Характеристика наиболее примечательных звезд. Названия звезд и созвездий на небе

Единицы измерения

Большинство звёздных характеристик как правило выражается в СИ , но также используется и СГС (например, светимость выражается в эргах в секунду). Масса, светимость и радиус обычно даются в соотношении с нашим Солнцем:

Для обозначения расстояния до звёзд приняты такие единицы как световой год и парсек

Большие расстояния, такие как радиус гигантских звёзд или большая полуось двойных звёздных систем часто выражаются с использованием астрономической единицы (а. е. ) - среднее расстояние между Землёй и Солнцем (150 млн км ).

Физические характеристики

Массы подавляющего большинства современных звёзд лежат в пределах от 0,071 масс Солнца (75 масс Юпитера) до 100-150 масс Солнца , возможно, первые звёзды были ещё более массивными. Температура в недрах звёзд достигает 10-12 млн .

Расстояние

Существуют множество способов определить расстояние до звезды. Но наиболее точный и основой для всех остальных методов является метод измерения параллаксов звёзд. Первым измерил расстояние до звезды Веги российский астроном Василий Яковлевич Струве в 1837 году. Определение параллаксов с поверхности Земли позволяет измерить расстояния до 100 парсек , а со специальных астрометрических спутников, таких как Hipparcos , - до 1000 пк. Если звезда входит в состав звездного скопления, то мы не сильно ошибемся, если примем расстояние до звезды равным расстоянию до скопления. Если звезда принадлежит к классу цефеид , то расстояние можно найти из зависимости период пульсации - абсолютная звездная величина. В основном, для определения расстояния до далеких звёзд используется фотометрия .

Масса

Достоверно определить массу звезды можно, только если она является компонентом двойной звезды . В этом случае массу можно вычислить, используя обобщенный третий закон Кеплера . Но даже при этом оценка погрешности составляет от 20 % до 60 % и, в значительной степени, зависит от погрешности определения расстояния до звезды. Во всех прочих случаях приходится определять массу по косвенным признакам, например, зависимости светимости и массы звезды. .

Химический состав

Крайне важной характеристикой является ее химический состав, как с точки зрения звезды, так и с точки зрения наблюдателя. И хотя доля элементов тяжелее гелия исчисляется не более чем несколько процентов, но они играют важную роль в жизни звезды. Благодаря им ядерные реакции могут замедляться или ускорятся, а это отразиться как на яркости, звезды, так и на цвете, так и на продолжительности жизни. Так чем больше металличность массивной звезды, тем меньше будет остаток при взрыве сверхновой. Наблюдатель, зная химический состав звезды, может довольно уверенно сказать время образования звезды. Так как все те трагические изменения, происходящие со звездой на протяжении ее жизни, не касаются поверхности звезды. Это всегда так мало массивных и средне массивных звезд, и почти всегда для массивных звезд.

Строение звёзд

Возникновение и эволюция звёзд

Звезда начинает свою жизнь как холодное разреженное облако межзвёздного газа, сжимающееся под действием собственного тяготения. При сжатии энергия гравитации переходит в тепло, и температура газовой глобулы возрастает. Когда температура в ядре достигает нескольких миллионов Кельвинов , начинаются термоядерные реакции и сжатие прекращается. В таком состоянии звезда пребывает большую часть своей жизни, находясь на главной последовательности диаграммы Герцшпрунга - Рассела , пока не закончатся запасы топлива в её ядре. Когда в центре звезды весь водород превратится в гелий, термоядерное горение водорода продолжается на периферии гелиевого ядра.

В этот период структура звезды начинает заметно меняться. Её светимость растёт, внешние слои расширяются, а внутрениие наоборот, сжимаются. И до поры до времени яркость звезды тоже понижается. Температура поверхности снижается - звезда становится красным гигантом . На ветви гигантов звезда проводит значительно меньше времени, чем на главной последовательности. Когда масса её изотермического гелиевого ядра становится значительной, оно не выдерживает собственного веса и начинает сжиматься; возрастающая при этом температура стимулирует термоядерное превращение гелия в более тяжёлые элементы.

