Атомное ядро: заряд ядра. Строение и заряд ядра атома

Исследуя прохождение α-частицы через тонкую золотую фольгу (см. п. 6.2), Э. Резерфорд пришёл к выводу о том, что атом состоит из тяжёлого положительного заряженного ядра и окружающих его электронов.

Ядром называется центральная часть атома , в которой сосредоточена практически вся масса атома и его положительный заряд .

В состав атомного ядра входят элементарные частицы : протоны и нейтроны (нуклоны от латинского слова nucleus – ядро ). Такая протонно-нейтронная модель ядра была предложена советским физиком в 1932 г. Д.Д. Иваненко. Протон имеет положительный заряд е + =1,06·10 –19 Кл и массу покоя m p = 1,673·10 –27 кг = 1836m e . Нейтрон (n ) – нейтральная частица с массой покоя m n = 1,675·10 –27 кг = 1839m e (где масса электрона m e , равна 0,91·10 –31 кг). На рис. 9.1 приведена структура атома гелия по представлениям конца XX - начала XXI в.

Заряд ядра равен Ze , где e – заряд протона, Z – зарядовое число , равное порядковому номеру химического элемента в периодической системе элементов Менделеева, т.е. числу протонов в ядре. Число нейтронов в ядре обозначается N . Как правило Z > N .

В настоящее время известны ядра с Z = 1 до Z = 107 – 118.

Число нуклонов в ядре A = Z + N называется массовым числом . Ядра с одинаковым Z , но различными А называются изотопами . Ядра, которые при одинаковом A имеют разные Z , называются изобарами .

Ядро обозначается тем же символом, что и нейтральный атом , где X – символ химического элемента. Например: водород Z = 1 имеет три изотопа: – протий (Z = 1, N = 0), – дейтерий (Z = 1, N = 1), – тритий (Z = 1, N = 2), олово имеет 10 изотопов и т.д. В подавляющем большинстве изотопы одного химического элемента обладают одинаковыми химическими и близкими физическими свойствами. Всего известно около 300 устойчивых изотопов и более 2000 естественных и искусственно полученных радиоактивных изотопов .

Размер ядра характеризуется радиусом ядра, имеющим условный смысл ввиду размытости границы ядра. Ещё Э. Резерфорд, анализируя свои опыты, показал, что размер ядра примерно равен 10 –15 м (размер атома равен 10 –10 м). Существует эмпирическая формула для расчета радиуса ядра:

, (9.1.1)

где R 0 = (1,3 – 1,7)·10 –15 м. Отсюда видно, что объём ядра пропорционален числу нуклонов.

Плотность ядерного вещества составляет по порядку величины 10 17 кг/м 3 и постоянна для всех ядер. Она значительно превосходит плотности самых плотных обычных веществ.

Протоны и нейтроны являются фермионами , т.к. имеют спин ħ /2.

Ядро атома имеет собственный момент импульса спин ядра :

, (9.1.2)

где I внутреннее (полное ) спиновое квантовое число.

Число I принимает целочисленные или полуцелые значения 0, 1/2, 1, 3/2, 2 и т.д. Ядра с четными А имеют целочисленный спин (в единицах ħ ) и подчиняются статистике Бозе Эйнштейна (бозоны ). Ядра с нечетными А имеют полуцелый спин (в единицах ħ ) и подчиняются статистике Ферми Дирака (т.е. ядра – фермионы ).

Ядерные частицы имеют собственные магнитные моменты, которыми определяется магнитный момент ядра в целом. Единицей измерения магнитных моментов ядер служит ядерный магнетон μ яд:

. (9.1.3)

Здесь e – абсолютная величина заряда электрона, m p – масса протона.

Ядерный магнетон в m p /m e = 1836,5 раз меньше магнетона Бора, отсюда следует, что магнитные свойства атомов определяются магнитными свойствами его электронов .

Между спином ядра и его магнитным моментом имеется соотношение:

, (9.1.4)

где γ яд – ядерное гиромагнитное отношение .

Нейтрон имеет отрицательный магнитный момент μ n ≈ – 1,913μ яд так как направление спина нейтрона и его магнитного момента противоположны. Магнитный момент протона положителен и равен μ р ≈ 2,793μ яд. Его направление совпадает с направлением спина протона.

