применяя правило дифференцирования сложной функции, найдем частные производные

Подставляя в частные производные координаты точки М , получим

§9.5. Градиент функции нескольких переменных.
Производная по направлению

2 Градиентом функции в точке называется вектор, составленный из частных производных данной функции, вычисленных в данной точке:

2 Производной функции в точке по направлению вектора называется проекция вектора градиента данной функции, вычисленного в точке М 0 , на данное направление

Вычисляя проекцию вектора на вектор в соответствие с формулой (2.6), получим

. (9.7)
Замечая, что , где a – угол, который вектор образует с осью OX , получим еще одну формулу для вычисления производной по направлению вектора

Задача 9.6. Найти градиент функции в точке М 0 (4; 2) и производную по направлению вектора

Решение. Найдем частные производные

Вычислим значения частных производных в точке М 0:

Градиент функции в точке М 0 найдем по формуле (9.5):

Задача 9.7. В точке М 0 (0; 1) вычислить производную функции по направлению биссектрисы второго координатного угла.

Решение. Найдем частные производные функции :

Вычислим значения частных производных и градиент функции в точке М 0:

Производную функции в точке М 0 по направлению биссектрисы второго координатного угла (данное направление составляет с осью OX угол a = 135°) найдем по формуле (9.8):

§9.6. Дифференциал функции нескольких переменных
и его применение к приближенным вычислениям

1 Если в точке функция имеет непрерывные частные производные и , то ее полное приращение при переходе от точки М 0 к точке может быть представлено в виде:

, (9.9)
где при , .

2 Выражение называется полным дифференциалом функции в точке .

Из формулы (9.9) следует, что дифференциал функции является главной линейной частью полного приращения функции . При достаточно млых Dx и Dy выражение существенно меньше дифференциала и им можно пренебречь. Таким образом, мы приходим к следующей приближенной формуле:

. (9.10)
Замечание. Формулой (9.10) можно пользоваться для приближенного вычисления значений функций только в точках , достаточно близких к точке . Чем меньше значение , тем точнее значение , найденное по формуле (9.9).

Пример 9.8. Вычислить приближенно, с помощью дифференциала.

Рассмотрим функцию . Требуется вычислить значение z 1 этой функции в точке (x 1 ; y 1) = (0,09; 6,95). Воспользуемся приближенной формулой (9.9), выбрав в качестве точки точку (0; 7). Тогда Dx = x 1 – x 0 = 0,09 – 0 = 0,09, Dy = y 1 – y 0 = 6,95 – 7 = – 0,05.

Следовательно,

§9.7. Частные производные высших порядков

Пусть в области D задана функция , имеющая в этой области непрерывные частные производные и . Таким образом, в области D мы получили две новые непрерывные функции двух переменных и . Если в некоторой точке области D функции и имеют частные производные как по переменной x , так и по переменой y , то эти производные называются производными второго порядка функции . Они обозначаются следующим образом:

1 Если в некоторой точке области D функция имеет непрерывные смешанные производные и , то в точке эти производные равны: . D , необходимо выполнение условий: D = 32 – 9 = 23.

Так как дискриминант больше нуля, то в точке М функция имеет экстремум. А именно, локальный минимум, поскольку А и С больше нуля. При этом

Называется Несобственным интегралом От функции F (X ) с бесконечным верхним пределом. Если этот предел существует и конечен, то несобственный интеграл называется Сходящимся . А если же он не существует или равен
± ¥, то этот несобственный интеграл называется Расходящимся.

Если F (X ) ≥ 0 для всех X A , то У несобственного интеграла (6.1) имеется очевидный геометрический смысл, вытекающий из геометрического смысла (4.3) обычного определенного интеграла. Действительно, согласно рис. 5.14

(6.2)

(6.3)

Здесь S ¥ - площадь бесконечно протяженной в направлении оси Ох криволинейной трапеции (рис. 5.15). Несмотря на свою бесконечную протяженность, она может оказаться и конечной. Но это может произойти, согласно рис. 5.15, лишь в случае, когда Y = F (X ) → 0 при X ¥ . Да и то, если функция Y = F (X ) → 0 при X ¥ достаточно быстро.

Пример 1. Найти площадь S ¥ , изображенную на рис. 5.16.

,
так как lnB ¥ при B ¥ .

Итак, S ¥ = ¥. И это несмотря на то, что функция при X ¥ . Несобственный интеграл , а значит, он расходится.

Пример 2. Найти площадь S ¥ , изображенную на рис. 5.17.

Здесь S ¥ = 1. То есть бесконечно протяженная площадь оказалась конечной. Это произошло потому, что подинтегральная функция при X ¥ достаточно быстро (по крайней мере, гораздо быстрее, чем подинтегральная функция в предыдущем примере). Несобственный интеграл (число), а значит, он сходится.

Пример 3 . Выяснить, сходится или расходится несобственный интеграл .

Решение . Вычислим это интеграл:

Не существует. Это очевидно, если вспомнить поведение графика функции Y = = SinX (синусоиды) при X ¥ . Таким образом, не существует, а значит, он расходится. Впрочем, это и не могло быть иначе, ибо подинтегральная функция cosX не стремится к нулю при Х → ¥ .

Заметим, что при вычислении несобственных интегралов типа , как и при вычислении обычных определенных интегралов , можно сразу применять формулу Ньютона-Лейбница:

Здесь

Действительно:

Если значение F (¥ ) существует и конечно, то согласно формуле (6.4) Ньютона-Лейбница сходится и несобственный интеграл .

Примечание. Совершенно аналогично интегралам с бесконечным верхним пределом можно рассматривать несобственные интегралы с бесконечным нижним пределом и даже с обоими бесконечными пределами интегрирования. То есть интегралы вида

Для их вычисления тоже можно применять формулу Ньютона-Лейбница.

Пример 4.

Итак, (число), то есть этот интеграл сходится. Его величина π равна площади S ¥ бесконечно протяженной в обе стороны фигуры, изображенной на рис. 5.18.

Заметим, что сам факт сходимости-расходимости несобственных интегралов с бесконечными пределами интегрирования не обязательно устанавливать с помощью прямого вычисления этих интегралов. Это вопрос часто можно решить и гораздо проще, сравнив данный несобственный интеграл с каким-либо другим, для которого сходимость-расходимость уже установлена.

Пусть, например, для всех имеет место неравенство F (X ) £ G (X ), Где Y = F (X ) И Y = G (X ) - Две непрерывные и неотрицательные функции (рис. 5.19). Тогда очевидно, что

Из неравенства (6.6) и рис. 5.19 очевидным образом следует так называемый Признак сравнения несобственных интегралов :

1) Если (число) - сходится, то и (число) - сходится, причем B

2) Если - расходится, то и - расходится.

3) Если - расходится, то - об этом интеграле ничего сказать нельзя.

4) Если (число) - сходится, то - об этом интеграле ничего сказать нельзя.

В качестве функции G (X ) , с которой на промежутке Сравнивают данную функцию F (X ), часто используют функцию , а в качестве интеграла сравнения - интеграл , учитывая при этом, что при A > 0 и любых α функция - положительная и непрерывная функция, и что

Пример 5.

Решение. Очевидно, что для всех X Î }