Подавляющее большинство звёзд, и Солнце в том числе, заканчивают эволюцию, сжимаясь до тех пор, пока давление вырожденных электронов не уравновесит гравитацию . В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды , звезду называют белым карликом. Она лишена источников энергии и, постепенно остывая, становится тёмной и невидимой.

У звёзд более массивных, чем Солнце, давление вырожденных электронов не может сдержать сжатие ядра, и оно продолжается до тех пор, пока большинство частиц не превратится в нейтроны , упакованные так плотно, что размер звезды измеряется километрами, а плотность в 280 трлн. раз превышает плотность воды. Такой объект называют нейтронной звездой; его равновесие поддерживается давлением вырожденного нейтронного вещества.

Схема эволюции одиночных звёзд

малые массы 0.08M sun

умеренные массы
0.5M sun

массивные звёзды
8M sun

0.5M sun 3M sun 8M sun M * >10M sun

горение водорода в ядре

гелиевые бел. карлики

вырожд. He ядро

невырожд. He ядро

гелиевая вспышка

спокойное горение гелия в ядре

CO белый карлик

вырожд. CO ядро невырожд. CO ядро

углеродная дет.

горение углерода в ядре. CO в Fe

горение углерода в ядре. C в O, Ne, Si, Fe, Ni..

O,Ne,Mg… белый карлик или нейтронная звезда

чёрная дыра

Схема эволюции одиночных звёзд. По В. А. Батурину и И. В. Мироновой

Продолжительность эволюции звёзд

Классификация звёзд

Звёзды классифицируют по светимости, массе, температуре поверхности, химическому составу, особенностям спектра (спектральному классу) и кратности.

Кратные звёзды

Звёздные системы могут быть одиночными и кратными: двойными, тройными и большей кратности. В случае если в систему входит более десяти звёзд то принято её называть звёздным скоплением . Двойные (кратные) звёзды очень распространены. По некоторым оценкам более 70% звёзд в галактике кратные . Так среди 32 ближайших к Земле звёзд 12 кратных из которых 10 двойных в том числе и самая яркая из визуально наблюдаемых звёзд Сириус . В окрестностях 20 парсек от Солнечной системы из более 3000 звёзд, около половины - двойные звёзды всех типов

Обозначения звёзд

В прекрасно иллюстрированной Уранометрии (Uranometria, ) немецкого астронома И. Байера ( -), где изображены созвездия и связанные с их названиями легендарные фигуры, звёзды были впервые обозначены буквами греческого алфавита приблизительно в порядке убывания их блеска: α - ярчайшая звезда созвездия, β - вторая по блеску, и т. д. Когда не хватало букв греческого алфавита, Байер использовал латинский . Полное обозначение звезды состояло из упомянутой буквы и латинского названия созвездия. Например, Сириус - ярчайшая звезда в созвездии Большого Пса (Canis Major), поэтому его обозначают как α Canis Majoris, или сокращённо α CMa; Алголь - вторая по яркости звезда в Персее обозначается как β Persei, или β Per. Байер, однако, не всегда следовал введенному им правилу, и в байеровских обозначениях есть большое количество исключений.

Реакции термоядерного синтеза в недрах звёзд

Реакции термоядерного синтеза элементов - основной источник энергии большинства звёзд.

Самые известные звёзды

обозначение название

Невооруженным глазом на небе в безлунную ночь и вдалеке от города видно огромное количество звезд. При помощи телескопа можно наблюдать еще больше светил. Профессиональная аппаратура позволяет определить их цвет и размер, а также светимость. Вопрос «из чего состоят звезды?» на протяжении длительного времени в истории астрономии оставался одним из самых спорных. Однако и его удалось решить. Сегодня ученым известно, и другие звезды и как этот параметр меняется в процессе эволюции космических тел.