Распределение электрического заряда протонов по ядру в общем случае несимметрично. Мерой отклонения этого распределения от сферически симметричного является квадрупольный электрический момент ядра Q . Если плотность заряда считается везде одинаковой, то Q определяется только формой ядра. Так, для эллипсоида вращения

, (9.1.5)

где b – полуось эллипсоида вдоль направления спина, а – полуось в перпендикулярном направлении. Для ядра, вытянутого вдоль направления спина, b > а и Q > 0. Для ядра, сплющенного в этом направлении, b < a и Q < 0. Для сферического распределения заряда в ядре b = a и Q = 0. Это справедливо для ядер со спином, равным 0 или ħ /2.

Для просмотра демонстраций щелкните по соответствующей гиперссылке:

Белкин И.К. Заряд атомного ядра и периодическая система элементов Менделеева //Квант. - 1984. - № 3. - С. 31-32.

По специальной договоренности с редколлегией и редакцией журнала "Квант"

Современные представления о строении атома возникли в 1911 - 1913 годах, после знаменитых опытов Резерфорда по рассеянию альфа-частиц. В этих опытах было показано, что α -частицы (их заряд положительный), попадая на тонкую металлическую фольгу, иногда отклоняются на большие углы и даже отбрасываются назад. Это можно было объяснить только тем, что положительный заряд в атоме сконцентрирован в ничтожно малом объеме. Если представить его в виде шарика, то, как установил Ре- зерфорд, радиус этого шарика должен быть равен примерно 10 -14 -10 -15 м, что в десятки и сотни тысяч раз меньше размеров атома в целом (~10 -10 м). Только вблизи столь малого по размерам положительного заряда может существовать электрическое поле, способное отбросить α -частицу, мчащуюся со скоростью около 20 000 км/с. Эту часть атома Резерфорд назвал атомным ядром.

Так возникла идея о том, что атом любого вещества состоит из положительно заряженного ядра и отрицательно заряженных электронов, существование которых в атомах было установлено ранее. Очевидно, что, поскольку атом в целом электрически нейтрален, заряд ядра должен быть численно равен заряду всех имеющихся в атоме электронов. Если обозначить модуль заряда электрона буквой е (элементарный заряд), то заряд q я ядра должен быть равен q я = Ze , где Z - целое число, равное числу электронов в атоме. Но чему равно число Z ? Чему равен заряд q я ядра?

Из опытов Резерфорда, позволивших установить размеры ядра, в принципе, можно определить и величину заряда ядра. Ведь электрическое поле, отбрасывающее α -частицу, зависит не только от размеров, но и от заряда ядра. И Резерфорд в самом деле оценил заряд ядра. По Резерфорду заряд ядра атома того или иного химического элемента примерно равен половине его относительной атомной массы А , умноженной на элементарный заряд е , то есть

\(~Z = \frac{1}{2}A\).

Но, как это ни странно, истинный заряд ядра был установлен не Резер- фордом, а одним из читателей его статей и докладов - голландским ученым Ван-ден-Бруком (1870-1926). Странно потому, что Ван-ден-Брук по образованию и профессии был не физиком, а юристом.

Почему Резерфорд, оценивая заряды атомных ядер, соотносил их с атомными массами? Дело в том, что когда в 1869 году Д. И. Менделеев создал периодическую систему химических элементов, он расположил элементы в порядке возрастания их относительных атомных масс. И за истекшие сорок лет все привыкли к тому, что самая важная характеристика химического элемента - его относительная атомная масса, что именно она отличает один элемент от другого.

Между тем именно в это время, в начале XX века, с системой элементов возникли трудности. При исследовании явления радиоактивности был открыт ряд новых радиоактивных элементов. И для них в системе Менделеева как будто бы не было места. Казалось, что система Менделеева требовала изменения. Этим и был особенно озабочен Ван-ден-Брук. В течение нескольких лет им было предложено несколько вариантов расширенной системы элементов, в которой хватило бы места не только для неоткрытых еще стабильных элементов (о местах для них «позаботился» еще сам Д. И. Менделеев), но и для радиоактивных элементов тоже. Последний вариант Ван-ден-Брук опубликовал в начале 1913 года, в нем было 120 мест, а уран занимал клетку под номером 118.