Метод

Определять состав светил астрономы научились только в середине XIX века. Именно тогда в арсенале исследователей космоса появился спектральный анализ. Метод основан на свойстве атомов различных элементов излучать и поглощать свет на строго определенных резонансных частотах. Соответственно на спектре видны темные и светлые полосы, расположенные на местах, характерных для данного вещества.

Разные источники света можно отличить по рисунку из линий поглощения и излучения. успешно применяется для определения состава звезд. Его данные помогают исследователям понять очень многие процессы, происходящие внутри светил и недоступные непосредственному наблюдению.

Из чего состоит звезда на небе?

Солнце и другие светила — это огромные раскаленные шары газа. Звезды состоят преимущественно из водорода и гелия (73 и 25% соответственно). Еще примерно 2% вещества приходится на более тяжелые элементы: углерод, кислород, металлы и так далее. В целом известные сегодня планеты и звезды состоят из того же материала, что и вся Вселенная, однако различия в концентрации отдельных веществ, массе объектов и внутренних процессах порождают все многообразие существующих космических тел.

В случае светил основными критериями различий между их типами являются масса и те самые 2 % элементов, которые тяжелее гелия. Относительная концентрация последних называется в астрономии металличностью. Величина этого параметра помогает определить возраст звезды и ее будущее.

Внутреннее строение

«Начинка» звезд не разлетается по Галактике благодаря силам гравитационного сжатия. Они же способствуют распределению элементов во внутренней структуре светил определенным образом. В центр, к ядру, устремляются все металлы (в астрономии так называют любые элементы тяжелее гелия). Звезда образуется из облака пыли и газов. Если в нем присутствуют только гелий и водород, то первый образует ядро, а второй — оболочку. В тот момент, когда масса достигает критической отметки, начинается и звезда зажигается.

Три поколения звезд

Ядра, состоящие исключительно из гелия, имели светила первого поколения (также их называют звездами населения III). Они образовались через некоторое время после Большого взрыва и характеризовались впечатляющими размерами, сравнимыми с параметрами современных галактик. В процессе синтеза в их недрах из гелия постепенно образовывались другие элементы (металлы). Такие звезды заканчивали свою жизнь, взрываясь сверхновой. Элементы, синтезированные в них, стали строительным материалом для следующих светил. Для звезд второго поколения (население II) характерна низкая металличность. Самые молодые из известных сегодня светил относятся к третьему поколения. В их число входит и Солнце. Особенность таких светил — более высокий показатель металличности по сравнению с предшественниками. Более молодые звезды учеными обнаружены не были, однако можно с уверенностью утверждать, что для них будет характерен еще больший размер этого параметра.

Определяющий параметр

То, из чего состоят звезды, влияет на продолжительность их жизни. Металлы, опускающиеся к ядру, влияют на термоядерную реакцию. Чем их больше, тем раньше загорается звезда и тем меньше будет размер ее ядра при этом. Следствием последнего факта является более низкое количество энергии, излучаемое таким светилом в единицу времени. Как результат такие звезды живут значительно дольше. Их запаса топлива хватает на многие миллиарды лет. Например, по подсчетам ученых Солнце сейчас находится на середине своего жизненного цикла. Оно существует уже около 5 млрд лет и столько же еще впереди.

Солнце согласно теории образовалось из газопылевого облака, насыщенного металлами. Оно относится к звездам третьего поколения или, как их еще называют, населения I. Металлы в его ядре помимо более медленного горения топлива обеспечивают равномерное выделение тепла, что стало одним из условий зарождения жизни на нашей планете.

Эволюция звезд

Состав светил непостоянен. Посмотрим, из чего состоят звезды на разных этапах своей эволюции. Но для начала вспомним, какие этапы проходит светило от момента появления до завершения жизненного цикла.

В начале эволюции звезды располагаются на главной последовательности диаграммы Герцшпрунга-Рассела. В это время основным топливом в ядре является водород, из четырех атомов которого образуется один атом гелия. Большую часть жизни звезда проводит именно в таком состоянии. Следующая стадия эволюции — красный гигант. Его размеры значительно больше изначальных, а температура поверхности, наоборот, ниже. Звезды типа Солнца заканчивают свою жизнь на следующей стадии — они становятся белыми карликами. Более массивные светила превращаются в нейтронные звезды или черные дыры.

Первая стадия эволюции

Термоядерные процессы в недрах являются причиной перехода светила с одной стадии на другую. Горение водорода приводит к увеличению количества гелия, а значит, размеров ядра и площади реакции. В результате температура звезды возрастает. В реакцию начинает вступать водород, ранее в ней не задействованный. Происходит нарушение баланса между оболочкой и ядром. Как следствие первая начинает расширяться, а второе — сужаться. При этом сильно возрастает температура, что провоцирует горение гелия. Из него образуются более тяжелые элементы: углерод и кислород. Звезда сходит с главной последовательности и превращается в красного гиганта.

Следующая часть цикла

Представляет собой объект с сильно раздувшейся оболочкой. Когда Солнце дойдет до этой стадии, оно займет все пространство вплоть до орбиты Земли. О жизни на нашей планете в таких условиях, конечно, говорить не приходится. В недрах красного гиганта синтезируется углерод и кислород. При этом светило регулярно теряет массу из-за звездного ветра и постоянной пульсации.

Дальнейшие события различаются у объектов со средней и большой массой. Пульсации звезд первого типа приводят к тому, что их внешние оболочки сбрасываются и образуют В ядре заканчивается топливо, оно остывает и превращается в белого карлика.

Эволюция сверхмассивных светил

Водород, гелий, углерод и кислород — не все, из чего состоят звезды с огромными массами на последней стадии эволюции. На этапе красного гиганта ядра таких светил сжимаются с огромной силой. В условиях постоянно растущей температуры начинается горение углерода, а затем и его продуктов. Последовательно образуются кислород, кремний, железо. Дальше синтез элементов уже не идет, поскольку формирование из железа более тяжелых ядер с выделением энергии невозможно. Когда масса ядра достигает определенной величины, оно коллапсирует. На небе загорается сверхновая. Дальнейшая судьба объекта вновь зависит от его массы. На месте светила может образоваться нейтронная звезда или черная дыра.

После взрыва сверхновой синтезированные элементы разлетаются в окружающем пространстве. Из них, вполне возможно, через некоторое время сформируются новые звезды.

Примеры

Особое чувство возникает, когда получается не только опознать на небе знакомые светила, но и вспомнить, к какому классу они относятся, из чего состоят. Посмотрим, из каких звезд состоит Большая Медведица. В астеризм ковш входят семь светил. Самые яркие из них — это Алиот и Дубхе. Второе светило представляет собой систему из трех компонентов. В одном из них уже началось горение гелия. Два других, как и Алиот, располагаются на главной последовательности. К этой же части диаграммы Герцшпрунга-Рассела относятся и Фекда с Бенеташем, также составляющие ковш.

Самая яркая звезда ночного неба, Сириус, состоит из двух компонентов. Один из них относится к главной последовательности, второй — белый карлик. На ветви красных гигантов расположился Поллукс (альфа Близнецов) и Арктур (альфа Волопаса).

Из каких светил каждая галактика состоит? Из скольки звезд сформирована Вселенная? На подобные вопросы довольно трудно ответить точно. Несколько сотен миллиардов светил сосредоточены в одном только Млечном пути. Многие из них уже попали в объективы телескопов и регулярно обнаруживаются новые. То, из каких газов состоят звезды, нам тоже в целом известно, однако новые светила часто не соответствуют сложившемуся представлению. Космос таит еще немало тайн и многие объекты и их свойства ждут своих первооткрывателей.