В том же 1913 году были опубликованы результаты последних исследований по рассеянию α -частиц на большие углы, проведенных сотрудниками Резерфорда Гейгером и Марсденом. Анализируя эти результаты, Ван-ден-Брук сделал важнейшее открытие. Он установил, что число Z в формуле q я = Ze равно не половине относительной массы атома химического элемента, а его порядковому номеру. И притом порядковому номеру элемента в системе Менделеева, а не в его, Ван-ден-Брука, 120-местной системе. Система Менделеева, оказывается, не нуждалась в изменении!

Из идеи Ван-ден-Брука следует, что всякий атом состоит из атомного ядра, заряд которого равен порядковому номеру соответствующего элемента в системе Менделеева, умноженному на элементарный заряд, и электронов, число которых в атоме тоже равно порядковому номеру элемента. (Атом меди, например, состоит из ядра с зарядом, равным 29е , и 29 электронов.) Стало ясно, что Д. И. Менделеев интуитивно расположил химические элементы в порядке возрастания не атомной массы элемента, а заряда его ядра (хотя он об этом и не знал). Следовательно, один химический элемент отличается от другого не своей атомной массой, а зарядом атомного ядра. Заряд ядра атома - вот главная характеристика химического элемента. Существуют атомы совершенно различных элементов, но с одинаковыми атомными массами (они имеют специальное название - изобары).

То, что не атомные массы определяют положение элемента в системе, видно и из таблицы Менделеева: в трех местах нарушено правило возрастания атомной массы. Так, относительная атомная масса у никеля (№ 28) меньше, чем у кобальта (№ 27), у калия (№ 19) она меньше, чем у аргона (№ 18), у иода (№ 53) меньше, чем у теллура (№ 52).

Предположение о взаимосвязи заряда атомного ядра и порядкового номера элемента легко объясняло и правила смещения при радиоактивных превращениях, открытые в том же 1913 году («Физика 10», § 103). В самом деле, при испускании ядром α -частицы, заряд которой равен двум элементарным зарядам, заряд ядра, а значит, и его порядковый номер (теперь обычно говорят - атомный номер) должен уменьшиться на две единицы. При испускании же β -частицы, то есть отрицательно заряженного электрона, он должен увеличиться на одну единицу. Именно в этом и состоят правила смещения.

Идея Ван-ден-Брука очень скоро (буквально в том же году) получила первое, правда косвенное, опытное подтверждение. Несколько позже правильность ее была доказана прямыми измерениями заряда ядер многих элементов. Понятно, что она сыграла важную роль в дальнейшем развитии физики атома и атомного ядра.

ЗАРЯД ЯДРА

Закон Мозли. Электрический заряд ядра образуют протоны, входящие в его состав. Число протонов Z называют его зарядом, имея ввиду, что абсолютное значение заряда ядра равно Ze. Заряд ядра совпадает с порядковым номером Z элемента в периодической системе элементов Менделеева. Впервые заряды атомных ядер определил английский физик Мозли в 1913 году. Измерив с помощью кристалла длину волны λ характеристического рентгеновского излучения для атомов некоторых элементов, Мозли обнаружил регулярное изменение длины волны λ у элементов, следующих друг за другом в периодической системе (рис.2.1). Это наблюдение Мозли интерпретировал зависимостью λ от некоторой константы атома Z , изменяющейся на единицу от элемента к элементу и равной единице для водорода:

где и - постоянные. Из экспериментов по рассеянию рентгеновских квантов атомными электронами и α -частиц атомными ядрами уже было известно, что заряд ядра примерно равен половине атомной массы и, следовательно, близок к порядковому номеру элемента. Поскольку испускание характеристического рентгеновского излучения является следствием электрических процессов в атоме, Мозли сделал вывод, что найденная в его опытах константа атомов, определяющая длину волны характеристического рентгеновского излучения и совпадающая с порядковым номером элемента, может быть только зарядом атомного ядра (закон Мозли).