Созвездия — это участки звездного неба. Чтобы лучше ориентироваться в звездном небе, древние люди стали выделять группы звезд, которые можно было связать в отдельные фигуры, похожие предметы, мифологических персонажей и животных. Такая система позволила людям организовать ночное небо, сделав каждый его участок легко узнаваемым. Это упростило изучение небесных тел, помогло измерять время, применять астрономические знание в сельском хозяйстве и ориентироваться по звездам. Звезды, которые мы видим на нашем небе словно на одном участке, на самом деле могут находиться крайне далеко друг от друга. В одном созвездии могут быть никак не связанные между собой звезды, как очень близкие, так и очень далекие от Земли.

Всего существует 88 официальных созвездий. В 1922 году Международным астрономическим союзом было официально признано 88 созвездий, 48 из которых были описаны еще древнегреческим астрономом Птолемеем в его звездном каталоге «Альмагест» около 150 г. до н.э. В картах Птолемея были пробелы, особенно это касалось южного неба. Что вполне логично — созвездия, описанные Птолемеем, охватывали ту часть ночного неба, которая видна с юга Европы. Остальные лакуны начали заполняться во времена великих географических открытий. В XIV веке голландские ученые Герард Меркатор, Питер Кейзер и Фредерик де Хаутман добавили к существующему списку созвездий новых, а польский астроном Ян Гевелий и французский Никола Луи де Лакайль довершили начатое Птолемеем. На территории России из 88-и созвездий можно наблюдать около 54-х.

Знания о созвездиях пришли к нам из древних культур. Птолемей составил карту звездного неба, но знаниями о созвездиях люди пользовались задолго до этого. Как минимум в VIII в до н.э., когда Гомер в своих поэмах «Илиада» и «Одиссея» упоминал Волопаса, Ориона и Большую Медведицу, люди уже группировали небо в отдельные фигуры. Считается, что основной массив знаний древних греков о созвездиях пришел к ним от египтян, которые, в свою очередь, унаследовали их от жителей Древнего Вавилона, шумеров или аккадов. Около тридцати созвездий выделялось уже жителями позднего бронзового века, в 1650−1050 гг. до н.э., судя по записям на глиняных табличках Древней Месопотамии. Отсылки к созвездиям можно найти и в древнееврейских библейских текстах. Самым примечательным созвездием, пожалуй, является созвездие Ориона: практически в каждой древней культуре оно имело свое название и почиталось как особенное. Так, в Древнем Египте его считали воплощением Осириса, а в Древнем Вавилоне называли «Верный пастух небес». Но самое удивительное открытие было сделано в 1972 году: в Германии был найден кусок слоновой кости мамонта, возрастом более 32 тысячи лет, на котором было вырезано созвездие Ориона.

Мы видим различные созвездия в зависимости от времени года. В течение года нашему взору предстают разные части неба (и разные небесные тела соответственно), потому что Земля совершает свой ежегодный вояж вокруг Солнца. Созвездия, которые мы наблюдаем ночью, это те, что расположены позади Земли на нашей стороне Солнца, т.к. днем, за яркими лучами Солнца, мы не в силах их разглядеть.

Чтобы лучше понять, как это работает, представьте себе, будто вы катаетесь на карусели (это Земля), из центра которой исходит очень яркий, ослепляющий свет (Солнце). Вы не сможете увидеть, что находится напротив вас из-за света, а сможете различить лишь то, что находится за пределами карусели. При этом картинка будет постоянно меняться, поскольку вы катаетесь по кругу. Какие именно созвездия вы наблюдаете на небе и в какое время года они появляются, зависит еще и от географической широты смотрящего.

Созвездия путешествуют с востока на запад, как Солнце. Как только начинает темнеть, в сумерках, в восточной части неба появляются первые созвездия, чтобы пройти по всему небосклону и исчезнуть с рассветом в западной его части. Из-за вращения Земли вокруг своей оси создается впечатление, что созвездия, как и Солнце, восходят и заходят. Созвездия, которые мы только что наблюдали на западном горизонте сразу после захода Солнца, вскоре исчезнут из нашего поля зрения, чтобы их заменили созвездия, которые находились выше во время заката всего лишь несколько недель назад.

Созвездия, возникающие на востоке, имеют суточный сдвиг около 1 градуса в день: завершение 360-градустного путешествия вокруг Солнца за 365 дней дает примерно такую же скорость. Ровно через год в то же самое время звезды займут на небе точно такое же положение.

Движение звезд — иллюзия и вопрос перспективы. Направление, в котором звезды движутся по ночному небу, обусловлено вращением Земли вокруг своей оси и действительно зависит от перспективы и от того, в какую сторону обращен лицом наблюдающий.

Глядя на север, созвездия, кажется, движутся против часовой стрелки, вокруг неподвижной точки ночного неба, так называемого северного полюса мира, расположенного возле Полярной звезды. Подобное восприятие связано с тем, что земля вращается с запада на восток, т. е. земля под вашими ногами движется направо, а звезды, как Солнце, Луна и планеты, над вашей головой следуют по направлению восток-запад, т. е. справа налево. Однако если вы повернетесь лицом на юг, звезды будут перемещаться словно по часовой стрелке, слева направо.

Зодиакальные созвездия — это те, через которые перемещается Солнце. Самые известные созвездия из 88-и существующих — зодиакальные. К ним относятся те, через которые за год проходит центр Солнца. Принято считать, что всего существует 12 зодиакальных созвездий, хотя фактически их 13: с 30 ноября по 17 декабря Солнце находится в созвездии Змееносца, но астрологи его к зодиакальным не причисляют. Все зодиакальные созвездия расположены вдоль видимого годового пути Солнца среди звезд, эклиптики, под наклоном 23,5 градусов к экватору.

У некоторых созвездий есть семьи — это группы созвездий, расположенных в одной области ночного неба. Как правило, они присваивают имена наиболее значимого созвездия. Самое «многодетное» — созвездие Геркулес, у которого целых 19 созвездий. К другим крупным семьям относятся Большая Медведица (10 созвездий), Персей (9) и Орион (9).

Созвездия-знаменитости. Самое большое созвездие — Гидра, оно простирается более чем на 3% ночного неба, в то время как наименьшее по площади, Южный Крест, занимает всего лишь 0,165% небосвода. Центавр может похвастаться наибольшим количеством видимых звезд: 101 звезда входит в знаменитое созвездие южного полушария неба. В созвездие Большого Пса входит самая яркая звезда нашего неба, Сириус, блеск которой равен −1,46m. А вот созвездие с названием Столовая Гора считается самым тусклым и не содержит звезд ярче 5-ой звездной величины. Напомним, в числовой характеристике яркости небесных тел чем меньше значение, тем ярче объект (яркость Солнца, например, составляет −26,7m).

Астеризм — это не созвездие. Астеризмом называют группу звезд с устоявшимся названием, например «Большой Ковш», который входит в созвездие Большая Медведица, или «Пояс Ориона» — три звезды, опоясывающие фигуру Ориона в одноименном созвездии. Иными словами, это фрагменты созвездий, которые закрепили за собой отдельное имя. Сам термин не является строго научным, скорее просто представляя собой дань традиции.

Несмотря на разницу в размерах, в начале своего развития все эти звезды имели похожий состав.

То, из чего состоят звезды, полностью определяет их характер и судьбу - начиная от цвета и яркости, заканчивая сроком жизни. Более того, на составе звезды завязан весь процесс ее образования, равно как и формирования ее - и нашей Солнечной системы в том числе.