Рис. 2.1. Рентгеновские спектры атомов соседних элементов, полученные Мозли

Измерение длин волн рентгеновского излучения выполняется с большой точностью, так что на основе закона Мозли принадлежность атома к химическому элементу устанавливается абсолютно надежно. Вместе с тем тот факт, что константа Z в последнем уравнении является зарядом ядра, хотя и обоснован косвенными экспериментами, в конечном счете держится на постулате – законе Мозли. Поэтому после открытия Мозли заряды ядер многократно измерялись в опытах по рассеянию α -частиц на основе закона Кулона. В 1920 году Чедвиг усовершенствовал методику измерения доли рассеянных α -частиц и получил заряды ядер атомов меди, серебра и платины (см. таблицу 2.1). Данные Чедвига не оставляют сомнений в справедливости закона Мозли. Помимо указанных элементов в экспериментах были определены также заряды ядер магния, алюминия, аргона и золота.

Таблица 2.1. Результаты опытов Чедвика

Определения. После открытия Мозли стало ясно, что основной характеристикой атома является заряд ядра, а не его атомная масса, как это предполагали химики 19 века, ибо заряд ядра определяет число атомных электронов, а значит, химические свойства атомов. Причина различия атомов химических элементов как раз и состоит в том, что их ядра имеют разное число протонов в своем составе. Напротив, разное число нейтронов в ядрах атомов при одинаковом числе протонов никак не меняет химические свойства атомов. Атомы, различающиеся только числом нейтронов в ядрах, называются изотопами химического элемента.

В основе любой науки лежит что-то маленькое и важное. В биологии это клетка, в языкознании - буква и звук, в инженерии - винтик, в строительстве - пещинка, а для химии и физики самой важное - это атом, его структура.

Данная статья предназначена для лиц старше 18 лет

А вам уже исполнилось 18?

Атом — это та наименьшая частица всего, что нас окружает, которая несет в себе всю необходимую информацию,частица, определяющая характеристики и заряды. Долгое время ученые думали, что она неделима, едина, однако в течение долгих часов, дней, месяцев и годов проводились изучения, исследования и опыты, которые доказали, что атом также имеет свою структуру. Другими словами, этот микроскопический шарик состоит из еще меньших составляющих, которые влияют на величину его ядра, свойства и заряд. Структура же этих частиц такова:

  • электроны;
  • ядро атома.

Последнее также можно разделить на совсем элементарные части, которые в науке именуют протонами и нейронами, которых насчитывается четкое количество в каждом конкретном случае.

Число протонов, которые есть в ядре, указывает на структуру оболочки, которая состоит из электронов. Эта оболочка же, в свою очередь, вмещает в себя все необходимые свойства определенного материала, вещества либо предмета. Вычислить сумму протонов очень просто — достаточно знать порядковый номер наименьшей части вещества (атома) во всем известной таблице Менделеева. Это значение еще называют атомным числом и обозначают латинской буквой «Z». Важно помнить, что протоны владеют позитивным зарядом, а на письме это значение определяется как +1.

Нейроны — второе составляющее ядра атома. Это элементарная субатомная частица, которая не несет никакого заряда в отличие от электронов или протонов. Нейроны были открыты в 1932 году Дж. Чедвиком, за что он, спустя 3 года, получил Нобелевскую премию. В учебниках и научных трудах их обозначают как латинский символ «n».

Третья составляющая атома — электрон, который находится в монотонном движении вокруг ядра, создавая таким образом облако. Именно эта частица самая легкая из всех известных современной науке, а это значит, что и заряд ее также наименьший.Обозначаетсяэлектрон на письме от −1.

Именно соединение положительных и негативных частиц в структуре, делает атом незаряженной или нейтрально заряженной частицей. Ядро, в сравнении с общим размеров всего атома, очень маленькое, но именно в нем сосредоточен весь вес, что говорит о его высокой плотности.

Как определить заряд ядра атома?

Чтобы определить заряд ядра атома, нужно хорошо разбираться в строении, структуре самого атома и его ядра, понимать основные законы физики и химии, а также иметь на вооружении периодическую таблицу Менделеева для определения атомного числа химического элемента.

  1. Знание того, что микроскопическая частица любого вещества имеет в своей структуре ядро и электроны, которые создают возле него оболочку в виде облака. В состав ядра, в свою очередь, входят два вида элементарных неделимых частиц: протоны и нейроны, каждый из которых имеет свои свойства и характеристики. Нейроны не располагают в своем арсенале электронным зарядом. Это означает, что их заряд не равен и не больше или меньше ноля. Протоны, в отличие от своих собратьев, несут положительный заряд. Иными словами, их электрический заряд можно обозначить как +1.
  2. Электроны, которые являются неотъемлемой частью каждого атома, также несут в себе определенный вид электрического заряда. Они являются негативно заряженными элементарными частицами, а на письме они определяются как −1.
  3. Чтобы вычислить заряд атома, нужны знания о его структуре (мы только что вспомнили необходимые сведения), количестве элементарных частиц в составе. А для того, чтобы узнать суму заряда атома, нужно математическим способом добавить количество одних частиц (протонов) к другим (электронам). Обычно, характеристика атома говорит о том, что он электрон нейтрален. Другими словами значение электронов приравнивается количеству протонов. Итог таков — значение заряда такого атома равен нулю.
  4. Важный нюанс: бывают ситуации, когда число позитивно и негативно заряженных элементарных частиц в ядре может не быть равным. Это говорит о том, что атом становиться ионом с положительным или отрицательным зарядом.

Обозначениеядра атома в научной сфере выглядит как Ze. Расшифровать это достаточно просто: Z — это тот номер, который присвоен элементу во всем известной таблице Менделеева, еще его называют порядковым или зарядным числом. И указывает оно на количество протонов в ядре атома, а e — это всего лишь заряд протона.

В современной науке существуют ядра с разным значением зарядов: от 1 до 118.

Еще одно важное понятие, которое нужно знать юным химикам — массовое число. Это понятие указывает на общую суму заряда нуклонов (это те самые мелкие составляющие части ядра атома химического элемента). И найти это число можно, если воспользоваться формулой: A = Z + N где А — искомое массовое число, Z — количество протонов, а N — значение нейтронов в ядре.

Чему равен заряд ядра атома брома?

Чтобы на практике продемонстрировать, как найти заряд атома необходимого элемента (в нашем случае, брома), стоит обратиться к периодической таблице химических элементов и найти там бром. Его порядковыйномер 35. Это означает, что и заряд ядра его равен 35, поскольку он зависит от числа протонов в ядре. А на число протонов указывает номер, под которым стоит химический элемент в великом труде Менделеева.

Приведем еще несколько примеров, чтобы в будущем юным химикам и было проще рассчитать необходимые данные:

  • заряд ядра атома натрия (na)равен 11, поскольку именно под этим номером его можно найти в таблице химических элементов.
  • заряд ядра фосфора (символическое обозначение которого P) имеет значение 15, ведь именно столько в его ядре протонов;
  • сера (с графическим обозначениемS) — соседка по таблице предыдущегоэлемента, поэтому и заряд ядра у нее 16;
  • железо (а найти мы его можем в обозначенииFe) стоит под номером 26, что говорит о таком же количестве протонов в его ядре, а значит и заряде атома;
  • углерод (он же C) находится под 6 номером периодической таблицы, что и указывает на нужную нам информацию;
  • магний имеет атомный номер 12, а в международной символике его знают как Mg;
  • хлор в периодической таблице, где он пишетсякак Cl, стоит под 17 номером, поэтому и его атомное число (а именно оно нам нужно) такое же — 17;
  • кальций (Ca), который так полезен для юных организмов, находим под номером 20;
  • заряд ядра атома азота (с письменным обозначениемN) равняется 7, именно в такой очереди он представлен в таблице Менделеева;
  • барий стоит под 56 номером, что и равно его атомной массе;
  • химический элемент селен (Se) имеет в своем ядре 34 протона, а это показывает, что именно таким будет заряд ядра его атома;
  • серебро (или в письменном обозначенииAg) имеет порядковыйномер и атомную массу 47;
  • если же нужно узнать заряд ядра атома лития (Li), то нужно обратиться к началу великого труда Менделеева, где он находится под номером 3;
  • аурум или всеми нами любимое золото (Au) имеет атомную массу 79;
  • у аргона же это значение равно 18;
  • рубидий имеет атомную массу в размере 37, а у стронция она равна 38.

Перечислять все составляющие периодической таблицы Менделеева можно еще очень долго, ведь их (этих составляющих) очень много. Главное, что суть этого явления понятна, а если нужно будет вычислить атомное число калия, кислорода, кремния, цинка, алюминия, водорода, бериллия, бора, фтора, меди, фтора, мышьяка, ртути, неона, марганца, титана, то стоит только обратиться к таблице химических элементов и узнать порядковый номер того или иного вещества.