Любая звезда в начале своего жизненного пути - будь то монструозные гиганты вроде или желтые карлики как наше - состоит приблизительно из равной пропорции одних и тех же веществ. Это 73% водорода, 25% гелия и еще 2% атомов дополнительных тяжелых веществ. Почти таким же был состав Вселенной после , за исключением 2% тяжелых элементов. Они образовались после взрывов первых во Вселенной звезд, чьи размеры превышали размах современных галактик.

Однако почему тогда звезды такие разные? Секрет кроется в тех самых «дополнительных» 2 процентах звездного состава. Это не единственный фактор - очевидно, что достаточно большую роль играет масса звезды. Именно определяет судьбу светила - сгорит оно за пару сотен миллионов лет, подобно , или же будет светить миллиардами лет, как Солнце. Однако дополнительные вещества в составе звезды могут перебить все другие условия.

Состав звезды SDSS J102915 +172927 идентичен составу первых звезд, возникших после Большого взрыва.

Вглубь звезды

Но как такая ничтожная часть состава звезды может серьезно изменить ее функционирование? Для человека, в среднем состоящего на 70% из воды, потеря 2% жидкости не страшна - это всего лишь ощущается как сильная жажда и не приводит к необратимым изменениям в организме. Но Вселенная очень чуткая даже к самым малым переменам - будь 50-я часть состава нашего Солнца хоть капельку иной, жизнь в могла и не образоваться.

Как это работает? Для начала вспомним одно из главных последствий гравитационных взаимодействий, упоминаемое повсеместно в астрономии - тяжелое стремится к центру. Любая планета служит этого принципа: самые тяжелые элементы, вроде железа, располагаются в ядре, когда более легкие - снаружи.

То же самое происходит во время образования звезды из рассеянного вещества. В условном стандарте строения звезды гелий образует ядро светила, а из водорода собирается окружающая оболочка. Когда масса гелия переваливает за критическую точку, гравитационные силы сжимают ядро с такой силой, что в прослойках между гелием и водородом в ядре начинается .

Именно тогда звезда и зажигается - еще совсем молодая, окутанная водородными облаками, которые со временем улягутся на ее поверхности. Свечение играет важную роль в существовании звезды - именно , пытающиеся вырваться из ядра после термоядерной реакции, удерживают светило от моментального сжатия в или . Также имеет силу обычная конвекция, перемещение вещества под воздействием температуры - ионизированные накалом у ядра, атомы водорода поднимаются в верхние слои звезды, перемешивая тем самым материю в нем.

Так все же, при чем тут 2% тяжелых веществ в составе звезды? Дело в том, что любой элемент тяжелее гелия - будь то углерод, кислород или металлы - неминуемо окажется в самом центре ядра. Они опускают планку массы, по достижению которой зажигается термоядерная реакция - и чем тяжелее вещества в центре, тем быстрее зажигается ядро. Однако при этом оно будет излучать меньше энергии - размеры эпицентра горения водорода будут скромнее, чем если бы ядро звезды состояло из чистого гелия.

Солнцу повезло?

Итак, 4 с половиной миллиарда лет назад, когда Солнце только стало полноценной звездой, оно состояло из того же материала, что и вся - трех четвертей водорода, одной четверти гелия, и пятидесятой части примесей металлов. Благодаря особой конфигурации этих добавок, энергия Солнца стала подходящей для наличия жизни в его системе.

Под металлами не подразумевается только никель, железо или золото - астрономы называют металлами все, что отличается от водорода и гелия. Туманность, из которой по теории сформировалось , была сильно металлизирована - она состояла из остатков сверхновых звезд, которые стали источником тяжелых элементов во Вселенной. Звезды, чьи условия зарождения были схожи с Солнечными, называются звездами населения I. Такие светила составляют большую часть нашей .