Наименование параметра Значение
Тема статьи: ЗАРЯД ЯДРА
Рубрика (тематическая категория) Радио

Физические свойства атомных ядер.
Размещено на реф.рф
Заряд ядра. Размер ядра. Моменты ядер.
Размещено на реф.рф
Спин ядра. Магнитный и электрический моменты ядра. Масса ядра и масса атома. Дефект массы. Энергия связи. Основные особенности энергии связи. Основное правило. Ядерные силы: основные характеристики, кулоновский и ядерный потенциалы ядра. Обменный характер ядерных сил.

Закон Мозли. Электрический заряд ядра образуют протоны, входящие в его состав. Число протонов Z называют его зарядом, имея ввиду, что абсолютное значение заряда ядра равно Ze. Заряд ядра совпадает с порядковым номером Z элемента в периодической системе элементов Менделœеева. Впервые заряды атомных ядер определил английский физик Мозли в 1913 году. Измерив с помощью кристалла длину волны λ характеристического рентгеновского излучения для атомов некоторых элементов, Мозли обнаружил регулярное изменение длины волны λ у элементов, следующих друг за другом в периодической системе (рис.2.1). Это наблюдение Мозли интерпретировал зависимостью λ от некоторой константы атома Z , изменяющейся на единицу от элемента к элементу и равной единице для водорода:

где и - постоянные. Из экспериментов по рассеянию рентгеновских квантов атомными электронами и α -частиц атомными ядрами уже было известно, что заряд ядра примерно равен половинœе атомной массы и, следовательно, близок к порядковому номеру элемента. Поскольку испускание характеристического рентгеновского излучения является следствием электрических процессов в атоме, Мозли сделал вывод, что найденная в его опытах константа атомов, определяющая длину волны характеристического рентгеновского излучения и совпадающая с порядковым номером элемента͵ должна быть только зарядом атомного ядра (закон Мозли).

Рис. 2.1. Рентгеновские спектры атомов сосœедних элементов, полученные Мозли

Измерение длин волн рентгеновского излучения выполняется с большой точностью, так что на базе закона Мозли принадлежность атома к химическому элементу устанавливается абсолютно надежно. Вместе с тем тот факт, что константа Z в последнем уравнении является зарядом ядра, хотя и обоснован косвенными экспериментами, в конечном счете держится на постулате – законе Мозли. По этой причине после открытия Мозли заряды ядер многократно измерялись в опытах по рассеянию α -частиц на базе закона Кулона. В 1920 году Чедвиг усовершенствовал методику измерения доли рассеянных α -частиц и получил заряды ядер атомов меди, серебра и платины (см. таблицу 2.1). Данные Чедвига не оставляют сомнений в справедливости закона Мозли. Помимо указанных элементов в экспериментах были определœены также заряды ядер магния, алюминия, аргона и золота.

Таблица 2.1. Результаты опытов Чедвика

Определœения. После открытия Мозли стало ясно, что основной характеристикой атома является заряд ядра, а не его атомная масса, как это предполагали химики 19 века, ибо заряд ядра определяет число атомных электронов, а значит, химические свойства атомов. Причина различия атомов химических элементов как раз и состоит в том, что их ядра имеют разное число протонов в своем составе. Напротив, разное число нейтронов в ядрах атомов при одинаковом числе протонов никак не меняет химические свойства атомов. Атомы, различающиеся только числом нейтронов в ядрах, называются изотопами химического элемента.

Атом с определœенным числом протонов и нейтронов в составе ядра принято называть нуклидом. Состав ядра задается числами Z и A . Об изотопе говорят только имея ввиду принадлежность к химическому элементу, к примеру, 235 U есть изотоп урана, но 235 U – делящийся нуклид, а не делящийся изотоп.

Атомы, ядра которых содержат одинаковое число нейтронов, но разное число протонов, называются изотонами. Атомы с одинаковыми массовыми числами, но различным протон-нейтронным составом ядер, называются изобарами.

ЗАРЯД ЯДРА - понятие и виды. Классификация и особенности категории "ЗАРЯД ЯДРА" 2017, 2018.