Мы уже знаем, что благодаря 2% металлов в содержании Солнца оно горит медленнее - это обеспечивает не только долгую «жизнь» звезде, но и равномерную подачу энергии - важные для зарождения жизни на критерии. Кроме того, раннее начало термоядерной реакции поспособствовало тому, что не все тяжелые вещества были поглощены младенцем-Солнцем - в итоге сумели зародиться и полностью сформироваться существующие нынче планеты.

К слову, Солнце могло гореть немногим тусклее - пусть и маленькую, но все же значимую часть металлов забрали у Солнца газовые гиганты. В первую очередь стоит выделить , немало изменивший в Солнечной системе. Влияние планет на состав звезд было доказано в процессе наблюдений за тройной звездной системой . Там есть две звезды, похожие на Солнце, и возле одной из них нашли газовый гигант, масса которого минимум в 1,6 раза больше Юпитера. Металлизация этой звезды оказалась существенно ниже ее соседки.

Старение звезды и изменение состава

Однако время не стоит на месте - и термоядерные реакции внутри звезд постепенно изменяют их состав. Главной и самой простой реакцией синтеза, который протекает в большинстве звезд во Вселенной, и в нашем Солнце в том числе, является протон-протонный цикл. В нем четыре атома водорода сливаются воедино, образуя в итоге один атом гелия и очень большой выход энергии - до 98% общей энергии звезды. Такой процесс называется еще «горением» водорода: в Солнце «сгорает» до 4 миллионов тонн водорода ежесекундно.

Как меняется состав звезды в процессе ? Это мы можем понять того, что мы уже узнали о звездах в статье. Рассмотрим на примере нашего Солнца: количество гелия в ядре будет увеличиваться; соответственно, будет расти объем ядра звезды. Из-за этого увеличится площадь термоядерной реакции, а вместе с ней - интенсивность свечения и температура Солнца. Через 1 миллиард лет (в возрасте 5,6 млрд лет) энергия звезды вырастет на 10%. В возрасте 8 миллиардов лет (через 3 млрд лет от сегодняшнего дня) солнечное излучение составит 140% от современного - условия на Земле к тому времени поменяются настолько, что она в точности будет напоминать .

Рост интенсивности протон-протонной реакции сильно отразится на составе звезды - водород, мало затронутый с момента рождения, станет сгорать куда быстрее. Нарушится баланс между оболочкой Солнца и его ядром - водородная оболочка станет расширяться, а гелиевое ядро, наоборот, сужаться. В возрасте 11 миллиардов лет сила излучения из ядра звезды станет слабее сжимающей его гравитации - греть ядро теперь станет именно растущее сжатие.

Существенные изменения в составе звезды произойдут еще через миллиард лет, когда температура и сжатие ядра Солнца вырастет настолько, что запустится следующая стадия термоядерной реакции - «горение» гелия. В итоге реакции, атомные ядра гелия сначала сбиваются вместе, превращаясь в нестабильную форму бериллия, а затем в углерод и кислород. Сила этой реакции невероятно велика - когда будут зажигаться нетронутые островки гелия, Солнце будет вспыхивать до 5200 раз ярче, чем сегодня!

Во время этих процессов ядро Солнца будет продолжать накаляться, а оболочка расширится до границ орбиты Земли и значительно остынет - ибо чем больше площадь излучения, тем больше энергии теряет тело. Пострадает и масса светила: потоки звездного ветра будут уносить остатки гелия, водорода и новообразованных углерода с кислородом в далекий космос. Так наше Солнце превратится в . Полностью завершится развитие светила тогда, когда оболочка звезды окончательно истощится, и останется только плотное, горячее и маленькое ядро - . Оно медленно будет остывать миллиардами лет.

Эволюция состава звезд, отличных от Солнца

На этапе возгорания гелия термоядерные процессы в звезде размеров Солнца заканчиваются. Массы небольших звезд недостаточно для возгорания новообразованных углерода и кислорода - светило должно быть минимум в 5 раз массивнее Солнца, чтобы углерод начал ядерное преобразование.